

Eg	A	= [13 2 1 1 1	0 41 11 7 0 4 3 5 7he -	find r		det A	D		- 3 2	0 4) 1 7 3 5		- 4 (1 24	0 0 1	· · ·	· ·		· · ·	· ·	• •		· · ·	· ·
· · · ·			· · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·		- 3 - 3 - 66	((55-5 9	7 + 4	(6-11)) - 4	(⁴ 6 3	- 3 2	" 3))	· · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·			· · ·	· · · · · · · · · · · · · · · · · · ·
		ecked 8 Test		0		pute	2r,)		 			· · · · ·			••••			· ·			· ·	
No I	l. Nov. Quiz am a	Fri. Ne way Fr	Nov.	7, M	on Non	, 20.	Lecture	- " () 25 for A ic	- tuos	e two 1:66 ;ff	days .	will be +0	pren	contec Ji co	(-) ae 1	chec A'=	le te	re [d	webs -6]	ites.	• •	• •
No I Reca Th mo Oa	L. Nov. Quiz ann a ll: is fora st com ffw z	Fri. No way Fr f A = [nula has pontetione yon h	10, 17 Nov. a b c d ly e	17, M then werali Ricient find A	n No det A eation way " whe	, 20. = ad- for to eve A	lecture bc. n×n Compu	A is matrice te A' 4x4	- Koz inver es (if Th	e two Hible iff Cramer's n is k to entrie	days det A Rule rge. s of	will be #0,). 7 A' have	prea	ecordes In Ca use	l - se l ful de	chec A'= atho	le to al-be righ	fd [no 6 =	webs a] t -	the the	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
No I Reca Th mo Oa	l. Nov. Quize ann a ll: is fore fw z	Fri. Ne way Fr f A = [mula has upurtetiona yon h	10, 17 Nov. 4 b c d ly e 2d to	7, M then everalit ficient find A	det A det A eation way	, 20. = ad- for to 2re A	bc. n×n Compu	A is matric te A' 4x7	- Kos inver es (F	e two fible ;ff Cramer's n is k a entrie	days det A Rule rge. s of	will be \$0,). 7 A' have	pren in whi his is a Ce	ecordea ch ca , use	l - se i ful	chec A'= atho	le to ad-be righ	fe [d [-c no 6 =	webs a t de	ites the		
No I Reca Th mo Oa	l. Nov. Quize ann a ll: is fora st com ffw z	fri. Ne way Fr f A = [unla has you h	~ 10, 17 Nov. a b c d ly e ad to	17, M then ricralit Ficient find A	en Non det A eation way	, 20. = ad- for to eve A	bc. n×n Compu	A is A is matric to A' 4 × 4	- Kos inver 24 (iF 7h	e two tible ;ff Cramer's n is le a entrie	days det A Rule rge. s of	will be \$0,). 7 A' have	pren in whi a Ce	cordes ch co use	l - ful	chec A'= aflio	le to ad-be ngh	le [d 6=	webs -6 -6 + -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	thes the		
No I Rece Th Mo Oa	l. Nov. Quize ann a ll: is fora st com ffw z	fri. Ne way Fr f A = [mula has uputetiona yon h	~ 10, 17 Nov. a b c d ly e	17, M then ricralit find A	on Non det A eation way	, 20. = ad- for to eve A	bc. h×n Compu	A is matric te A' 4x 4	- Kos inter es (iF 7h	e two tible ;ff Cramer's n is k	days det A Rule rge. s of	will be \$0,). 7 A' have	pren in volui a Ce	cordes ch co use	l - ful	chec A'= aflio	le to ad-be righ	fd fc 6 =	webs -6 t -6 d	thes the		

Ēg.	A =		2 5 1 3 6 4]		det f		2 5 1 3 6 4		2 0-3 7 (4	5 -7 = 4		1 2 5 0 3 7 7 6 9		- 0	2 5 3 7 -8 -3	=	0	2 3 8	5 7 31	=	/ 2 0 -	<u>5</u> 37 10		· ·	•
			• •							= [[3	7. =	[.3	7.									•		•
• • •			• •	• •	Á ¹ Mæbise	has t	nactio	al M-	entries [16]	with 1241	(2) 2 7 6	 	denoni	mator -13	37. 5	• •			• •		• •	• •		• •	
· · ·	· · ·		· ·	· ·	Madiritsc	97 m/.•	- 645	- 1-(25	1741 1291		2 2	- 22	-31	~8 -3				• •	• •	• •	· ·	•	• •	•
					 .el:		22	י י ר	[[13	1 231			·.'	- r					• •			• •	•	• •	•
	• • •		• •	•••	A = 1 3	7 13	-31	7		apple	inspos diech	e; uboard							• •	• •		· ·	•	••••	•
• • •	• • •	• • •	• •	• •	· · ·		22	377	••••	divid	diech de by	det A	· · ·	•••	• •	•••			• •	• •	• •	• •	•	• •	•
• • •	• • •	• • •	• •	• •	. .	-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H	- <u>31</u> 37	7 37 3	• • •	• •	• • •	• •	• • •	• •	• •				• •	• •	• •	• •	•	• •	
			• •	• •		37	37	37		• •		• •		• •		• •			• •				•	• •	
Chec	k:::::	$A \overline{A}^{1} =$	1/2	25] [-14 13 -	22 1 7 -31 7	= <u>l</u> 27	0	0 37	0	= 1	1 0 0 1	0		/						• •				
 የበ	· · · ·	q squ	۲ <u>۲</u> ۲	64	Jls :	8 -3] Hi iut	5(D004	LO estric	D 25 An	37 d det) `A`='	, ° (±1.	> 1. Then	Ă`	als o	has	i În	teger	ent	ies.	• •	• •	•	• •	•
د د د	11 . 15	* 7					eger .				• • •	.) .						v .	• •		• •	• •	•	• •	
	• • •		• •	• •	• • •	••••	• •	• •	••••	• •	• • •	• •	••••	• •	• •	• •			• •					• •	•
• • •	· · ·	• • •	• •	• •		· · ·	• •	• •	· · ·	• •	· · ·	• •	· · ·	• •	• •	• •			• •		• •	• •	•	• •	•
	••••		• •	• •		· · ·	• •	• •	• • •	• •	••••	• •	· · ·	• •	• •	• •			• •		• •	• •	•	• •	•
				• •						0 0						• •									

