

· ·	Êg. Exp	A -	- [_ q a	13 24 03 16	0 4 11 5 3 5 The	- - - K	ind r	Tow,	•••	det i	4 =			×	5 2 11	2 41 1 4 1 4 1 5			- - -	4	-30 -4 u		•	· · ·	· · ·		•	· · ·	•	· · ·	· · ·	•	
· · ·	· · ·	· · ·	· · ·	· · ·	•	· · ·		•	· · ·		-	- 3 (- 3 (669	" 3 (55-	7 5 21 +	- 41 - 41	9_ (1 3	()	-	4	14 11	- 3	2	" } 3 }	· · ·	· · ·		- - - - -	· · ·	· · ·	· · ·		•	· ·
		Nov. Quiz n a	~ ~				(2		put	lr,) (p.)	י ר ר	yer (r f	can lose vert:	-tru ble	itt	ays	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I(6	2	prere	cord	ed care	- ci A`:	becle at	2 - Ha 1 1-bc	e [d	wel -6	psite],	25.	•	· ·
Re	call	!		- 19						- 000	· · · ·								- -											_			
т т 0а	This nost Ia f	form com	mla protet yon	tes has ionall has	d] a a (to	t gen effi	ren erali cient	eat - wr f'	ion ay whe	for to	n7 Con A	en m uputo is	natria 2 A 4x ²	e₄ ' F 1.	(C n The	rame is ent	r's lar tries	Rul ge. of	6) A'	han	This e a	iş Ce	w mma	reful m a	' ar	fhom	rgh itor	ne 6 =	st = d	the	2	•	· ·
т т Ос	This nost la f	Nov. Quiz n a it for a for z	mla pritet yon	- le bas ionall hao	a] a (-tə	ti gene Gene Fi	ren erali cient d f	eat - wr	ion ay whe	for to	n» Con A	en m uputo is	natria 2 A 4x ²	24 ' ₽₹ ₹.	(C n The	rane is ent	r's lar tries	Rul ge. of	(6) A ^{^-} '	han	This e a	Ċœ	w mm	vestal	eno	thom	rgh itor	6 =	st ≈ d	+ka lat A	2		· · ·
т м Ос	This nost la f	fora com fw z	mla pontet yon	- le bas ionall has	a] a y (-to	gene Effi	ren erali cient d	eat - w	ion ay whe		in » Con	en m uputo is	natria 2 A 4x ²	ee∢ '	(C The	rame is ent	r's la ties	Rul ge.	(c) A^'	han	e a	Ce Ce	840 840 8	son a	' æ (e~o	floor	rgh itor	6 =	st - d	Ha let A			

Ēg.	A =		2 5 1 3 6 4]		det f		2 5 1 3 6 4		2 0-3 7 (4	5 -7 = 4		1 2 5 0 3 7 7 6 9		- 0	2 5 3 7 -8 -3	=	0	2 3 8	5 7 31	=	/ 2 0 -	<u>5</u> 37 10		· ·	•
			• •							= [[3	7. =	[.3	7.									•		
• • •			• •	• •	Á ¹ Mæbise	has t	nactio	al M-	entries [16]	with 1241	(2) 2 7 6	 	denoni	mator -13	37. 5	• •			• •		• •	• •		• •	
· · ·	· · ·		· ·	· ·	Madiritsc	97 m/.•	- 645	- 1-(25	1741 1291		2 2	- 22	-31	~8 -3				• •	• •	• •	· ·	•	• •	•
					 .el:		22	י י ר	[[13	1 231			·.'	- r					• •			• •	•		•
	• • •		• •	•••	A = 1 3	7 13	-31	7		apple	inspos diech	e; uboard							• •	• •		· ·	•	• •	
• • •	• • •	• • •	• •	• •	· · ·		22	377	• • •	divid	diech de by	det A	· · ·	•••	• •	•••			• •	• •	• •	• •	•	• •	•
• • •	• • •	• • •	• •	• •	. .	-H-H- 1317 5-137 1317 5-137	- <u>31</u> 37	7 37 3	• • •	• •	• • •	• •	• • •	• •	• •	•••			• •	• •	• •	• •	•	• •	
			• •	• •		37	37	37		• •		• •		• •		• •			• •				•	• •	
Chec	k:::::	A A ¹ =	1/2	25] [-14 13 -	22 1 7 -31 7	= <u>l</u> 27	0	0 37	0	=	1 0 0 1	0		/						• •				
 የበ	· · · ·	q squ	۲ <u>۲</u> ۲	64	Jls :	8 -3] Hi iut	5(D004	LO estric	D 25 An	37 d det) `A`='	, ° (±1.	> 1. Then	Ă`	als o	has	i În	teger	ent	ies.	• •	• •	•	• •	•
. د ۲۰ ۲۰	14 . 75 	* 7					eger .				• • •	.) .						v .	• •		• •	• •	•	• •	•
	• • •		• •	• •	• • •	••••	• •	• •	• • •	• •	• • •	• •	• • •	• •	• •	• •		•	• •					• •	•
• • •	· · ·	• • •	• •	• •		· · ·	• •	• •	· · ·	• •	· · ·	• •	· · ·	• •	• •	• •			• •		• •	• •	•	• •	•
	••••		• •	• •		· · ·	• •	• •	• • •	• •	••••	• •	· · ·	• •	• •	• •			• •		• •	• •	•	• •	•
				• •						0 0						• •								• •	

