

Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$.	
4 2x-7y=-31 We are asking for the simultaneous system of two equations in two	solution of a mknowns & and y.
$\begin{cases} 5x^{2} + 3y = 25 \\ 2x - 7y = -31 \end{cases}$	2×3-5(-7) = 6+35
$5x + 3y = 25$ $41y = 205$ $2x(1) - 5x(2) = (3)$ $y = 5$ $(4) = (3) \div 41$	$\begin{array}{c} = 41 \\ 2 \times 25 - 5 \times (-31) = 50 + 155 \\ = 205 \end{array}$
Solution: $(x, y) = (2, 5)$ is the $5x + 15 = 25$ unique Solution. $5x = 10$	
Example: Find all (r.y) such that 5x+ 3y=25 and 10x+6y=17.	· · · · · · · · · · · · · · · · · · ·
This system is inconsistent: if bad	no solution.
$5_{x} + 3_{y} = 25 (1)$ $10_{x} + 6_{y} = 17 (2)$	· · · · · · · · · · · · · ·
$0 = 33$ $2 \times (i) - (2)$ This is inconsistent.	
5x + 3y = 25	
10x + 6y = 17	· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	

Example :	Find all (x,y) S	nch that 5x+3y	= 25 and	15x + 9y = 75.			
				n is consistent there are infin	but the solut	tion is not	•
		· · · · · · · · · · ·	· · · · · · ·	5x + 3y = 25 15x + 9y = 75		· · · · · · · ·	•
					(3) - 3×(1)	- (2)	
· · · · · · · · · ·	· · · · · · · · · · ·	5x+3y	=25	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	•
· · · · · · · · · · ·	· · · · · · · · · · · · · ·	$l5\chi + 9c$	1 = 75	· · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	•
A System =	$\begin{array}{l} F & m & \text{linear equatio} \\ x_2 & + \cdots & + q_m x_n = b \\ x_2 & + \cdots & + q_{2n} x_m = \end{array}$	s in a unknown	s has the t		· · · · · · · · ·	· · · · · · · · · ·	•
a x + a	$x_2 + \cdots + q_{min} x_n =$ $q_{ij}, b_i = constants$	6			riables represent	ing unkaonts).	•
Topically,	when m=n we ca m>n m <n.< th=""><th>n expect a migu</th><th>le solution; lection (incon</th><th>sistent syster);</th><th>· · · · · · · ·</th><th>· · · · · · · · · ·</th><th>•</th></n.<>	n expect a migu	le solution; lection (incon	sistent syster);	· · · · · · · ·	· · · · · · · · · ·	•
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	•
		· · · · · · · · · ·			· · · · · · · ·		•

Example with m=n=3: a Kim buys a bag of 26 cans of tim apples loaves of bread How many of each item	system of 3 linear items weighing 226 o a (\$ 1 each 502	equations in 3 z. costi-g \$34. each)	milenoning The items include	Ld.	
apples loaves of bread How many of each item	(\$ 1 each, soe (\$ 3 each, 20 of did Kim brug?	each) (say & caus of t	ma, y apples, z la	aves of bread	>
5x + 8y + 20z = 226 x + y + 3z = 34	(2) (3)		· · · · · · · · · ·		
2z = 8z = 4x + y = 225x + 8y = 146	(3) - (1) = (4) (6) = (8) - (5) (7)		· · · · · · · · · · · · · · · · · · ·	146 - 5x22 = 19	16 - 110 = 36
3y = 36 y = 12	$(7) - 5 \times (6) = (8)$ $(9) = (8) \div 3$			· · · · · · · ·	
st = 6 The unique solution of 7	(10) = (6) - (9) this system is (x,	y,z)= (10,12,4)	(Kim bough and 4	It to cans of brea	tina, 12 apples, id.)
Check! that all three	equations are sorist				