Find a constant a such that the following matrix has determine	ant zero:
$A = \begin{bmatrix} 5 & 3 & 6 \\ 1 & 2 & 4 \\ 7 & 7 & c $	
$A = \left \begin{array}{c} 1 & 2 & 4 \end{array} \right \underbrace{\leftarrow} V = (1 & 2 & 4)$	
$\begin{bmatrix} 7 & 7 & c \end{bmatrix} = \begin{bmatrix} -w & u + 2v = (7 + 7 + 14) \end{bmatrix}$	a (A is a t Expertifica)
	case (A is not invertible)
If c # 14 then A has linearly independent rows then w # (77 H and (001) is a linear combination of 4, v, w i.e. Row A contr	$u_1, v_2, (0 \circ 1)$
$det \begin{bmatrix} 5 & 3 & & 6 \\ 1 & 2 & & 4 \\ 0 & 0 & & 1 \end{bmatrix} = 7 \neq 0$	· · · · · · · · · · · · · · · · · · ·
If $A = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix}$, then $A^{10} = \frac{1}{2}$	$\begin{bmatrix} a & o \\ o & b \end{bmatrix} \begin{bmatrix} c & o \\ o & d \end{bmatrix} = \begin{bmatrix} ac & o \\ o & bd \end{bmatrix}$
If $D = \begin{bmatrix} -1 & 2 \\ 0 & 2 \end{bmatrix}$, then $D^{\circ} = \begin{bmatrix} -1 & 2 \\ 0 & 2 \end{bmatrix}$	
A = -2	
$dot A = -2$ $\begin{vmatrix} -25 \\ -18 \\ 26 \end{vmatrix} = -25 \times 26 + 36 \times 18 = -2$	Basis $e_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ standard basis
There is a basis {u, v} for R' such that Au = -u, Av = 2v	$\begin{bmatrix} x \\ y \end{bmatrix} = xe, + ye_z$
$A^{\nu}u = AAA - Av$ $A^{\nu}u = AAv = A(2v) = 2Av = 4v$	· · · · · · · · · · · · · · · · · · ·
$A^{2}u = AAu = A(u) = -Au = u \qquad A^{2}v = 8v$ $A^{3}u = AAAu = -u \qquad A^{10}v = \frac{1024}{2}v$	U, v are eigen vectors of A with corresponding eigenvalues -1, 2.
$A^{\prime 0}u = u$	

Definition IF A is an non motion, and vER", then v is an eigenvector for A with eigenvalue & if
$\Delta \mathbf{v} = \lambda \mathbf{v}$
If $Av = \lambda v$ then $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$. If $Av = \lambda v$ then $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$.
We should assume v to is a nonzero mill vector for A-AI. (ms an only neppen " and for each value)
How do we find eigenvalues and eigenvectors: If $Av = \lambda v$ then $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$. We should assume $v \neq 0$ is a nonzero null vector for $A - \lambda I$. This can only happen if det $(A - \lambda I) = 0$. We should assume $v \neq 0$ is a nonzero null vector for $A - \lambda I$. This can only happen if det $(A - \lambda I) = 0$. This condition allows us to solve for the corresponding eigenvalue λ . Solve for λ ; and for each value λ (each eigenvalue), solve $(A - \lambda I)v = 0$ for the corresponding eigenvector(s) v .
For $A = \begin{bmatrix} 25 & 36 \\ -18 & 26 \end{bmatrix}$, $A - \lambda I = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} -25 - \lambda & 36 \\ -18 & 26 - \lambda \end{bmatrix}$
$ -25-\lambda - 36 = (25-1)(55-1) + 3(518 = \lambda^2 - \lambda - 2 = (\lambda+1)(\lambda-2)$
The clamateristic pluramint has two roots $\lambda_1 = -1$, $\lambda_e = 2$, (the two eigenvalues).
To find the corresponding eigenvectors V, V:
First take $\lambda_1 = -1$ and solve $AV_1 = -V_1$ i.e. $(A + I)V_1 = 0$. $A + I = \begin{bmatrix} -24 & 36 \\ -18 & 27 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (by inspection)
$\begin{bmatrix} -18 & 26-\lambda \end{bmatrix} = \begin{bmatrix} (25-\lambda) \\ (25-\lambda) \end{bmatrix} \begin{bmatrix} 26-\lambda \\ 1 \end{bmatrix} + 50 + 50 + 50 + 50 + 50 + 50 + 50 + $
$\begin{bmatrix} 0 & -3_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & -1 \\ 0$

