

$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$
f(x,y) = (3x+2y, x-5y) can be represented as a matrix transformation
$\begin{pmatrix} x \\ u \end{pmatrix} \longmapsto \begin{bmatrix} 3 & 2 \\ 1 & -5 \end{bmatrix} \begin{pmatrix} x \\ u \end{bmatrix} = \begin{bmatrix} 3x + 2y \\ x - c \end{bmatrix}$
(y) L' -JLY J L' 3g]
Every linear operator can be expressed as maint minipication
to consider solutions of y +y=0 i.e. fit= a sinx + 6 cos x
$Df(x) = a\cos x - b\sin x$
h(rfisq) = rDf + sDq - fb]
$(rf+s_{a}) = rf'+s_{a}$ $[a] [0-1][9] = [-6]$
$M = \begin{bmatrix} 0 & -t \\ t & 0 \end{bmatrix}$
$M^{2} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
$M = \begin{bmatrix} -1 & 0 \end{bmatrix}$

Every 2x2 real matrix A represents a linear transformation T: R2 -> R2 which is the
matrix transformation $T_{A}\begin{bmatrix}x\\y\end{bmatrix} = A\begin{bmatrix}x\\y\end{bmatrix}$
eg. $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ x \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$ T _A is a counter-clockwise 90° rotation doout the origin in R ² :
$T_{A}[o] = \begin{bmatrix} 0 & -i \\ i & j \end{bmatrix} = \begin{bmatrix} 0 \\ i \end{bmatrix}$
$\frac{1}{4} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
Domary R. Kange R. T.
$T_{A}^{f} = I \qquad I \left[\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ y \end{pmatrix} \right]$
A counterclockwise rotation by angle & about the origin in R2 represented by
the matrix $p = \begin{bmatrix} cos \theta & -sin \theta \end{bmatrix}$ $R_{\theta} \begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} sin \theta \end{bmatrix}$ $R_{\theta} \begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} sin \theta \end{bmatrix}$
$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\frac{1}{0} \int \frac{1}{1} $
$65 \beta - \sin\beta \beta c \cos \alpha - \sin \alpha \beta - \sin (\alpha + \beta)$
$R_{\beta}R_{\alpha} = R_{\alpha+\beta} \left[sin \beta \cos \beta \right] \left[sin \alpha \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \left(\alpha+\beta\right) \right] \left[sin \beta \cos \alpha \right] = \left[sin \left(\alpha+\beta\right) \right] \left[sin \left(\alpha+\beta+\beta\right) \right] \left[sin \left(\alpha+\beta+\beta\right) \right] \left[sin \left(\alpha+\beta+\beta\right) \right] \left[sin \left(\alpha+\beta+\beta+\beta\right) \right] \left[sin \left(\alpha+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta+\beta$
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Eq. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$ is a reflection about the line y = xa reflection represents represents a slear linear transformation: it takes 0 to 0 and it takes lines to lines. It may distort distances and angles. or points Every matrix transformation

Example of a "some what "generic transformation R2 -> R2 Every linear transformation $T: \mathbb{R}^{m} \to \mathbb{R}^{n}$ takes 0 ± 0 , $\begin{bmatrix} -1\\ 5 \end{bmatrix}$ takes lines to lines or points A function $f: A \to B$ is one-to-one if f(x) = f(y) implies x = y. (No two inputs give the same f is onto if for every be B there exists $a \in A$ such that f(a) = b. eg. $A = \begin{bmatrix} 2 & i \\ 6 & 3 \end{bmatrix}$ bedings a linear transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$, $T_A(\begin{bmatrix} x \\ y \end{bmatrix}) = A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + y \\ 6x + 3y \end{bmatrix}$. This function is not are to one e.g. $T_A(\begin{bmatrix} i \\ y \end{bmatrix}) = T_A(\begin{bmatrix} -i \\ 5 \end{bmatrix}) = \begin{bmatrix} 3 \\ 9 \end{bmatrix}$ And T_A is not onto \mathbb{R}^2 ; it meps onto the line y = 3x $\begin{bmatrix} 0 \\ 7 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $T_{A} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$