Find a constant c such that the	Collowing matrix has determine	nant zero:
$A = \begin{bmatrix} 5 & 3 & 6 \end{bmatrix} \leftarrow u = (5 & 3) \\ 1 & 2 & 4 \end{bmatrix} \leftarrow v = (1 & 7) \\ 7 & 7 & c \leftarrow w U + 2v = 1 \\ 1 & 2 & 4 \end{bmatrix} $	G)	
$A = \begin{vmatrix} 1 & 2 & 4 \end{vmatrix} \longleftrightarrow V = (1 = 1)$	2.4)	
$\begin{bmatrix} 7 & 7 & c \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 0 & 1 \end{bmatrix}$	=(7 + 14)	and (A is not supplify (a))
If c= 14 then A has linearly depend		case (A is not invertible)
If c # 14 then A has linearly inc and (001) is a linear combin	dependent rows then w= (77 ration of 4, v, w i.e. Row A, con	14) tains u, J, (001).
$det \begin{bmatrix} 5 & 3 & & 6 \\ 1 & 2 & & 4 \\ 0 & 0 & & 1 \end{bmatrix} = 7 \neq 0$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
IF A = [-25 36], then A'' = 22		$\begin{bmatrix} a & o \\ o & b \end{bmatrix} \begin{bmatrix} c & o \\ o & d \end{bmatrix} = \begin{bmatrix} ac & o \\ o & bd \end{bmatrix}$
If $D = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$, then $D^{(*)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$		
A	dot A = -2	
A A	$\begin{vmatrix} -25 & 36 \\ -18 & 26 \end{vmatrix} = -25 \times 26 + 36 \times 18 = -2$	Basis $e_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ standard basis
There is a basis Eu, v3 for R° such	+Rat $Au = -u$, $Av = 2v$	$\begin{bmatrix} x_1\\ y \end{bmatrix} = \pi e_1 + y e_2$
A'' u = AAA - Av	$A^2_V = AA_V = A(2_V) = 2A_V = 4_V$	
$A^{L}u = AAu = A(u) = -Au = u$	$A^{2}v = 8v$ $A^{10}v = 1024v$	4, v are eigen vectors of A with corresponding eigenvalues -1, 2.
$A^3 u = AAA u = -u$	$\frac{1}{2''}$	· · · · · · · · · · · · · · · · · · ·
$A^{\prime 0} u = u u + v + v + v + v + v + v + v + v + v$		