$ \begin{array}{l} \text{for } \lambda_{2} = 2: \text{Solve } Av_{2} = \lambda_{2}v_{2} = 2v_{2} \text{i.e. } (A-2I)v_{2} = 0 \text{shere } A-2I = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -27 & 36 \\ -18 & 24 \end{bmatrix} \\ A \text{mull vector of } A-2I: v_{2} = \begin{bmatrix} 43 \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} 4 \\ 3 \end{bmatrix} \text{Sn } \begin{bmatrix} -27 & 36 \\ -18 & 24 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{i.e. } Av_{2} = \lambda_{2}v_{2} = 2v_{2} \\ \end{array} $
A null vector of $A-21$; $v_2 = \begin{pmatrix} x_3 \\ 1 \end{pmatrix}$ or $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ $S_a \begin{bmatrix} -2t & 36 \\ -18 & 24 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ i.e. $Av_2 = \lambda_2 v_2 = 2v_2$.
$v_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ is a basis of \mathbb{R}^2 consisting of eigenvectors of A. Check: A is similar D (A = BDB') so $trA = trD$, $detA = detD$.
We started with $e_1 = [o]$, $e_2 = [1]$ as in standard massis,
T Pind A10 two approaches trace of A = tr A = 1, tr D
Let $B = \begin{bmatrix} V_1 & V_2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$. Then $AB = A\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -3 & 6 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -0 & 0 \\ 0 & 2 \end{bmatrix} = BD$, $D = \begin{bmatrix} 0 & 2 \end{bmatrix}$ (diagonal matrix)
$s_0 ABB' = BDB'$ i.e. $A = BDB'$
$S_{o} A'' = (BDB')(BDB') - (BDB') = BD''B' = \begin{bmatrix} 3 & 4\\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & 1024 \end{bmatrix} \begin{bmatrix} 3 & -4\\ -2 & 3 \end{bmatrix} = \begin{bmatrix} -8183 & 12276\\ 1208 & 9208 \end{bmatrix}$
To check: det $(A'') = (det A) = (-2)' = 1024$.
$det A = (-25)(26) - (36)(-18) = -2.$ $det A = (det B) (det D) (det B') = 1 \times (-2) \times 1 = -2$ $(32) (12) (12) (12) (12) (12) (12) (12) (1$
$det A = (det B)(det D)(det B) = 1^{(-2)^{(1-2)}} - 2$
Second approach: $A^{0}v_{1} = v_{1}$, $A^{0}v_{2} = 1024v_{2}$ $v_{1} = \begin{bmatrix} 3\\ 2 \end{bmatrix} = 3e_{1} + 2e_{2}$ $v_{2} = \begin{bmatrix} 4\\ 3 \end{bmatrix} = 4e_{1} + 3e_{2}$ $v_{2} = -4v_{1} + 3v_{2} = -4\begin{bmatrix} 3\\ 2 \end{bmatrix} + 3\begin{bmatrix} 4\\ 3 \end{bmatrix} = \begin{bmatrix} 0\\ 1 \end{bmatrix}$
$V_{2}^{*} \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 4e_{1} + 5e_{2} \qquad e_{2}^{*} = -4[z_{1} + 5(z_{2} + 5(z_{1} + 5(z_{2} + 5(z_{1} + 5(z_{2} + 5$
$A_{e_{1}}^{'o} = A_{1}^{'o} (3v_{1} - 2v_{2}) = 3 \cdot v_{1} - 2 \times 1024 v_{2} = 3 \begin{bmatrix} 3 \\ 2 \end{bmatrix} - 2048 \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -8183 \\ -6138 \end{bmatrix}$
$A^{10}_{0} = A^{10} (-4y + 3y) = 4y + 3x (024y = -4 [3] + 3072 [4] = (122 + 6)$
nez-ri (11112) [v, + 5 10012 [2] 200] Le procent the same linear transformation
$A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$