The null space of a linear transformation Null $T = \{v : Tv = 0\}$.	(the set of Null
Recall: TO = D	vectors of 1)
$N_{ul} \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} = N_{ul} T_{A} = \left\{ \begin{bmatrix} x \\ -2x \end{bmatrix} : x \in \mathbb{R} \right\}$	
$A \begin{bmatrix} x \\ -2x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	Veca / i
T is one-to-one iff Nul T= { of (the only mill vector is 0).	
On the one hand, suppose T is one-to-one. If $\underline{v} \in Nul T$ then $\underline{T} \underline{v} = \underline{Q} = T \underline{Q}$. This says: if T is one-yo-	then V = D. one then Nul T= E
Conversely, suppose $Mult = 103$. If $T_{\underline{v}} = T_{\underline{w}}$ then $T(\underline{v}-\underline{w}) = T_{\underline{v}} - S_0$. So $\underline{v}-\underline{w} \in Nult$ i.e. $\underline{v}-\underline{w}$.	-Tw = D = D i.e. y = w.
"Span" can be used as a norm or as a verb.	v,,, v _k ,,
The span of a list of vectors $y = \begin{bmatrix} -i \\ 0 \end{bmatrix}$,	sory that the m of v, and v
in \mathbb{R}^3 O $\begin{bmatrix} 0 \\ -1 \end{bmatrix} = \sqrt{2}$ is	the plane x+y+2=0.
(.c. vie p - c - j - j - j - j - j - j - j - j - j	$x_2 \frac{\text{span}}{x+y+z} = 0$.

og the plane 5x + 3y + 7z = p is spanned by $\begin{bmatrix} -3\\5\\6 \end{bmatrix}$, $\begin{bmatrix} 7\\6\\-5 \end{bmatrix}$ $\left(\frac{5}{5}\right) = v_1$ V, V2, V3 span the plane 5x+3y+72=0. Friday: Quite 5 on Span. is ξT_V : ve domain of $T_A \xi$ is the span of the columns of The image of

Eq. $A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ defines a linear transformation $T_A : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ $T_{A}(v) = A \begin{bmatrix} y \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ y \\ z \end{bmatrix} = \begin{bmatrix} y - z \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ y \\ z \end{bmatrix} = \begin{bmatrix} y - z \\ -\pi + z \\ x - y \end{bmatrix}$ The image of T_A is $\{T_A \vee : \vee \in \mathbb{R}^3\} = \{ \begin{bmatrix} y-z \\ -x+z \\ x-y \end{bmatrix} : T_Y, z \in \mathbb{R} \}$ The image of TA is the span of the columns of A $\mathcal{K} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + \mathcal{Y} \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} + \mathcal{Z} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ $\left(\begin{array}{c} 0\\ -1\\ 1 \end{array} \right)$ (a linear combination of the columns of A) T_A is not onto R³. This happens because the columns of A fail to span R³. 0 Xty+z=0 (-r) Any 3 linearly independent vectors in \mathbb{R}^3 will span all of \mathbb{R}^3 (their span is \mathbb{R}^3).

Austier example: B=[-12-1] defines a linear fransformation To: R3 R3 Once again To is not onto R³; its image is the span of the columns of B ic. the plane #+y+2=0 through the origin in R³ has three linearly independent clems sparning R³ i.e. the image of T_c is R³ i.e. T_c is onto R³. Check: If $a \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix} + b \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix} + c \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3a-b-c \\ -a+2b-c \\ -a-b+2d \end{bmatrix}$