Matrix formulation of linear systems	
x + y + z = 26	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
x + y + 3z = 34	$\sum_{i=1}^{n} 2i = 226 - 130$
$\begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & $	226 - 5 × 26 - C-6 150 = 96
$\begin{bmatrix} 1 & 1 & 1 & 26 \\ 5 & 8 & 20 & 226 \\ 1 & 1 & 3 & 34 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 5 & 8 & 20 & 226 \\ 0 & 0 & 2 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 5 & 8 & 20 & 226 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 0 & 3 & 15 & 76 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 0 & 1 & 5 & 32 \\ 0 & 0 & 1 & 4 \end{bmatrix}$ Subtract divide row 3 Subtract 5 times divide row 2 row 1 from row 2 by 3	
subtract divide row 3 Subtract 5 times divide row 2	
now i from by 2 row / from now 2 by 3	
f = 10	
$\sim 0 10 12 \sim 0 10 12 \sim 0 10 12 = 12$	
2 = 4	
now 3 from now 2 from now 1 from now 1	
now 3 from now 2 from now 1	· · · · · · · · · · · ·
$ \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 14 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 14 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 4 \end{bmatrix} $ $ = 10 $ $ y = 12 $ $ z = 4 $ Subfract 5 times subfract row 2 Subfract row 3 row 3 from row 2 trom row 1 From row 1 From row 2 Such that $5x + 3y = 25$ and $2x - 7y = -31$	· · · · · · · · · · · · · · · · · · ·
Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. -7-5	$\frac{35}{5}$ $\frac{6}{5}$ $\frac{2}{5}$ $\frac{41}{5}$
Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. -7-5	$=\frac{35}{5}-\frac{6}{5}=-\frac{41}{5}$ 31-10=5-41
Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. -7-5	$\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31 - 10}{5} = -\frac{41}{5}$
Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. x = y $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$ divide row 1 subtract 2 times row 2 subtract 3 times row 2 by 5 & from row 2 by $-\frac{5}{41}$ from row 1	$\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$
Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. x = y $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$ divide row 1 subtract 2 times row 2 subtract 3 times row 2 by 5 & from row 2 by $-\frac{5}{41}$ from row 1	$\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31 - 10}{5} = -\frac{41}{5}$
Example: Find all (x, y) such that $5x + 3y = 25$ and $2x - 7y = -31$. $x - 7 - \frac{6}{5}$ $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -\frac{7}{5}$ divide rows subtrat 2 fines rows and subtract $\frac{2}{5}$ fines rows and $\frac{2}{5}$ fines rows and $\frac{2}{5}$ from rows and $\frac{2}{5}$ frows and $\frac{2}{5}$ from ro	$\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31 - 10}{5} = -\frac{41}{5}$
Example: Find all (x, y) such that $5x + 3y = 25$ and $2x - 7y = -31$. $x - 7 - \frac{6}{5}$ $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -\frac{7}{5}$ divide rows subtrat 2 fines rows and subtract $\frac{2}{5}$ fines rows and $\frac{2}{5}$ fines rows and $\frac{2}{5}$ from rows and $\frac{2}{5}$ frows and $\frac{2}{5}$ from ro	$\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31 - 10}{5} = -\frac{41}{5}$
Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. x = y $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$ divide row 1 subtract 2 times row 2 subtract 3 times row 2 by 5 & from row 2 by $-\frac{5}{41}$ from row 1	$\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{4}{5}$