Eq. diagonalize the matrix $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix}$ dot $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 4 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 4 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 4 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$
First compute the characteristic polynomial det $(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -i \\ 2 & i - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -i \\ 2 & i - \lambda \end{vmatrix} = \begin{pmatrix} 4 - \lambda \end{pmatrix} (i - \lambda) + 2 \end{vmatrix} (3 - \lambda)$
$\begin{aligned} \text{First compute-the characteristic polynomial det } (A-\lambda I) &= \begin{vmatrix} 1+\lambda & -i \\ 2 & i-\lambda \\ 0 & 0 & 3 \end{vmatrix} \\ &= \begin{bmatrix} \lambda^2 - 5\lambda + 6 \end{bmatrix} (3-\lambda) = (\lambda-2)(\lambda-3)(3-\lambda) = -(\lambda-2)(\lambda-3)^2 \text{ has roots } 2,3,3 \text{ (the eigenvalues of } A \text{).} \end{aligned}$
Find eigenvector v_i for $\lambda_i = 2$: solve $(A - \lambda_i I)v_i = 0$ i.e. $\begin{bmatrix} 2 & -1 & 1 \\ 2 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $v_i = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = 7$ $Av_i = 2v_i$.
Find eigenvectors V_{2}, V_{3} for $\lambda_{2} = \lambda_{3} = 3$: solve $(A - 3I) = 0$ i.e. $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Take $v_{1} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $v_{2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ Note: We want two linearly independent solutions.
Note: We must not the second of the second
Then $AB = BD$ where $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ i.e. $ABB = BDB^{\dagger}$. We have diagonalized A. i.e. $A = BDB^{\dagger}$. We have diagonalized A.
$AB = A \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} Av_1 & Av_2 & Av_3 \end{bmatrix} = \begin{bmatrix} 2v_1 & 3v_2 & 3v_3 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} z & z_1 & z_2 & z_3 \end{bmatrix} = BD$
Check: $trA \stackrel{?}{=} trD$, $detA \stackrel{?}{=} detD$ 8 = 8, $18 = 18$, $18 = 18$
$x - y + z = o (Span \{ V_2, V_3 \})$

The eigenspace for λ is Nul $(A - \lambda I) = { all eigenvectors having eigenvalue \lambda }$
= {all v satisfying Av = Av }.
[500] Les a single eigenspace R ³ with eigenvalue 5.
Actuelly, we don't necessarily have a basis of eigenvectors. Consider $A = \begin{bmatrix} -7 & 16 \\ -4 & q \end{bmatrix}$.
Consider $A = \begin{bmatrix} -7 & 16 \\ -4 & q \end{bmatrix}$
Find the characteristic polynomial det $(A-\lambda I) = \begin{bmatrix} -7-\lambda & 16 \\ -4 & q-\lambda \end{bmatrix} = (-7-\lambda)(q-\lambda) + 64 = \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$ which has roots 1.1. (Oaly one distinct eigenvalue) Look for eigenvectors: $(A-I)V = 0$ i.e. $\begin{bmatrix} -8 & 16 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Take $V_i = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Try to complete this to a basis $V_i = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $V_i = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $B = \begin{bmatrix} V_i & V_i \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$
which has roots 11. (Valy one wistingt eigenvalue) $VA=2$ all $A=1$ (sole for eigenvectors: $(A-T)V=0$ i.e. $\begin{bmatrix} -8 & 16 \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$. Take $V_i = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
Try to complete this to a basis $v = l^2$, l'_1 , $R = \lfloor v \mid v \rfloor = \lfloor 2 \mid 1 \rfloor$
$A \nabla - H V V = \Delta V A V = C (- \sigma - 4)$
$AB = M \xrightarrow{(1)} [1] = \begin{bmatrix} 9\\ -7 & 16\\ -4 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 6 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 6 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 6 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 6\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix} \begin{bmatrix} 1\\ -7 & 7\\ -7 & 7 \end{bmatrix}$
$Av_2 = \begin{bmatrix} -7 & 16 \\ -4 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 9 \\ -5 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 9 \\ -5 \end{bmatrix}$ having the same trace, date for a mant characteristic time.
$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 9 \\ 1 & 5 \end{bmatrix}$
$\frac{B}{M} = BAB = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$

141 Sular shear also . A : í n r A is not diagonalizable; R² does not have a basis consisting of eigenvectors for A. (we have one eigenvector only).

An example with no eigenvectors or eigenvalues: $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ represents a 90° rotation counterclockwise $\begin{bmatrix} 0 & 0 \\ -1 \end{bmatrix}$
$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ represents a 90° rotation counterclockwise $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$
Algebraically: compute the characteristic polynomial
Algebraically: compute the characteristic polynomial $det(A \land AI) = det(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & \lambda \end{bmatrix}) = \begin{bmatrix} -1 & -1 \\ 1 & -\lambda \end{bmatrix} = \lambda^2 + 1$
Over R there are no roots of 22+1 (you cannot factor this)
Over $C = \{a + b\}$: $a \in \mathbb{R} \{ \}$ however, we factor $\lambda^2 + 1 = (\lambda + i)(\lambda - i)$
so the roots $i, -i$ give two eigenvalues in \mathbb{C} . $i^2 = -1$
Over $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$, however, we factor $\lambda^2 + i = (\lambda + i)(\lambda - i)$ so the roots $i, -i$ give two eigenvalues in \mathbb{C} . $i^2 = -i$ find eigenvectors for A . $Av_i = iv_i \iff (A - iJ)v = 0$ i.e. $\begin{bmatrix} -i & -i \\ i & -i \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Take $y_i = \begin{bmatrix} i \\ i \end{bmatrix}$ as an eigenvector. $Av_i = iv_i \iff y_i = \begin{bmatrix} -i \\ i \end{bmatrix}$
$S = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$
A = BDB, $D = BABD = BABA = BDB'A = BDB'$
{v1, v2} is a basis of C2 = { {21 : 21 = 2 = C} is a 2-dimensional vector space over
the field (of complex numbers
$A^{=}$ is not diagonalizable over the real numbers R but it is diagonalizable over C .