$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ has } \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} : x, y \in \mathbb{R} \right\} \text{ as the}$	span of its columns. To is not onto.
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
The span of the rows of A is { [a, 2a, b]	$: a, b \in \mathbb{R}$ }
A subspace of R" generalizes the notion of §03 line origin, etc. up to and including R" itself. The dimension Given any set SCR" (any set of vectors) then spa	e through the origin, plane windings the on of such a subspace is 0,1,2,3,, n. nS = { linear combinations of vectors ins? no linear sustem in n variables.
is a subspace of R. Another wery is to sure of the mult The latter case is the same thing as finding the mult In particular if A is an mxn matrix then NulA = Evel	space of a linear transformation. $\mathbb{R}^n : A_{\underline{v}} = 0$ is a subspace of \mathbb{R}^n . $\lim_{m \to \infty} \mathbb{R}^m$

ε (<i>μ</i> =	īg. ≮ Spa	a twe n ^S	2'	2-0 wa (lime yr [-; 0			101 101 101 101 101 101 101 101 101 101		= nbo / / /	Spa T		71+	? [i	R ³	ر بر بر بر بر بر بر	i.e = 0		A	pla (ter	ne snart	tive Give	ong	h,	t a construction of the co	Real And	orig Nul E[gin [[s [] s) 3 = R ³ -)+	С Т т			<i>[</i> αχ. -ι]	(*) [*] [2]	d i 1 = 1 s,t	с е К	He		
Ē	9.	a	1	- d	ince	isi	one	al	Sa	69	a c	r R	of	R	3. 3.	(i.e	بر د	à	lin	e †	hro	g	h	fl	he	e Or	igin))	•	· ·	•	• •		• •	•	••••	•	• •	•
• •	• •	0	• •	•	[]-		sa		· · ·	27	~	• •			•	•••	•	•				•	U=		Nul	[; ;	1 2 4	[] []	= { { {]	e R ³	: [1 1 1 2 1	 4 	(x y z z	د د ا	0]3	;)
• •	• •	•	• •						ι <u>-</u> .	12)			-		• •	•				•	•	• •			•		• •		i i	e. S	รี Я-	+ 4	+ 2	- - c	• • • •	•		•
• •	•••						3]	•	• •	•	•			•	•	•••	•		•	•••	•	•	• •]) i 1 , [] 1	1 ° 2 4_] ~ ['.] 3]	°~∫	10	-27	+ žy	+ fi	2 = (7 7			•
• •	· /	<u>с</u>		91		• •	•	•	 	•	•	•		•	•		•	•	•	• •	•	•	• •		U:	=	vul l	0	3]				x, y	are is	a bas	hic Vo Ara	riabl 2 Van	es; iable.	•
• •	• •	•	• •		•	• •	•	•	• •	•	•	•	• •	•	•	• •	•	•	•	• •	•	•	• •		5	=t =-'	ۍ ۲	ter	e t		ŝ Qa	rbita	arg	; \$	lue	fo	ry,	X	•
• •	• •		• •	•	•			•	• •						•	• •	•		•		•	•	• •		J X	= 2	t	• •		• •	•			• •	•	• •	•		•
																										5	rzt	<u>ן</u>	1	n D	7.	ę.	41-	27		100	5		
																								U	2	- 2	-3t	.] .	2 Ţ €	-K	3=	<u>]</u> .	1	í.] .	•.	(Ch			
• •	• •		• •			• •			• •	•	•	•		•	•	• •			•	• •								• •		• •				• •		• •	-	• •	
• •	•		• •			•			•			•	• •		•	• •			•	• •	•		•					• •		• •		• •		• •		• •		• •	•