Definition IF A is an non motion, and vER", then v is an eigenvector for A with eigenvalue & if
$\Delta \mathbf{v} = \lambda \mathbf{v}$
If $Av = \lambda v$ then $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$. If $Av = \lambda v$ then $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$.
We should assume v to is a nonzero mill vector for A-AI. (ms an only neppen " and for each value)
How do we find eigenvalues and eigenvectors: If $Av = \lambda v$ then $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$. We should assume $v \neq 0$ is a nonzero null vector for $A - \lambda I$. This can only happen if det $(A - \lambda I) = 0$. We should assume $v \neq 0$ is a nonzero null vector for $A - \lambda I$. This can only happen if det $(A - \lambda I) = 0$. This condition allows us to solve for the corresponding eigenvalue λ . Solve for λ ; and for each value λ (each eigenvalue), solve $(A - \lambda I)v = 0$ for the corresponding eigenvector(s) v .
For $A = \begin{bmatrix} 25 & 36 \\ -18 & 26 \end{bmatrix}$, $A - \lambda I = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} -25 - \lambda & 36 \\ -18 & 26 - \lambda \end{bmatrix}$
$ -25-\lambda - 36 = (25-1)(55-1) + 3(518 = \lambda^2 - \lambda - 2 = (\lambda+1)(\lambda-2)$
-18 20-21 - the constant of the two roots $\lambda_1 = -1$, $\lambda_e = 2$ (the two eigenvalues).
To find the corresponding eigenvectors V, V:
First take $\lambda_1 = -1$ and solve $AV_1 = -V_1$ i.e. $(A + I)V_1 = 0$. $A + I = \begin{bmatrix} -24 & 36 \\ -18 & 27 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (by inspection)
$\begin{bmatrix} -18 & 26-\lambda \end{bmatrix} = \begin{bmatrix} (25-\lambda) \\ (25-\lambda) \end{bmatrix} \begin{bmatrix} 26-\lambda \\ 1 \end{bmatrix} + 50 + 50 + 50 + 50 + 50 + 50 + 50 + $
$\begin{bmatrix} 0 & -3x_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & $
$\begin{bmatrix} 0 & 0 & -1 \\ 0$

$ \begin{array}{l} \text{for } \lambda_{2} = 2: \text{Solve } Av_{2} = \lambda_{2}v_{2} = 2v_{2} \text{i.e. } (A-2I)v_{2} = 0 \text{shere } A-2I = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -27 & 36 \\ -18 & 24 \end{bmatrix} \\ A \text{mull vector of } A-2I: v_{2} = \begin{bmatrix} 43 \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} 4 \\ 3 \end{bmatrix} \text{Sn } \begin{bmatrix} -27 & 36 \\ -18 & 24 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{i.e. } Av_{2} = \lambda_{2}v_{2} = 2v_{2} \\ \end{array} $
A null vector of $A-21$; $v_2 = \begin{pmatrix} x_3 \\ 1 \end{pmatrix}$ or $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ $S_a \begin{bmatrix} -2t & 36 \\ -18 & 24 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ i.e. $Av_2 = \lambda_2 v_2 = 2v_2$.
$v_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ is a basis of \mathbb{R}^2 consisting of eigenvectors of A. Check: A is similar D (A = BDB') so $trA = trD$, $detA = detD$.
We started with $e_1 = [o]$, $e_2 = [1]$ as in standard massis,
T Pind A10 two approaches trace of A = tr A = 1, tr D
Let $B = \begin{bmatrix} V_1 & V_2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$. Then $AB = A\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -3 & 6 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -0 & 0 \\ 0 & 2 \end{bmatrix} = BD$, $D = \begin{bmatrix} 0 & 2 \end{bmatrix}$ (diagonal matrix)
$s_0 ABB' = BDB'$ i.e. $A = BDB'$
$S_{o} A'' = (BDB')(BDB') - (BDB') = BD''B' = \begin{bmatrix} 3 & 4\\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & 1024 \end{bmatrix} \begin{bmatrix} 3 & -4\\ -2 & 3 \end{bmatrix} = \begin{bmatrix} -8183 & 12276\\ 1208 & 9208 \end{bmatrix}$
To check: det $(A'') = (det A) = (-2)' = 1024$.
$det A = (-25)(26) - (36)(-18) = -2.$ $det A = (det B) (det D) (det B') = 1 \times (-2) \times 1 = -2$ $(32) (12) (12) (12) (12) (12) (12) (12) (1$
$det A = (det B)(det D)(det B) = 1^{(-2)^{(1-2)}} - 2$
Second approach: $A^{0}v_{1} = v_{1}$, $A^{0}v_{2} = 1024v_{2}$ $v_{1} = \begin{bmatrix} 3\\ 2 \end{bmatrix} = 3e_{1} + 2e_{2}$ $v_{2} = \begin{bmatrix} 4\\ 3 \end{bmatrix} = 4e_{1} + 3e_{2}$ $v_{2} = -4v_{1} + 3v_{2} = -4\begin{bmatrix} 3\\ 2 \end{bmatrix} + 3\begin{bmatrix} 4\\ 3 \end{bmatrix} = \begin{bmatrix} 0\\ 1 \end{bmatrix}$
$V_{2}^{*} \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 4e_{1} + 5e_{2} \qquad e_{2}^{*} = -4[z_{1} + 5(z_{2} + 5(z_{1} + 5(z_{2} + 5$
$A_{e_{1}}^{10} = A_{1}^{10} (3v_{1} - 2v_{2}) = 3 \cdot v_{1} - 2 \times 1024 v_{2} = 3 \begin{bmatrix} 3 \\ 2 \end{bmatrix} - 2048 \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -8183 \\ -6138 \end{bmatrix}$
$A^{10}_{0} = A^{10} (-4y + 3y) = 4y + 3x (024y = -4 [3] + 3072 [4] = (122 + 6)$
$A_{e_{z}}^{10} = A_{e_{z}}^{10} \left(-4v_{1}+3v_{z}\right) = -4v_{1}+3*1024v_{z} = -4\begin{bmatrix}3\\2\end{bmatrix}+3072\begin{bmatrix}4\\3\end{bmatrix}=\begin{bmatrix}12276\\9208\end{bmatrix}$
$A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$ $A_{1}^{10} = \begin{bmatrix} -8183 & 122.76 \\ -6138 & 9208 \end{bmatrix}$