Vector Spaces: Chapter 7 Scalars: real numbers / complex numbers / rational numbers / general f A field is a set of scalars in which we can add, subtract, multiple A vector space is a set V whose elements are called vectors, including a +, -, scalar multiplication satisfying	fields y and divide. zero vector Q, and operations (scalar+ scalar = scalar, scalar+vector
1. For $\underline{u}, \underline{v} \in V$, $\underline{u} + \underline{v} \in V$. (vector + vector = vector) 2. $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ 3. $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$ For all $\underline{u}, \underline{v}, \underline{w} \in V$ 4. $\underline{u} + \underline{0} = \underline{u} = \underline{0} + \underline{u}$ 5. For each $\underline{u} \in V$, there is a vector $-\underline{u} \in V$ such that $\underline{u} + (-\underline{u}) = \underline{0}$	vedior x vector
6. Scalar multiplication: For avery scalar c and $\underline{u} \in V$, $c\underline{u} \in V$ (so 7. Distributivity: $c(\underline{u}+\underline{v}) = c\underline{u} + c\underline{v}$ 8. $(c+d)\underline{v} = c\underline{v} + d\underline{v}$ 9. Associativity: $(cd)\underline{v} = c(d\underline{v})$	alar × vedor = vector)
10. $1\underline{u} = \underline{u}$ $0\underline{u} = \underline{0}$ as follows from the actions: $0\underline{u} + 0\underline{u} = (0+0)\underline{u} = 0\underline{u}$ Add - scalar vector $(0\underline{u} + 0\underline{u}) + (-0\underline{u}) = 0\underline{u} + (-0\underline{u}) = \underline{0}$	0 <u>u</u> to both sides:
By (3), $l\underline{u} + (l\underline{u} + (-l\underline{u})) = l$ By (5), $l\underline{u} + \underline{0} = \underline{0}$ $l\underline{u} = l$	

Examples of vector spaces: \mathbb{R}^n (actually, $\mathbb{R}^{n\times 1}$ is column vectors of length n; $\mathbb{R}^{1\times n}$ is row vectors of length n).	•
Subspaces of R"	•
The set of all polynomials of degree < n in x is an n-dimensional vector space	•
$V = \{ a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^n \} : a_0, a_1, a_2, \dots, a_{n-1} \text{ are scalars } \}$	•
$\{1, \pi, \pi^2, \dots, \pi^{n-r}\}$ is a basis for V, x is an indeterminate (i.e. not a number, just a symbol).	
$\{1, x, x(x-1), x(x-1)(x-2), \dots, x(x-1)(x-2) - (x-n+1)\}$ is also a basis.	•
The set of all polynomials in a is a vector space which is infinite-dimensional.	•
$A = 1005 15$ $D = 1 J_{1} \wedge (1 \gamma / 2 / 2)$	
Examples of polynomials: $5-3x+2x^{2}$, $1-x^{3}+3x^{7}+11x^{8}$, Not polynomials: $\sin x$, $\sqrt{1+x}$, $x - \frac{x^{3}}{6} + \frac{x^{5}}{120} - \frac{x^{7}}{5040} +$	•
Not pour to the first fi	•
The set of all functions R-> R.	
As a subspace of this, the continuous functions R -> R. , nth derivative	•
Luc Charles the apart of Smeeth functions V- J. K-7K -1	•
A linear transformation T: V > V 13 defined key (= D+ I (D - Jx) 12.	
The rank of T is infinite dimensional. T is not one-to-one. A basis for Nul $T = \{f : Tf = 0\}$ is $\{sin \times .cos \times\}$. $Tf = 0$ iff $f(x) = a sin \times + b cos \times $ for some $a, b \in \mathbb{R}$.	•
A leasing for mult = $\{f: Tf=0\}$ is $\{sin \times, cos \times\}$,	
D: V -> V has Nul D = { constant functions } having basis {1}; Nul D is one-dimensional.	•
D: V -> V has Nul D = { constant functions} having basis {1}; Nul D is one-dimensional. D has eigenvectors! eg. De ^{3x} = 3e ^{3x} . For every $\lambda \in \mathbb{R}$, the set of eigenvectors having eigenvalue λ is one-dimensional. D has eigenvectors! eg. De ^{3x} = 3e ^{3x} . For every $\lambda \in \mathbb{R}$, the set of eigenvectors having eigenvalue λ is one-dimensional.	•