Even better: $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 17 & 87 \\ 2 & -7 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 17 & 87 \\ 0 & -41 & -205 \end{bmatrix} \sim \begin{bmatrix} 1 & 17 & 87 \\ 0 & 1 & 5 \end{bmatrix}$ subtract a row 2 subtract 2 times divide row 2 from row 1 row 1 from row 2 by -41	-31-2×87
from now 1 from now 2 by -41	5 - 31 - 174 = 1-805
$ \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \\ \end{array} \right] $ Solution: $(\pi, y) = (2, 5). $	
Subtrad 17 fines 2002 Check! 5×2 + 3×5 = 25 from row 1 2×2 - 7×5 =-31	
Elementary our operations: (i) add a multiple of one row to another	· · · · · · · · · ·
Elementary nour operations: (i) add a multiple of one row to another (ii) multiply a row by a nonzero anstant (iii) interchange two rows	
A ~ B means that A, B are linear systems having the same solutions. We use Gaussian elimination to reduce A, ~ A. ~ Am where A, represents the lin and Am represent an equivalent linear system (i.e. having the same solutions) but Am is and Am represent an equivalent linear system (i.e. having the same solutions) but Am is A. Each step A: ~ Ait, is obtained by one elementary row operation.	ear system Simpler than
$\begin{array}{c} \text{volvy just one operation at a time?} \\ \text{volvy just one operation at a time?} \\ \text{5x + 3y = 25} \\ \text{2x - 7y = -31} \\ \begin{array}{c} 5 & 3 & 25 \\ 2 & -7 & -31 \end{array} \\ \begin{array}{c} 1 & -\frac{7}{2} & -\frac{31}{2} \\ 1 & -\frac{7}{2} & -\frac{31}{2} \end{array} \\ \begin{array}{c} 7 & 1 & -\frac{7}{2} & -\frac{31}{2} \\ 0 & -\frac{7}{21} & -\frac{7}{21} \\ 0 & -\frac{7}{21} & -\frac{7}{21} \\ 0 & 1 & 5 \end{array} \\ \begin{array}{c} 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \\ \begin{array}{c} \text{ie. y = 5} \\ \text{otivide row 2 by 2} \\ \text{otivide row 2 by 2} \\ \end{array} \\ \begin{array}{c} \text{voltract row 1 from row 2} \\ \text{otivide row 2 by 2} \\ \end{array} \\ \begin{array}{c} \text{voltract row 1 from row 2} \\ \text{otivide row 2 by 2} \\ \end{array} \\ \begin{array}{c} \text{voltract row 1 from row 2} \\ \text{voltract row 1 from row 2} \\ \end{array} \end{array}$	
ouction (2,5)	te many
Gauss Gaussian distribution	

[0 1 3], bey cannot	be simplified an	y further by	exangles of clamentary row	operations.	uce & row	echelon for	<u>~</u> :
[¹] 17 87]	is almost endured	. if is in n	as echelon form				
$\begin{bmatrix} 0 & 1 & 5 \end{bmatrix}$ For a linear syst we solve for $2^{X_{11}}$ eg. $\begin{bmatrix} 5 & 3 & 7 & 3 \\ 0 & 2 & 11 & 4 \\ 0 & 0 & 6 & 8 \end{bmatrix}$	then sime, then is in row	Kn-2,, X, bi echelon form.	y <u>back-súbstitú</u>	fim .		· · · · · · · · · · · · · · · · · · ·	· · · · · ·
Every linear sys	tem has a unique	is the first n	echelon form. conzero outry in	tts now.		· · · · · · ·	
in oracz it a pivots in	arcy our must o	cour to the night	lt of pivots in	any previous	1005;		mit has
Assuming a mate every pivot every clem	ix is already in entry must be a having a pivo	row echelon form 1 t has only one	n, then to be noazero entry.	in reduced ro	s echelon f		
	v						
· · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·		· · · · · · · ·	· · · · · ·	· · · · · ·

Example: Solve the following linear system	in of 3 equations in 5 c	inkaowas:
$\begin{cases} x_1 + 4x_2 - x_3 + 2x_4 + 3x_5 = 6 \\ 2x_1 + 8x_2 - x_3 + 7x_4 + 4x_5 = 19 \\ -x_1 - 4x_4 + 4x_3 + 8x_4 - 4x_5 = 26 \end{cases} \begin{bmatrix} 1 & 4 & -1 \\ 2 & 8 & -1 \\ -1 & -4 & 4 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 3 & 6 \\ -2 & 7 \\ -4 & 26 \end{bmatrix} \sim \begin{bmatrix} 1 & 7 & -2 & 7 \\ 0 & 0 & 1 & 3 & -2 & 7 \\ 0 & 0 & 3 & 10 & -1 & 32 \end{bmatrix} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	χ_{a}	s = t is a free parameter. = 11-5t
This matrix is in row echelon form. This can be used to solve the linear system by back-substitution.	$\begin{array}{rcl} \chi_{3} + & 3\chi_{4} & -2\chi_{5} = 2 \\ \chi_{3} = & 7 - 3\chi_{4} + 2 \end{array}$	$2n_5 = 7 - 3(11 - 5t) + 2t = -26 + 17t$
Can be used to by back-substitution.	$x_1 + 4x_2 - x_3 + 2x_4 + 3x_5$ $x_1 = s$ is	another free parameter
	$\chi_1 = 6 - 4\chi_2 + \chi_3 - 2\chi_4$	$-3x_5 = 6 - 4s + (-26 + 17t) - 2(11 - 5t) - 3t$
Solutions: $(x_1, x_2, x_3, x_4, x_5) = (-42 - 45 + 24t, x_5)$	s, -26+17t, 11-5t, t) where	= -42 - 45 + 24t s,t are arbitrary
Geometrically, the set of solutions forms a	plane (2-dimensional sur	rece) in R ^{SN}
R ⁵ (30,3,-9,6,1)		s,t are coordinates for the plane
1 > Solu	tion set	The point corresponding to
(-42,0,-26,11,0) Solut	inside R ⁵ .	(s, t) = (3, 1) is (30, 3, -9, 6, 1) is another solution
Ono system is consistent but the solution	r is not unique.	· · · · · · · · · · · · · · · · · · ·