Eq. diagonalize the matrix $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix}$ dot $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 13 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 13 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 13 \end{bmatrix}$
First compute the characteristic polynomial det $(A - \lambda I) = \begin{vmatrix} 1 & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix}$
$\begin{aligned} \text{First compute-the characteristic polynomial det } (A-\lambda I) &= \begin{vmatrix} 1 & -i \\ 2 & i-\lambda \\ 0 & 0 & 3 \end{vmatrix} \\ &= \begin{bmatrix} \lambda^2 - 5\lambda + 6 \end{bmatrix} (3-\lambda) = (\lambda-2)(\lambda-3)(3-\lambda) = -(\lambda-2)(\lambda-3)^2 \text{ has roots } 2,3,3 \text{ (the eigenvalues of } A). \end{aligned}$
Find eigenvector v_i for $\lambda_i = 2$: solve $(A - \lambda_i I)v_i = 0$ i.e. $\begin{bmatrix} 2 & -1 & 2 \\ 2 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $v_i = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 7$ $Av_i = 2v_i$.
Find eigenvectors v_2, v_3 for $h_2 = h_3 = 3$: solve $(A - 3I) v = 0$ i.e. $\begin{bmatrix} 1 & -1 & 2 \\ 2 & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Take $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Note: We want two linearly independent solutions.
Form the matrix $B = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ whose columns are the eigenvectors. $\begin{pmatrix} v_1, v_2, v_3 & is \text{ our basis of eigenvectors} \end{pmatrix}$
Then $AB = BD$ where $D = \begin{bmatrix} 0 & x & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{bmatrix} = \begin{bmatrix} 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ i.e. $ABB = BDB^{T}$. We have diagonalized A. i.e. $A = BDB^{T}$.
$AB = A \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} Av_1 & Av_2 & Av_3 \end{bmatrix} = \begin{bmatrix} 2v_1 & 3v_2 & 3v_3 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} = BD$
Check: $trA \stackrel{?}{=} trD$, $detA \stackrel{?}{=} detD$ 8 = 8, $18 = 18$, $18 = 18$
x-y+z=0 (Span {V2, V3})