Fibonacci Numbers		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Recursive formula $F_n = \{1, n=1\}$; $F_n = 1$;		
$F_{3} = 2$		
Consider $[0], [1], [2], [3], [5],$ $F_{5} = 8$		
So $V_n = \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$ so $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix} defines a map V_n \longrightarrow AV_n = V_{n+1} i.e. A \begin{bmatrix} V_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} F_n \\ F_n \end{bmatrix} = \begin{bmatrix} V_{n+1} \\ F_{n+1} \end{bmatrix} = V_{n+1}$		•
Starting with $v_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, we get $v_1 = Av_0$, $v_2 = Av_1 = A^2v_0$, \cdots , $v_n = \begin{bmatrix} \frac{1}{h+1} \\ \frac{1}{h} \end{bmatrix} = A^n \begin{bmatrix} 0 \\ 0 \end{bmatrix} =$ first alum of A^n .		•
$A^{2} = \begin{bmatrix} i & o \end{bmatrix} \begin{bmatrix} i & o \end{bmatrix} = \begin{bmatrix} 2 & i \\ i & j \end{bmatrix}, A^{3} = \begin{bmatrix} 2 & i \\ i & j \end{bmatrix} \begin{bmatrix} i & o \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & i \end{bmatrix}, A^{4} = \begin{bmatrix} 3 & 2 \\ 2 & i \end{bmatrix} \begin{bmatrix} i & o \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}, \cdots$ To find an explicit formula for A^{*} (and thereby F_{n}), diagonalize A .		
To find an explicit formula for A" (and thereby Fn), diagonalize A.		
	1-5	
$dot (A - xI) = dot ([I - [x - x]]) = [I - [x - x]] = (I - x)(-x) - I = x^2 - x - I = (x - x)(x - x)$ where $a = -\frac{1}{2}$, $b = -\frac{1}{2}$	2	
Eigenrector for a : solution of Av= av i.e. (A-aI)v=0 golden notio	- 0.618	
Eigenrector for α : solution of $A_{v=\alpha v}$ i.e. $(A - \alpha I)v = 0$ $\begin{bmatrix} 1 - \alpha & 1 \\ 1 & -\alpha \end{bmatrix} \begin{bmatrix} \alpha \\ y \end{bmatrix} = 0$ A nonzero solution is $\begin{bmatrix} \alpha \\ 1 \end{bmatrix}$ Check: $\begin{bmatrix} 1 - \alpha & 1 \\ 1 & -\alpha \end{bmatrix} \begin{bmatrix} \alpha \\ 0 \end{bmatrix} = \begin{bmatrix} (1 - \alpha)\alpha + 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 + \alpha - \alpha^2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$		•
Eigenvector for β : $Av = \beta r$ i.e. $(A - \beta I)v = 0$. Take $[f_1]$.	1 N A A A	
$B = \begin{bmatrix} \alpha & \beta \\ 1 & \beta \end{bmatrix} \text{ has the eigenvectors as its columns.} A B = \begin{bmatrix} A \begin{bmatrix} \alpha \\ 1 \end{bmatrix} & A \begin{bmatrix} \beta \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \alpha & \beta \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ 1 & \beta \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ 0 & \beta \end{bmatrix} = BD,$ Diagonalizing A gives $D = \begin{bmatrix} \alpha & \beta \\ 0 & \beta \end{bmatrix} \cdot ABB^{T} = BDB^{T}$ i.e. $A = BDB^{T}$ $D^{n} = \begin{bmatrix} \alpha & \beta \\ 0 & \beta \end{bmatrix}^{n} = \begin{bmatrix} \alpha & \beta \\ 0 & \beta \end{bmatrix}$	$D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	•
Diagonalizing A gives $D = \begin{bmatrix} 0 \\ 0 \\ p \end{bmatrix}$ ABB' = BDB' i.e. $A = BDB'$ $D^n = \begin{bmatrix} 0 \\ 0 \\ p \end{bmatrix}^n = \begin{bmatrix} 0 \\ 0 \\ p \end{bmatrix}$		•
$A^{n} = (BDB^{n})(BDB^{n})(BDB^{n}) - (BDB^{n}) = BDB^{n}$ $B = [i] B = f_{i}[i]$		•
$bar B = \alpha - \beta = \sqrt{5}$		

 $\beta = -1 \qquad \alpha \beta^{2} = \left(\frac{(+\sqrt{5})}{2}\right) \left(\frac{1}{\sqrt{5}}\right)$ $A^{n} = BDB^{i} = \begin{bmatrix} \alpha & \beta \\ i & j \end{bmatrix}$ $\alpha \beta = -1$ γ $= \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha^{n+1} - \beta^{n+1} & \alpha^{n+1} \\ \alpha^{n} - \beta^{n} & \alpha^{n+1} - \alpha^{n+1} \beta & \alpha^{n+1} \\ \alpha^{n} - \beta^{n} & \alpha^{n+1} - \alpha^{n+1} \beta & \alpha^{n+1} \\ \alpha^{n+1} - \beta^{n+1} & \alpha^{n+1} - \beta^{n+1} \end{bmatrix}$ a- B= 55 $F_{n} = \frac{\alpha^{n} - \beta^{n}}{\sqrt{5}} = \frac{\binom{1+\sqrt{5}}{2}^{n} - \binom{1-\sqrt{5}}{2}}{\sqrt{5}} \quad \text{grows exponentially}$ (faster than power law n^k) $V_{h} = A^{n} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} f_{h+1} \end{bmatrix} = \begin{bmatrix} \alpha^{h+1} - \beta^{h+1} \\ F_{h} \end{bmatrix}$ · · 50 · eq. Fo 1= <u>रा</u> = $f_{i} = \frac{\alpha - \beta}{R}$ $F_2 = \frac{\alpha^2 - \beta^2}{\sqrt{5}} = \frac{(\alpha + 1) - (\beta + 1)}{\sqrt{5}} = 1$ etc. $F_{30} = \frac{\alpha^{30} - \beta^{30}}{\sqrt{5}} = 832040$