$ \begin{bmatrix} 4 & -1 & 2 & 3 & 6 \\ 0 & 0 & 3 & -2 & 7 \\ 0 & 0 & 0 & 5 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 4 & 0 & 5 & 1 & 3] \\ 0 & 0 & 1 & 3 & -2 & 7 \\ 0 & 0 & 0 & 5 & 1] \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 1 & 3 & -2 & 7 \\ 0 & 0 & 0 & 5 & 1] \\ 0 & 0 & 0 & 5 & 1] \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 0 & -24 & -42 \\ 0 & 0 & 0 & 1 & 3 & -2 & 7 \\ 0 & 0 & 0 & 1 & 5 & 1] \\ 0 & 0 & 0 & 1 & 5 & 1] \end{pmatrix} \sim \begin{bmatrix} 0 & 0 & 0 & -24 & -42 \\ 0 & 0 & 0 & -17 & -26 \\ 0 & 0 & 0 & 5 & 1] \\ 0 & 0 & 0 & 1 & 5 & 1] \end{pmatrix} $ (reduced row echelon (reduced row echelon form)
To solve a linear system in reduced row echelon form, introduce parameters for the free variables (the variables whose columns do not contain a pivot). In the example above, x2 and x5 are the free variables. Introduce s,t. x2=s, x5=t can be chosen freely. Solve for the variables x1, x3, x4 using the equations appearing in the reduced row echelon form:
$x_1 + 7s - 27t - 12$) $(x - x - x_1) = (x - 4x + 2s + s - 26 + 17t - 11 - 5t - t)$ where st are
As long as the rightmost column has no pivot, infinitely many solutions.) The system is consistent.
The general solution can be written as $(x_r, x_z, x_3, x_4, x_5) = (-4z - 4s + 24t, s, -26 + 17t, 11 - 5t, t)$ = (-4z, 0, -26, 11, 0) + s(-4, 1, 0, 0, 0) + t(24, 0, 17, -5, 1)
$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n) (vector addition)$ $c (a_1, a_2, \dots, a_n) = (ca_1, ca_2, \dots, ca_n) (scalar multiplication)$ $f_{a_1} \qquad vector$

Al	'gebrai [f	`с ор А=	eratio [23 [1-7	≥~s = 5] ∥]	for n a	natri nd	ices B=	-2 -2	1 3 3	• •	then	្រំ	sA =	6	3]	2	3 ~7	57 11]	; ; ; ; ;	[-	1 3 1	lr -27	417 23]	· ·	ffe is	ere i	48 kfinal
		mætr A =	ix ha [a _{1,1} a _{zr1}	es flo 91,2 92,2	2 6	· · · ·			· · · · · · · · · · · · · · · · · · ·		a;, j	is	the	2× (i;j m} n}	2)-e	thy	2X 04	3 Hu	2 m	atri:	2 × 4	x 3 A 3		• •	• •	· ·	· ·
IF We	A Cau'f	is - nul in		,	ک ۲		nxr		hen he	· · A :	P'>		~ ~ `	• •	• •	• •		• •	• •		• •	• •		• •	•	• •	• •
eg.		1 m 3 5 ~ 7 (1 - 2x3	$\left \begin{array}{c} 0 \\ 0 \\ 2 \end{array} \right $		- 23	4	ທີ	hereas				7 	· (1 -	2000 1000 1000		-8.	й 2 _	• •	· ·	•	· ·	· ·	•	· ·	· ·	· ·	· ·
J.L	A =) te	len A	$r^2 = \begin{bmatrix} 2 \\ i \end{bmatrix}$	3 -1] [² 1	3 -r] = Â			<u>م</u>	³ = β	° ∆ ≏	[7 [1	3 4][2 · 3 · 1 · -1 ·]	= [17 6	18 ~1]	· ·		· ·	· ·	•	· ·	· ·	· · ·	· · ·
· · · ·	· · ·	· ·		· · · ·	· ·	· ·	· · · ·					• •	• •	· · ·	• •			• •	• •			• •			• •	· · ·	· · ·
	· · ·				• •	• •		• •	• •	• •	•	• •	• •	• •	• •	• •	•	•••	• •	•		• •	•		• •	• •	• •