The solutions of y"+y=0 form a vector space {y: y"+y=0} = span { sin x, Cosx} = { a sin x + b cos x : a, b \in R }
Here Ty = y"+y is a function mapping one function to another. = Nul T. T. E. A. S. = Efunctions?
T is a linear transformation since $T(ay, + bg_z) = qTy, + bTy_z$.
Let T: V-> W be a linear transformation.
T is one-to-one it was the form w= Tr for some v eV. T is onto iff every we'W has the form w= Tr for some v eV. T is bijective iff it is both one-to-one and onto. Such functions T have an inverse T' T is bijective iff it is both one-to-one and onto. Such functions T have an inverse T' T must also be linear.
Eq. consider the 2x2 matrix $A = \begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}$ which represents a linear transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ Find the inverse matrix A' . $\overline{A}'(Av) = v$ $A(\overline{A'v}) = w$ \mathbb{R}^2 $A = \mathbb{R}^2$
$A^{T}A = I$ $AA^{T'} = I$ $I = \begin{bmatrix} 0 & 1 \end{bmatrix}$ identify
Fri. Oct 13 Quiz: Inverses of Matrices

A 2×2 m	afrix A = [c	a b) 15	invertible	iff ad-bc	≠0, in whi	ch case f	$\int = \frac{1}{ad-bc} \int -$	d -67,
Eq. for	$A = \begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}$	we have	3.5-2.8 =	-1, A'=	<u> </u> - [-8 3]	= (-5	2].	· · · · · · · · · ·
Check:	$AA^{-1} = \begin{pmatrix} g & 2 \\ g & 5 \end{pmatrix}$	$\int \begin{bmatrix} -5 & 2 \\ 8 & -3 \end{bmatrix}$		and ATA	=l.	· · · · · · ·	· · · · · ·	· · · · · · · ·
Eg - B =		Compute	B ⁻¹			· · · · · · ·	· · · · · ·	· · · · · · · ·
General m	[139] rethod: To	compute A',	if it exists	, write down	$\begin{bmatrix} A \mid I_n \end{bmatrix}$	and vor	reduce l	eading to
In our case	[B(I ₃] =	$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 4 & 0 & 1 \end{bmatrix}$		1. 1. 1. 0. 0 1. 3. 1. 1. 0	$n \times n$	- Inc [0"]	· · · · · · · · · · · · · · · · · · ·	NX 2n NT IP of t
· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	$\begin{bmatrix} 1 & 3 & 9 & 0 & 0 \\ 0 & -2 & 2 & -1 \\ 0 & 1 & 3 & -1 & 0 \end{bmatrix}$	$\begin{bmatrix} I \\ I \\ 0 \end{bmatrix} \sim \begin{bmatrix} 0 \\ 0 \end{bmatrix} $	3.9.1.0.0.1.1 02.12.1-1 1.3.1-1.1	$\left \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right \sim \left \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right $	-1 0 1 -2 2 -1 3 -1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	it the product all in the lettrast
· · · · · · · ·		LO 28 -1 0 FI 0 0 3	-3. 1 J	0 2 1 -2	-3 1			ove don't get In on the
	~1 (°3 ~ 3	$\begin{bmatrix} 0 & & 3 \\ 0 & 0 & \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & & 3 \\ -1 \\ 2 \\ 1 \end{bmatrix}$			4 - 2 -1 - 2 -1 - 1	ס איז ר	٥٦	left. In this case A is not
· · · · · · · ·	B = -52 4 - -12 -1	32	Check: B'B		1 2 4			invertible.
· · · · · · · ·		· · · · · · · ·	· · · · · · ·	· · · · · · ·	· · · · · · ·	· · · · · · ·		· · · · · · · ·