The eigenspace for λ is Nul $(A - \lambda I) = { all eigenvectors having eigenvalue \lambda }$
= {all v satisfying Av = Av }.
[500] has a single eigenspace R ³ with eigenvalue 5.
- [0 · 0 · 5 ·] · · · · · · · · · · · · · · · ·
Actuelly, we don't necessarily have a basis of eigenvectors. Consider $A = \begin{bmatrix} -7 & 16 \\ -4 & q \end{bmatrix}$.
Consider $A = \begin{bmatrix} -7 & 16 \\ -4 & q \end{bmatrix}$
Find the characteristic polynomial det $(A-\lambda I) = \begin{bmatrix} -7-\lambda & 16 \\ -4 & q-\lambda \end{bmatrix} = (-7-\lambda)(q-\lambda) + 64 = \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$ which has roots 1.1. (Oaly one distinct eigenvalue) Look for eigenvectors: $(A-I)V = 0$ i.e. $\begin{bmatrix} -8 & 16 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Take $V_i = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Try to complete this to a basis $V_i = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $V_i = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $B = \begin{bmatrix} V_i & V_i \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$
which has roots 1] (Oaly one distinct eigenvalue) IFA=2 det A=1 Look for singuranter, (A-T)/== is [-8 16][x]=[0] Take V=[2]
Try to complete this to a basis y_{-} [2] $ 1 $, P_{-} $[y_{-}] = [2]$
$A \nabla - H V V = \Delta V A V = C (- 0 - 1 4)$
$AB = A[v_1 v_2] = \begin{bmatrix} 4v_1 4v_2 \end{bmatrix} = \begin{bmatrix} 2 & 9 \\ 1 & 5 \end{bmatrix} = B\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$ $AB = BM \iff A = BMB^{-1}$ $A, M aR = similar matrices$ $Av_2 = \begin{bmatrix} -7 & 16 \\ -7 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ -7$
$Av_{2} \begin{bmatrix} -7 & 6 \\ -4 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ -5 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -5 \end{bmatrix} = \begin{bmatrix} 2 & 9 \\ -5 \end{bmatrix} \qquad having the same trace, there is the same trace.$
$HV_{2} = \begin{bmatrix} 4 & q \end{bmatrix} \begin{bmatrix} 1 \\ -4 & q \end{bmatrix} \begin{bmatrix} 1 \\ -5 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & q \\ -1 & 5 \end{bmatrix} \qquad having the same trace, determinant, chavacteristic poly.$
$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 9 \\ 1 & 5 \end{bmatrix}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

141 Sular shear also . A : í n r A is not diagonalizable; R² does not have a basis consisting of eigenvectors for A. (we have one eigenvector only).

	•	А А А			· · ·	• • • • •	•					
•	C	ve).		:'/).			•		₽.	
	•	So	•			•			•	•		
	•	t	m	On	Ôn	n	e	zige	2m V	ect	0 ^.	
											• •	
					•	•	•	•		•	• •	
•	•			•	•		•	•			• •	
•	•									•	• •	
•											• •	
			•		•							
	•	•	•	· ·	•	•			•	•		
•	•	•	•		•	•	•		•	•	•••	
•	•	•	•		•	•	•		•	•	•••	
•	•	•	•		•	•	•			•	· ·	

Vector Spaces: Chapter A Scahars: real numbers / complex numbers / rational numbers / gen A field is a set of scalars in which we can add, subtract, n A vector space is a set V whose elements are called vectors, includin +, -, scalar multiplication satisfying	eral fields multiply and divide. ing a zero vector Q, and operations (scalart scalar = scalar, scalar + vector
1. For $\underline{u}, \underline{v} \in V$, $\underline{u} + \underline{v} \in V$. (vector + vector = vector) 2. $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ 3. $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$ For all $\underline{u}, \underline{v}, \underline{w} \in V$ 4. $\underline{u} + \underline{0} = \underline{u} = \underline{0} + \underline{u}$ 5. For each $\underline{u} \in V$, there is a vector $-\underline{u} \in V$ such that $\underline{u} + (-\underline{u}) = \underline{0}$	vector x vector
 6. Scalar multiplication: For avery scalar c and u ∈ V, cu ∈ V 7. Distributivity: c(u+v) = cu + cv 8 (c+d)v = cv + dv 9. Associativity: (cd)v = c(dv) 	(scalar × vedor = vedor)
10. $1\underline{u} = \underline{u}$ $0\underline{u} = \underline{0}$ as follows from the actions: $0\underline{u} + 0\underline{u} = (0+0)\underline{u} = 0\underline{u}$ scalar vector $(0\underline{u} + 0\underline{u}) + (-0\underline{u}) = 0\underline{u} + (-0\underline{u}) = \underline{0}$	Add - O <u>u</u> to both sides:
By (5), $0\underline{u} + (0\underline{u} + (-0\underline{u})) = Q$ By (5), $0\underline{u} + \underline{0} = \underline{0}$ $0\underline{u} = \underline{0}$	