Recall: the linear system One way to solve this matrix (i.e. column ver	$\begin{cases} 5x + 3y = 25 \\ 2x - 7y = -31 \end{cases} \text{ has a unique solution } (x, y) = (2, 5). \\ 2x - 7y = -31 \end{cases} \text{ has a unique solution } (x, y) = (2, 5). \\ \text{write the linear system as } Ay = b \text{ where } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } V = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } C = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } C = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } C = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } C = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } C = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } C = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } C = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } C = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } C = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ is a } C = b \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ othere } A \text{ othere } A \text{ is a } 2 \times 2 \text{ matrix}, V = \begin{bmatrix} x \\ y \end{bmatrix} \text{ othere } A othere $	q 2× [
Here $\left[2 - 7\right]$. Av = 6 says	$\begin{bmatrix} 5 & 3 \\ 2 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 25 \\ -31 \end{bmatrix} i.e. \begin{bmatrix} 5x+3y \\ 2x-7y \end{bmatrix} = \begin{bmatrix} 25 \\ -31 \end{bmatrix}$ $2xy 2xy 2xy$	
Compare: To solve To solve Ar=6, multig	$3x = 5$ multiply both sides by $3' = \frac{1}{3}$ on the left; $13' = 3' = 5$ by both sides on the left by $A' = \frac{1}{41} \begin{bmatrix} 7 & 3 \\ 2 & -5 \end{bmatrix} = \begin{bmatrix} \frac{7}{41} & \frac{2}{41} \\ \frac{2}{41} & -\frac{5}{41} \end{bmatrix}$	· · · ·
A = b $A'A = A'A$	$\frac{1}{4i} \begin{bmatrix} 7 & 3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 2 & -7 \end{bmatrix} \begin{bmatrix} 7 \\ y \end{bmatrix} = \frac{1}{4i} \begin{bmatrix} 7 & 3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} 25 \\ -31 \end{bmatrix}$ $\frac{1}{4i} \begin{bmatrix} 4i & 0 \\ 0 & 4i \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{4i} \begin{bmatrix} 82 \\ 205 \end{bmatrix}$ $T = \begin{bmatrix} i & 0 & 0 \\ 0 & i & 0 \end{bmatrix}$	· · ·
	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ $I_{n} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $I_{n} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	· · · ·
$ \begin{array}{rcl} & (ABC) &= & A(BC) \\ & 2\pi7 & 4\pi3 & 3\pi5 \\ & 2\pi3 & & & \\ & 2\pi5 & & & & \\ & & & & & \\ & & & & & & \\ \end{array} $	by associativity, you can do the first way give that is faster.	· · · ·