$E_{g} = A = \begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}$
$\begin{bmatrix} A \mid L \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 8 & 5 \end{vmatrix} \circ 1 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 \\ -1 & -3 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 \\ -1 & -3 \end{bmatrix} \sim \begin{bmatrix} 0 & -1 \\ -3 & -1 \end{bmatrix} \sim \begin{bmatrix} 0 & -1 \\ -8 & 3 \end{bmatrix}$
$\sim \begin{bmatrix} 0 & 1 & & 3 & -1 \\ 0 & 1 & & 8 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & & -5 & 2 \\ 0 & 1 & & 8 & -3 \end{bmatrix}$
$\widetilde{A'} = \begin{bmatrix} -5 & 2 \\ 8 & -2 \end{bmatrix}$
Eq. A = [3] has 3.2-1.6 = 0 so A is not invertible. What you wing nour auforitum.
$\begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} 3 & 1 \mid i & 0 \\ 6 & 2 \mid 0 & i \end{bmatrix} \sim \begin{bmatrix} 3 & 1 \mid i & 0 \\ 0 & 0 \mid -2 & i \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 \mid -2 & i \end{bmatrix} \sim \begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 \mid 0 \mid -\frac{1}{2} \end{bmatrix} \sim \begin{bmatrix} 0 & \frac{1}{3} \mid 0 & \frac{1}{3} \\ 0 & 0 \mid 0 \mid -\frac{1}{2} \end{bmatrix}$
The pivots do not appear in the leftmost two columns so we conclude that A is not invertible. The image of To is the span of the columns of A, namely span {[6], [2] } = span {[2] },
not R ² . So T _A is not invertible i.e. A is not invertible. t fct)
Eq. Find a guadratic polynomial f(t) = at + bt + c having table of values 1 7
$= c + bt + at^2 \qquad \text{Vendermonde} \qquad \qquad$
$f(a) = c + b + a = 7 f(a) = c + 2b + 4a = 0 f(a) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \begin{bmatrix} 2 \\ b \\ a \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \\ 1 \end{bmatrix}$
$f(3) = c + 3b + 4q = 1 \qquad \begin{bmatrix} c \\ b \\ a \end{bmatrix} = \begin{bmatrix} 3 & -3 & 1 \\ -5 & 4 & -\frac{3}{2} \end{bmatrix} \begin{bmatrix} 7 \\ -19 \\ 4 \end{bmatrix} = \begin{bmatrix} 22 \\ -19 \\ 4 \end{bmatrix}$
0 i 2 3 Check: $f(i) = 7$, $f(i) = 0$, $f(3) = 1$

the solution of a linear system Ax=6 is x= A'b	[A[I]~~~~[I A']
assuming A is an invertible nxa matrix.	
$A = \begin{bmatrix} 3 & 1 \\ 6 & 2 \end{bmatrix}$ is not invertible since the span of its column dependent columns. $\begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	s is span $\left[{ \binom{l}{2} } \right]$ i.e. A has linearly
Alternatively, A has a null vector [-3] & Nul A since	$A_{r3} = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} \begin{bmatrix} -3 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} A_{r3} \end{bmatrix}$
Nal A = span { [-3] } so A is not one-to-one.	· · · · · · · · · · · · · · · · · · ·
The linear system Ax= [0] has many solutions.	
The linear system Ax= [7] has as solutions. since	$[7] \notin Span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$
In 5th edition, I'm omitting 2.4 Partitioned Motrices 2.5 Matrix Factorizations 2.6 Leon-tief- Input/Output Model	$U_1 \cap U_2 = \{ u : u \in U_1 \\ a \neq u \in U_2 \}$
2.7 Compiller graduis	If U, Uz are subspaces of R ⁿ , is U, OUz
Continue with 2.8: Subspaces of R"	also a subspace of the S
A subspace of \mathbb{R}^n is a subset $U \subseteq \mathbb{R}^n$ such that	(1) Since $U \in U_1$ and $U \subseteq U_2$, $U \in U_1 \cap U_2$. (1) Let $U, V \in U_1 \cap U_2$. Then
$c_{ij} o \in \mathcal{U} \qquad \text{where} \mathcal{U}$	u+v e U, and u+v e U2 & u+ve U, OU2
(ii) for all $u \in U$ and scalar $c \in \mathbb{R}$, $cu \in U$.	(iii) let c be a scalar and u e U, Mz. Then
Eq. In R2, Sky): xyzo} is not a subspace.	$cu \in U_1$ and $cu \in U_2$ so $cu \in U_1(1)U_2$.
Think of: 503 line through the origin, plane through the	So yes the intersection of two subspaces as
origin, etc.	4 sabspace.