Examples of vector spaces: R" (actually, R"x" is column vectors of length n; R" is now vectors of length n).	•
Subspaces of R"	
The set of all polynomials of degree < n in x is an n-dimensional vector space	•
$V = \{ a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^n \} : a_0 a_1 a_2 \dots a_{n-1} \text{ are scalars } \}$	•
$\{1, \pi, \pi^2, \dots, \pi^{n-r}\}$ is a basis for V, x is an indeterminate (i.e. not a number, just a symbol).	
$\{1, x, x(x-1), x(x-1)(x-2), \dots, x(x-1)(x-2) - (x-n+1)\}$ is also a basis.	•
The set of all polynomials in a is a vector space which is infinite-dimensional.	•
$A = 1005 15$ $D = 1 J_{1} \wedge (1) / (2) / (2)$	
Examples of polynomials: $5-3x+2x^{2}$, $1-x^{3}+3x^{7}+11x^{8}$, Not polynomials: $\sin x$, $\sqrt{1+x}$, $x - \frac{x^{3}}{6} + \frac{x^{5}}{120} - \frac{x^{7}}{5040} + \cdots$	•
Not pour to the first fi	
The set of all functions R-> R.	•
As a subspace of this, the continuous functions R -> R	
LUC CHARVELY Sta PLACE of SMEETH TIM (TONS V-) J. K -7 K -1	
A linear transformation T: V > V 13 defined key (= D+1 (D-Jx) 12.	
The rank of T is infinite dimensional. T is not one-to-one. A basis for Nul $T = \{f : Tf = 0\}$ is $\{sin \times .cos \times \}$. $Tf = 0$ iff $f(x) = a sin \times + b cos \times $ for some $a, b \in \mathbb{R}$.	•
A leasing for Mult $T = \{f: Tf = 0\}$ is $\{s_{1n} \times c_{n} \otimes x\}$.	
D: V -> V has Nul D = { constant functions} having basis {1}; Nul D is one-dimensional. D has eigenvectors! eg. De ^{3x} = 3e ^{3x} . For every $\lambda \in \mathbb{R}$, the set of eigenvectors having eigenvalue λ is one-dimensional. D has eigenvectors! eg. De ^{3x} = 3e ^{3x} . For every $\lambda \in \mathbb{R}$, the set of eigenvectors having eigenvalue λ is one-dimensional.	
D has eigenvectors! eg. De" = 3e". For every lett, the sel or eigenvectors ?	