We say A and B commute if $AB = BA$. Which $2x_2$ matrices commute with $A = \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$? Answer by solving the appropriate linear system of A quations in A interviews let $B = \begin{bmatrix} x & y \\ z & y \end{bmatrix}$. In order $Dr AB = BA$ we require $\begin{bmatrix} 3x+2 & 3y+w \\ 4z & 4w \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & w \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & w \end{bmatrix} = \begin{bmatrix} x & y \\ 2 & w \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & w \end{bmatrix} = \begin{bmatrix} x & y \\ 2 & w \end{bmatrix} \begin{bmatrix} 3 & x+4y \\ 0 & 1 \end{bmatrix}$ i.e. $\begin{bmatrix} 3x+2 & =8x \\ 3y+w & =x+4y \end{bmatrix}$ $\begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0$
$\begin{bmatrix} 3x+2 & 3y+\omega \end{bmatrix} = \begin{bmatrix} 3 & 1 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3x & x+4y \\ 8z & 4\omega \end{bmatrix} = \begin{bmatrix} 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & \omega \end{bmatrix} = \begin{bmatrix} 2 & \omega \end{bmatrix} \begin{bmatrix} 0 & 4 \end{bmatrix} = \begin{bmatrix} 3z & z+4w \end{bmatrix}$
$\begin{bmatrix} 3x+2 & 3y+\omega \end{bmatrix} = \begin{bmatrix} 3 & 1 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 3x & x+4y \\ 8z & 4\omega \end{bmatrix} = \begin{bmatrix} 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & \omega \end{bmatrix} = \begin{bmatrix} 2 & \omega \end{bmatrix} \begin{bmatrix} 0 & 4 \end{bmatrix} = \begin{bmatrix} 3z & z+4w \end{bmatrix}$
$\frac{12}{34+2} = \frac{37+2}{7} = \frac{1}{10} = \frac{1}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
x, 2 are basic variables (in the pivot columns)
Jutroduce st as parameters. y=s, w=t port s] [-1 1] + + [1 0]
and solve for x, z : $x = -s+t$, $z = 0$ so $0 = [0 t] = [0 0] [0 1]$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ 0 & 0 \end{bmatrix}$ IA = A = AI
$\begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} -7 & 7 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ 0 & 9 \end{bmatrix}$
For Friday's Quiz: Reprosentation of linear systems in matrix form. Ax=6
Barticular and general solutions homogenize
For Friday's Quiz: Representation of linear systems in matrix form. Ax=b Raticular and general solutions Null vectors linear systems Ax=0
Nul (A) = {x \in R": Ax = 0 \in R" } is the null space of A. It's vectors are called null vectors.
IV W (Tr) ((C) () () () () () () () (

Every linear system has the form Ax = b (for m linear equations in my nxi mxi n unknowns). $\begin{cases} x_1 + 4x_2 - x_3 + 2x_4 + 3x_5 = 6 \\ 2x_1 + 8x_2 - x_3 + 7x_4 + 4x_5 = 19 \\ -x_1 - 4x_4 + 4x_3 + 8x_4 - 4x_5 = 26 \end{cases}$ $A = \begin{bmatrix} 1 & 4 & -1 & 2 & 3 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & (3 & -1) \end{bmatrix}, \quad X = \begin{bmatrix} n_1 \\ n_2 \\ N_3 \\ N_4 \end{bmatrix}, \quad b = \begin{bmatrix} 6 \\ 7 \\ 11 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 2 & 3 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 6 \\ 7 \\ .11 \\ .11 \end{bmatrix}$ Some prefer to write \$ or \$ instead of x. or even & (bold face) or x. For us, context is used to determine whether we are talking about a matrix, a vector, a scalar, a set, a linear transformation, a · Lon 3×5 5×1 Some linear systems are incosistent (meaning that they vector space etc. Some linear systems are incosistent (meaning that they consistent than its have no solutions). If a linear system $Ax=b \rightarrow j$ consistent than its solutions have the form $\chi = a + c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$ for some particular solution $\chi = a$; c_1, \ldots, c_k scalars (constants) and v_{i_1}, \dots, v_k are independent solutions of Ax = 0. The solutions of the example Ax = b above have the form $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -42 \\ 0 \\ -26 \\ 0 \end{bmatrix} + s\begin{bmatrix} -4 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -42$ via a v₂ solution set (i.e. a v₂ the set of <u>all</u> solutions) The general

$A = \begin{bmatrix} 1 & 4 & -1 & 2 & 3 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix}$ gives rise to a homogeneous linear system $Ax = 0$ $3x_1 \text{ i.e. } \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ i.e. $\begin{bmatrix} 1 & 4 & -1 & 2 & 3 \\ 0 & 0 & 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has solutions $x = sv_1 + tv$	$\frac{-42}{2}$
vi A place through the origin in R ⁵ (solutions of Ax = 0)	
Systems of the form $Ax = 0$ are called bomogeneous meaning if a (i.e. $Au = 0$ and $Av = 0$ then $A(su + tv) = 0$ sAu + tAv = 0	and v are solutions then so is su + tr.
A homogeneous system Ax=O is always consistent, since the zero vector	
A homogeneous system Ax=0 is always consistent, since the zero vector Nul (A) = null space of A = { all solutions of the homogeneous system AT=1	$e^{\frac{1}{2}} = e^{\frac{1}{2}} e^{\frac{1}{2}} e^{\frac{1}{2}}$