A 2-dimensional vector space: the solutions of $y'' + y = 0$. Over R, $\{sinx, cosx\}$ is a basis for the solutions: Over C, $\{e^{ix}, e^{ix}\}$ is another basis. If $y = e^{ix}$ then $y' = ie^{ix}$, $y'' + y = -e^{ix} + e^{ix} = 0$ Let V be the vector space consisting of all solutions of $y'' + y = 0$. D: V -> V, Dy = y' is a linear transformation. D is represented by the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ with respect to the first choice of basis: D $\begin{pmatrix} asima + b \cos x \\ i & 0 \end{pmatrix} = -bsin x + a \cos x$ $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$ Dust over C, e^{ix} is an eigenvector with eigenvalue i $\{e^{ix}, e^{-ix}\}$ is a basis of V consisting of eigenvectors of D.	A 2-dimensional vector space: the solutions of y"+y=0.
Over C, $\{e^{ix}, e^{-ix}\}$ is another basis. If $y = e^{ix}$ then $y' = ie^{ix}$, $y'' = -e^{ix}$, $y'' + y = -e^{ix} + e^{ix} = 0$ Let V be the vector space consisting of all solutions of $y'' + y = 0$. D: V -> V, Dy = y' is a linear transformation. D is represented by the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ with respect to the first choice of besis: D $\begin{pmatrix} asimx + b \cos x \end{pmatrix} = -bsin x + a \cos x$ (no neero) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix}$ Diver R, D has no eigenvectors. But over C, e^{ix} is an eigenvector with eigenvalue i; $e^{ix} = -ix$ is a basis of V consisting of eigenvectors of D.	Over R, & sinx, cos x } is a basis for the solutions:
If $y = e^{ix}$ then $y' = ie^{ix}$, $j' = -e^{ix}$, $y'' + y = -e^{ix} + e^{ix} = 0$ Let V be the vector space consisting of all solutions of $y'' + y = 0$. D: V -> V, Dy = y' is a linear transformation. D is represented by the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ with respect to the first choice of besis: D $\begin{pmatrix} asimx + b \cos x \end{pmatrix} = -bsin x + a \cos x$ (nonzero) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix}$ Over R, D has no eigenvectors. But over C, e^{ix} is an eigenvector with eigenvalue i; e^{ix} , e^{-ix} is a basis of V consisting of eigenvectors of D.	Over C, ?ex, e { is another basis.
Let V be the vector space consisting of all solutions of $y'' + y = 0$. D: V -> V, Dy = y' is a linear transformation. D is represented by the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ with respect to the first choice of basis: D $(asimx + b ossr) = -bsinx + a cosx$ (nonzero) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix}$ Over R, D has no eigenvectors. But over C, e^{ix} is an eigenvector with eigenvalue i; e^{ix} . e^{ix} of V consisting of eigenvectors of D.	If $y = e^{ix}$ then $y' = ie^{ix}$, $y'' = -e^{ix}$, $y'' + y = -e^{ix} + e^{ix} = 0$
D: $V \rightarrow V$, $Dy = y'$ is a linear transformation. D is represented by the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ with respect to the first choice of basis: D $\begin{pmatrix} asimx + b \cos n \end{pmatrix} = -bsin x + a \cos x$ (nonzero) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix}$ Over \mathbb{R} , D has no eigenvectors. But over C_1 e^{ix} is an eigenvector with eigenvalue i e^{ix} $\{e^{ix}, e^{-ix}\}$ is a basis of V consisting of eigenvectors of D.	Let V be the vector space consisting of all solutions of $y'' + y = 0$.
D is represented by the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ with respect to the first choice of besis: D $\begin{pmatrix} a \sin x + b \cos x \end{pmatrix} = -b \sin x + a \cos x$ $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix}$ Over \mathbb{R} , D has no eigenvectors. But over C_1 e ^{ix} is an eigenvector with eigenvalue i e^{ix} $\{e^{ix}, e^{-ix}\}$ is a basis of V consisting of eigenvectors of D.	D: V -> V, Dy = y' is a linear transformation.
$D\left(\frac{a \sin x + b \cos x}{1 - b \sin x}\right) = -b \sin x + a \cos x$ $\left(\begin{array}{c} (no n e n e n e n e n e n e n e n e n e n$	D is represented by the matrix [] with respect to the first choice of basis:
$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ Over \mathbb{R} , \mathbb{D} has no eigenvectors. But over \mathbb{C}_i $\stackrel{i^*}{\mathbb{E}}$ is an eigenvector with eigenvalue i ; $\stackrel{i^*}{\mathbb{E}}$ $\stackrel{i^*}{\mathbb{E}}$ $\stackrel{i^*}{\mathbb{E}}$ is a basis of \mathbb{V} consisting of eigenvectors of \mathbb{D} .	$1 - \frac{1}{2} = 1$ $1 - \frac{1}{2} = 1$ $1 - \frac{1}{2} = 1$ $2 - \frac{1}{2} = 2$
But over C, e is an eigenvector with eigenvector. E ^{ix}	D (<u>a Sinx + b cosx</u>) = -6 sin x + t (no nero)
{eix, e ^{-ix} } is a basis of V consisting of eigenvectors of D.	$D\left(\frac{a\sin x + b\cos x}{a}\right) = -b\sin x + b\cos x$ (no nero) $\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\begin{bmatrix}a \\ 2 \end{bmatrix} = \begin{bmatrix}-6 \\ 0\end{bmatrix}$ Over \mathbb{R} , D has no eigenvectors.
	1 0 1 h = La Ver 15, D has no ergenvectors.
	[10][6] = [a] Over 15, Dues no eigenvectors. But over C, et is an eigenvector with eigenvalue i;
· · · · · · · · · · · · · · · · · · ·	[10][6] = [a] Over 15, Dues no eigenvectors. But over C, et is an eigenvector with eigenvalue i;
	[10][6] = [a] Over 15, Dues no eigenvectors. But over C, et is an eigenvector with eigenvalue i;
	[10][6] = [a] Over 15, Dues no eigenvectors. But over C, et is an eigenvector with eigenvalue i;
	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ Over $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ here no eigenvectors. But over C_1 e^{ix} is an eigenvector with eigenvalue i ; e^{ix} , e^{-ix} } is a basis of V consisting of eigenvectors of D.