Fibonacci Numbers		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Recursive formula $F_n = \{1, 1, n=1\}$		
$(f_{n-1}, f_{n-2}), i \neq n \geq 2$		
Consider $[0], [1], [2], [3], [5],$ $F_5 = 8$		
		•
So $V_n = \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$ so $A = \begin{bmatrix} i & j \end{bmatrix} defines a map V_n \longrightarrow AV_n = V_{n+1} i.e. A \begin{bmatrix} r_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} r & j \end{bmatrix} \begin{bmatrix} F_{n+1} \\ F_{n+1} \end{bmatrix} = V_{n+1}$		•
Starting with $v_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, we get $v_1 = Av_0$, $v_2 = Av_1 = A^2v_0$,, $v_n = \begin{bmatrix} \frac{1}{h+1} \\ \frac{1}{h} \end{bmatrix} = A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \text{first alumn of } A^n$.		•
$A^{2} = \begin{bmatrix} i & o \end{bmatrix} \begin{bmatrix} i & o \end{bmatrix} = \begin{bmatrix} 2 & i \\ i & j \end{bmatrix}, A^{3} = \begin{bmatrix} 2 & i \\ i & j \end{bmatrix} \begin{bmatrix} i & o \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & i \end{bmatrix}, A^{4} = \begin{bmatrix} 3 & 2 \\ 2 & i \end{bmatrix} \begin{bmatrix} i & o \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}, \cdots$ To find an explicit formula for A^{*} (and thereby F_{n}), diagonalize A .		
To find an explicit formula for A" (and thereby F.), diagonalize A.		
	1-5	
dot (A - xI) = dot ([I - [x - x]]) = [x - x] = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = x - x - 1 = (x - x)(x - x) = (x - x)(x - x)(x - x)(x - x) = (x - x)(x - x)(x - x)(x - x) = (x - x)(x - x)(x - x)(x - x)(x - x) = (x - x)(x - x	2	
Eigenrector for a: solution of Av= av i.e. (A-aI)v=0 golden notio	- 0.6(8	
Eigenvector for α : solution of $A_{v=\alpha v}$ i.e. $(A - \alpha I)v = 0$ $\begin{bmatrix} 1 - \alpha & 1 \\ 1 & -\alpha \end{bmatrix} \begin{bmatrix} \alpha \\ y \end{bmatrix} = 0$. A nonzero solution is $\begin{bmatrix} \alpha \\ 1 \end{bmatrix}$. Check: $\begin{bmatrix} 1 - \alpha & 1 \\ 1 & -\alpha \end{bmatrix} \begin{bmatrix} \alpha \\ y \end{bmatrix} = \begin{bmatrix} 1 + \alpha - \alpha^2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \approx 1.618$		•
Eigenvector for β : $Av = \beta r$ i.e. $(A - \beta I)v = 0$. Take $\begin{bmatrix} \beta \\ i \end{bmatrix}$.	1 1 N 1 1 1	
$B = \begin{bmatrix} \alpha & \beta \\ 1 & \beta \end{bmatrix} \text{ has the eigenvectors as its columns.} AB = \begin{bmatrix} A \begin{bmatrix} \alpha \\ 1 \end{bmatrix} & A \begin{bmatrix} \beta \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 & \beta^2 \\ \alpha & \beta \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ 1 \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ 0 & \beta \end{bmatrix} = BD,$ Diagonalizing A gives $D = \begin{bmatrix} \alpha & \beta \\ 0 & \beta \end{bmatrix} \cdot ABB^{T} = BDB^{T}$ i.e. $A = BDB^{T}$ $D^{n} = \begin{bmatrix} \alpha & \beta \\ 0 & \beta \end{bmatrix}^{n} = \begin{bmatrix} \alpha^{n} & \beta \\ 0 & \beta \end{bmatrix}$	$D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	•
Diagonalizing A gives $D = \begin{bmatrix} 0 & \beta \end{bmatrix}$. ABB' = BDB' i.e. $A = BDB'$ $D^n = \begin{bmatrix} 0 & \beta \end{bmatrix}^n = \begin{bmatrix} 0 & \beta \end{bmatrix}^n = \begin{bmatrix} 0 & \beta \end{bmatrix}^n$		
$A^{n} = (BDB^{n})(BDB^{n})(BDB^{n})/\cdots/(BDB^{n}) = BDB^{n}$ $B = [i, i]$ $B = [i, i]$		•
h times		

 $\beta = -1 \qquad \alpha \beta^{2} = \left(\frac{(+\sqrt{5})}{2}\right) \left(\frac{1}{\sqrt{5}}\right)$ $A^n = BDB^i = \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix}$ $\alpha \beta = -1$ γ $= \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha^{n+1} - \beta^{n+1} & \alpha^{n+1} \\ \alpha^{n} - \beta^{n} & \alpha^{n+1} - \alpha^{n+1} \beta & \alpha^{n+1} \\ \alpha^{n} - \beta^{n} & \alpha^{n+1} - \alpha^{n+1} \beta & \alpha^{n+1} \\ \alpha^{n+1} - \beta^{n+1} & \alpha^{n+1} - \beta^{n+1} \end{bmatrix}$ Q-B= 55 $F_{n} = \frac{\alpha^{n} - \beta^{n}}{\sqrt{5}} = \frac{\binom{1+\sqrt{5}}{2}^{n} - \binom{1-\sqrt{5}}{2}}{\sqrt{5}} \quad \text{grows exponentially}$ (faster than power law n^k) $V_{h} = A^{n} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} f_{h+1} \end{bmatrix} = \begin{bmatrix} \alpha^{h+1} - \beta^{h+1} \\ F_{h} \end{bmatrix}$ · · 50 · eq. Fo 1= 21 = $f_{i} = \frac{\alpha - \beta}{R}$ $F_2 = \frac{\alpha^2 - \beta^2}{\sqrt{5}} = \frac{(\alpha + 1) - (\beta + 1)}{\sqrt{5}} = 1$ etc. $F_{30} = \frac{\alpha^{30} - \beta^{30}}{\sqrt{5}} = 832040$