How do we trud a lassis for a subspace of K
Eq. If A is an user motiving, Row A = span (rows of A) ≤ IR" (really Ixn vectors)
$Col A = Span (astrongot A) \leq R = (really m × 1 vectors).$
(the row space and column space of A).
Take e.g. A = [000 -52] in reduced row echelon form
[00000] (and the second is 2-dimensional : dim (Row A) = 2.
Row A has basis (0,1,-1,0,3,6), (0,0,0,1,-3,2) 50 10011
The dimension of USR' is the number of vectors in a basis for 4.
Col A has basis $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
(A = Span (columns of A)
$= 9 \cdot [2] + c \cdot [2] + c \cdot [2] + c \cdot [2] + c \cdot [2] \cdot c \cdot c \cdot c \cdot c \cdot any scalars Z$
((10) 200 300 400 300 (0) (0) (0) (0) (0) (0) (0) (0) (0) (
$= \left\{ c_2 \begin{bmatrix} 0 \\ 0 \end{bmatrix} + c_4 \begin{bmatrix} 0 \\ 0 \end{bmatrix} : c_2, c_4 \text{ scalars} \right\} = \left\{ \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} : x, y \in \mathbb{R} \right\} \text{ (the } xy - plane)$
$= \left\{ c_{1} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + c_{4} \begin{bmatrix} 0 \\ 0 \end{bmatrix} : c_{2}, c_{4} \text{ scalars} \right\} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x, y \in IR \right\} \text{ (the } xy - plane)$ dim Col A = 2
$= \left\{ c_{1} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + c_{4} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} : c_{2}, c_{4} \text{ scalars} \right\} = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} : x, y \in IR \right\} \text{ (the } xy - plane)$ dim Col A = 2. ALLO, of my down have length to and column vectors have length 3, the now space and column space
= {c_{1}[o] + c_{4}[o] : c_{2}, c_{4} scalars} = {[v] : x, y \in IR} (the xy - plane) dim Col A = 2. Although row vectors have length le and column vectors have length 3, the row space and column space have the same dimension. (equal to the number of pivots).
$= \left\{ c_{1} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + c_{q} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} : c_{2}, c_{q} \text{ scalars} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \right\} : x, y \in IR \right\} \text{ (the } xy - plane)$ dim Col A = 2. A(though row vectors have length le and column vectors have length 3, the row space and column space have the same dimension. (equal to the number of pivots).
$= \left\{ c_{1} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + c_{4} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ c_{2}, c_{4} \\ scalars \right\} = \left\{ \begin{bmatrix} n \\ y \\ 0 \end{bmatrix} \\ n, y \in \mathbb{R} \right\} $ (the $ny - plane)$ dim Col A = 2. Although row vectors have length le and column vectors have length 3, the row space and column space have the same dimension. (equal to the number of pivots). What if A is not in reduced row echelon form?
$= \left\{ \begin{array}{c} (1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $
$= \left\{ c_1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} + c_4 \begin{bmatrix} 0 \\ 0 \end{bmatrix} : c_2, c_4 \text{ scalars} \right\} = \left\{ \begin{bmatrix} \pi \\ y \\ 0 \end{bmatrix} : \pi, y \in \mathbb{R} \right\} \text{ (the } \pi y - plane)$ dim Col A = 2. Although row vectors have length to and column vectors have length 3, the row space and column space have the same dimension. (equal to the number of pivots). What if A is not in reduced row echelor form?
$ \left\{ \begin{array}{c} (1 & 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} (1 & 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} + \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} : \left\{ \begin{array}{c} 1 & 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} : \left\{ \begin{array}{c} 1 & 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} : \left\{ \begin{array}{c} 1 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} : \left\{ \begin{array}{c} 1 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} : \left\{ \begin{array}{c} 1 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} : \left\{ \begin{array}{c} 1 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right\} : \left\{ \begin{array}{c} 1 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
$= \left\{ c_{1} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + c_{q} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} : c_{1}, c_{q} \text{ scalars} \right\} = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} : x, y \in IR \right\} \text{ (the } xy - plane)$ dim Col A = 2. A(though row vectors have length to and colume vectors have length 3, the row space and colume space have the same dimension. (equal to the number of pivots). voltat if A is not in reduced row echelon form?
$= \left\{ c_1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} + c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} : c_2, c_4 \text{ scalars} \right\} = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} : \pi, y \in IR \right\} \text{ (the } \pi y - plane) \\ \text{dime Coll A} = 2. \\ \text{A(though row vectors have length le and colume vectors have length 3, the row space and colume space the same dimension. (equal to the number of pivots). \\ \text{have the same dimension. (equal to the number of pivots).} \\ \text{voltat :F A is not in reduced row echelon form?}$