Over R: consider the vector space V consisting of all polynomials in x of degree < n.
$V = \begin{cases} q_0 + q_1 x + q_2 x^2 + \dots + q_n x^{n-1} \\ \vdots & q_0, q_1, \dots, q_n \in \mathbb{R} \end{cases}$
$D: V \rightarrow V$, $Df(x) = f'(x)$ is linear since $D(af + bg) = (af + bg)' = af + bg' = af + bg' = af + bDg$.
In matrix terminology
$D\left(a_{0} + q_{1}x + q_{2}x^{2} + \cdots + q_{n-1}x^{n-1}\right) = q_{1} + 2q_{2}x + 3q_{3}x^{2} + \cdots + (n-1)q_{n-1}x^{n-2}$
$ \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ 0 & 0 & 0 & 5 & \cdots & 4^{-1} \\ 0 & 0 & 0 & 0 & \cdots & Q \end{bmatrix} \begin{bmatrix} q_1 \\ q_1 \\ q_2 \\ \vdots \\ \vdots \\ q_{n-1} \end{bmatrix} = \begin{bmatrix} 2q_2 \\ 3q_3 \\ \vdots \\ (n-1)q_{n-1} \\ Q \end{bmatrix} $
Not invertible; if has rank n-1 The characteristic polynomial of D is det $(D - \lambda I) = \begin{bmatrix} -\lambda & -\lambda & 2 \\ & -\lambda & 3 \end{bmatrix} = (-\lambda)^n$
The only voot is $\lambda = 0$. An eigenvector $\begin{bmatrix} 1 & 0 \\ -1 \end{bmatrix}$ $\begin{bmatrix} n-1 \\ -1 \end{bmatrix}$ for this eigenvalue is 1. $D1 = 0 = 0.1$. (Eigenvectors for eigenvalue 0 are the same thing as null vectors.)

If we more beyond polynomials then $D = \frac{1}{4\pi}$ has an eigenvector for every scalar λ : $D \in \mathbb{R}^{2} = \lambda e^{\lambda \pi}$. So $e^{\lambda \pi}$ is an eigenvector with eigenvalue λ . This works over both R and C. ($e^{\lambda \pi}$ is an 'eigenfunction''). Eq. Let V be the set of all rational functions in x of the form $\frac{ax+b}{x^2+8x+15}$. First decompose $\frac{ax+b}{x^2+8x+15} = \frac{ax+b}{(x+3)(x+5)} = \frac{A}{x+3} + \frac{B}{x+5}$ We know there exist A, B (for every choice of a, b). V is a vector space over R. $\frac{ax+b}{x^2+8x+15} + \frac{cx+d}{x^2+8x+15} = \frac{(a+c)x+(b+d)}{x^2+8x+15}$ $c \frac{ax+b}{x^2+8x+15} = \frac{(a)x+cb}{x^2+8x+15} \in V$ dim V = 2 because $\frac{a + b}{x^2 + 8x + 15} = a \frac{x}{x^2 + 8x + 15} + b \frac{1}{x^2 + 8x + 15}$ expresses your vector aniquely as a linear combination of x 1 x + 8x+15' X787775

We want to conclude that $\left\{\frac{1}{x+3}, \frac{1}{x+5}\right\}$ is also a tags. First note that $\frac{1}{x+3} = \frac{x+5}{(x+3)(x+5)} \in V$ and $\frac{1}{x+5} = \frac{x+3}{(x+3)(x+5)} \in V$.