Checking answers: If we reduce $A \sim A'$, how can we or maybe a reduced row echelon form for A). A and eg. $A = \begin{bmatrix} 1 & 4 & -1 & 2 & 3 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix} \sim A' = \begin{bmatrix} 1 & 4 & 0 & 0 & -24 \\ 0 & 0 & 1 & 0 & -17 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix}$	check our work? (A' could be a row eachelon form for A, A' have the same null vectors.
$e_{g} A^{2} = \begin{pmatrix} 1 & 4 & -1 & 2 & 3 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 1 & 5 & -17 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	· · · · · · · · · · · · · · · · · · ·
A' has null vectors $\begin{bmatrix} 7\\-1\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\$	also null rectors for A.
	· · · · · · · · · · · · · · · · · · ·
le de la constanta la constanta	Every null vector for B is also a null vector for AB . If $Bx = 0$ then $ABx = A0 = 0$
$\begin{bmatrix} 1 & 4 & 0 & -24 \\ 0 & 0 & 1 & 0 & -17 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} 24 \\ 0 \\ 17 \\ -5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 2 \\ 3 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
Last weeks quit: $\begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 3 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 3 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$	$ \begin{bmatrix} 3 & 2 & 5 \\ 0 & 1 & 2 \\ 9 & 8 & 19 \end{bmatrix} \begin{bmatrix} -\frac{13}{2} \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $
$\begin{bmatrix} 2 & 3 \\ 4 \end{bmatrix} \begin{bmatrix} 5 & 2 & 3 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} 7 & 8 & 19 \\ -8 & -8 \end{bmatrix}$	$\left[\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$
$\begin{bmatrix} 0 & 1 & 2 \\ 3 & 2 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 12 & 18 \end{bmatrix}$	
If C is an nxy motion the torro and C in the sum of	
If C is an nxn motix, the trace of C is the sum of the n entries on the main diagonal of C. (denoted trace	€)
If A is are and B is a m, then tr (A!	B) = fr (BA), = trace and a set of a se

Eq. Solve $y'' + y = x^2$.
A particular solution is $y = x^2 - 2$. Check: $y'' + y = 2 + (x^2 - 2) = x^2$.
A particular solution is $y = x^2 - 2$. Check: $y'' + y = 2 + (x^2 - 2) = x^2$. The general solution is $y = x^2 - 2 + a \sin x + b \cos x$ where $a, b \in \mathbb{R}$ are arbitrary. The general solution is $y = x^2 - 2 + a \sin x + b \cos x$ where $a, b \in \mathbb{R}$ are two solutions. From a linear
The homogenized equation $y'' + y = 0$ is homogeneous (so if y, and ye are two solutions, then a linear The homogenized equation $y'' + y = 0$ is homogeneous (so if y, and ye are two solutions, then a linear combination $ay_1 + by_2$ is also a solution). The general solution of $y'' + y = 0$ is $y = q \sin x + b \cos x$. What about $\sin (10^\circ + x) = (m 10^\circ) \sin x + (\sin 10^\circ) \cos x$. (Every solution of $y'' + y = 0$ is a linear
combination ay, + by is also a solution). The general solution of y' + + = o is a linear
Combination ay, + Byz is also a solution). The prevent solution of y" +y=0 is a linear what about sin (10° + x) = (cos 10°) sinx + (sin 10°) cos x. (Every solution of y" +y=0 is a linear combination of sin x and os x.)
combinetion of sing and ost.)
A linear combination of vectors V,, Vk is a vector of the form GU, + GV, + M, Vk where G,, G are Scalars. Moreover, sinx and cos x are linearly independent. We cannot express the general solution of y"+ y = 0 as a linear combination of frawer than two basic solutions.
Scalars. Moreover, sin & and cos & are interry topologic solutions.
y' + y = 0 as a linear combination of the -1
If is correct to say that the general solution of $y' + y = 0$ is a linear combination of $\sin x$, $\cos x$ and $\sin (6^{\circ} + x)$, i.e. every solution has the form $y = c_1 \sin x + c_2 \cos x + c_3 \sin (10^{\circ} + x)$. However this is the same as
i.e. every solution has the form $y = c_1 \sin x + c_2 \cos x + c_3 \sin (10 + x)$.
$M = \left(r + c \cos \theta\right) S \cos t + \left(r + c \sin \theta\right) \cos t$
It's also correct to say: every solution is a finear combination of sinx and sin (10°+x).
$e.g. \cos x = \left(-\frac{\cos b^{\circ}}{\sin x} + \left(-\frac{1}{\sin b^{\circ}}\right)\sin x + \left(-\frac{1}{\sin b^{\circ}}\right)\sin \left(10^{\circ} + x\right)\right)$
(- cot 10°) (- cse 10°) In fact any two solutions of y"+ y=0 can be used to generate all the other solutions by taking linear combination as long as reither of your two particular solutions is a scalar multiple of the other. A list of vectors v1,, vk is linearly independent if none of them is a linear combination of the others. A list of vectors v1,, vk is linearly independent if none of them is a linear combination of the others.
In fact any two solutions of y+y=0 and solutions is a scalar unitiple of the other.
as long as retther of your the findegendant if none of them is a linear combination of the others.
A list of velos vi, ik is to have $c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$ is if $c_1 = \dots = c_n = 0$. Afternatively, the only way to have $c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$ is if $c_1 = \dots = c_n = 0$.
\mathcal{T}