• • ‡	g i	$\hat{S} = \begin{bmatrix} 0 & 2 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$	-2 1 -1 3 -1 -2	1 H 72 IZ 13 Z	 	• •	• •	r Ro G	w B l B	≤ R ≤ 1k	3	• •	• • •	• •		•	• •		•	• •	•	0	• •	•		
Ē	3 ~ [0	0 -1 -1 -3 0 -2 -2 -1 -2 0 -1 -2 -2	-12 12 ' 1 14 13 2		0 1 0 0	-1 0 -1	3 -12 -5 25 -2 13	12 -10 2	~ [1 0 0 0 1 0	-1 3 0 1 -1 -2	-5 13	12 2 2	$\sim 10^{-10}$	0 0 0 0 0	-1 0 0	3 1 -5	-12 -5 25	12 2 70		•	•	••••	•	• •	
• •		0 1 -1 3 0 0 0 1	-12	2)~			3 -12 1 -5	12 2			, , , , , , , , , , , , , , , , , , ,	3 -5	د م م	 	• •	•	• •	• •	•	· ·	•	•	••••	•	• •	
	lew B	o o o l = Roul	t ha	2 J bæsi	Lo o s t	, o (o,1,·	00 -1,0,3	,6),) (0,	(o , o ,	0 0 0 1,-5, 1	2)	6	• •	• •	•	• •	• •	•	••••	•	•	· ·	•	•	
••••	Col B	# 60 A	but		lВ	han	basis		, [3]				 	 	 		 	•			و	R R	•••	•		
1 	In gene give	a basis	pivet of	B.	. 6 4 . 	A (=	reduce	20(78-	w eci	relor i	Jorn	⊅ {-	5)	Tel		> М	trich			· ·	> (• •			
•••	e.a) - [=] - [_] -		+03			• •	• • •		• •	• •	• •	· · ·	• •	• •	•	•••	••••	•	• •	•	•	••••	•		
· ·	e.a	$ \begin{bmatrix} -1 \\ -7 \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ -12 \\ -13 \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ -12 \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ -13 \end{bmatrix} = \begin{bmatrix} 1 \\ -12 \\ -12 \end{bmatrix} = \begin{bmatrix} 1$	- [⁺] () (+03)[]3)	· · ·	· · · ·	· · · ·	· · ·	· · ·	· · ·	· · · ·		· · ·	•	· · ·	· · ·	•	· · ·	•	•	· · ·	•		
· · ·	e.a	$\begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1z \\ -1z \\ -13 \end{bmatrix} =$		+03)[]3]	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · ·		· · · · · · · · · · · · · · · · · · ·	· · ·		· · ·	· · ·	•				
· · · · · · · · · · · · · · · · · · ·	e.a			+03)			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·									
· · · · · · · · · · · · · · · · · · ·	e.a			+03)																						
				+03)																						