•	E		 sin Si	×, •	cos	:x,	S	in ((10°	+ x)) }	are	 2	link	arly		lep	end	ent	·) ((<u>n</u>	भ	lin	ear	ey J	۶'n	deg	Que	ler	t)	S	in ce		•	•		•		 •	•		
	. •) '.		· 7.	<i>.</i>	×.		• •		ĸ				13	U.		1	2	e:	x	a	id.	Cos	a'						• •			• •				•					
			. 5	in (1	0+;	x)	. 15	\$.	2	(10	lai	r. (Iom	. brh	acie	m	्			2																						
								• •									• •													• •			• •							•		
				• •													• •													• •							•				• •	
				• •			•																							• •							•			•	• •	
	• •			• •			•	• •																						• •			• •				•			•	• •	
•	• •			• •			•	• •	•				• •			•	• •					• •				• •				• •			• •			•	•			•	• •	
•	• •			• •			•	• •					• •			•	• •				•	• •			•	• •				• •			• •			•	•	•		•	• •	
•	• •			• •			•										• •													• •							•			•	• •	
•	• •			• •			•	• •					• •			•	• •				•	• •			•				•	• •			• •				•		•	•	• •	•
•	• •	•		• •			•	• •					• •			•	• •				•	• •		•	•	• •				• •		•	• •			•	•	•		•	• •	•
•	• •	•		• •			•	• •					• •			•	• •				•	• •		•	•	• •				• •		•	• •			•	•	•		•	• •	•
•	• •			• •			•	• •				•	• •			•	• •				•	• •			•	• •			•	• •	•		• •		•		•	•		•	• •	
•	•						•	• •								•	• •	•			•				•				•	•			• •			•	•	• •		•	• •	
•	• •			•			•					•	• •			•	• •				•	• •			•				•	• •		•	• •				•	•		•	• •	•
•	• •	•	•	• •			•	• •				•	• •			•	• •				•	• •		•	•	• •				• •		•	• •			•	•	•		•	• •	•
•	• •			•			•					•	• •			•	• •				•	• •			•				•	• •		•	• •				•	•		•	• •	•
•	•						•	• •								•	• •	•			•				•				•	•			• •			•	•	• •		•	• •	
•	•						•	• •				•				•	• •	•			•				•				•	•			• •			•	•	• •		•	• •	
•	•		1	• •			•	• •					•			•	•				•	•			•	• •				• •							•	• •			• •	
•	•		1	• •			•	• •					•			•	•				•	•			•	• •				• •							•	• •			• •	
•	•		1	• •			•	• •					•			•	•				•	•			•	• •				• •							•	• •			• •	