


| Example: Find all $(x,y)$ such that $5x+3y=25$ and $2x-7y=-31$ .                    |                                                                                         |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 4<br>2x-7y=-31 We are asking for the simultaneous<br>system of two equations in two | solution of a mknowns & and y.                                                          |
| $\begin{cases} 5x^{2} + 3y = 25 \\ 2x - 7y = -31 \end{cases}$                       | 2×3-5(-7) = 6+35                                                                        |
| $5x + 3y = 25$ $41 y = 205$ $2x (1) - 5x (2) = (3)$ $y = 5$ $(4) = (3) \div 41$     | $\begin{array}{c} = 41 \\ 2 \times 25 - 5 \times (-31) = 50 + 155 \\ = 205 \end{array}$ |
| Solution: $(x, y) = (2, 5)$ is the $5x + 15 = 25$ unique       Solution. $5x = 10$  |                                                                                         |
| Example: Find all (r.y) such that 5x+ 3y=25 and 10x+ 6y=17.                         | · · · · · · · · · · · · · · · · · · ·                                                   |
| This system is inconsistent: if bad                                                 | no solution.                                                                            |
| $5_{x} + 3_{y} = 25  (1)$ $10_{x} + 6_{y} = 17  (2)$                                | · · · · · · · · · · · · · ·                                                             |
| $0 = 33$ $2 \times (i) - (2)$<br>This is inconsistent.                              |                                                                                         |
| 5x + 3y = 25                                                                        |                                                                                         |
| 10x + 6y = 17                                                                       | · · · · · · · · · · · · · · · · · · ·                                                   |
| · · · · · · · · · · · · · · · · · · ·                                               | · · · · · · · · · · · · · · ·                                                           |
|                                                                                     |                                                                                         |

| Example :             | Find all (x,y) S                                                                                                                                                                                  | nch that 5x+3y        | = 25 and                       | 15x + 9y = 75.                     |                   |                     |   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|------------------------------------|-------------------|---------------------|---|
|                       |                                                                                                                                                                                                   |                       |                                | n is consistent<br>there are infin | but the solut     | tion is not         | • |
|                       |                                                                                                                                                                                                   | · · · · · · · · · · · | · · · · · · ·                  | 5x + 3y = 25<br>15x + 9y = 75      |                   |                     | • |
|                       |                                                                                                                                                                                                   |                       |                                |                                    | (3) - 3×(1)       | - (2)               |   |
| · · · · · · · · · ·   | · · · · · · · · · · ·                                                                                                                                                                             | 5x+3y                 | =25                            | · · · · · · · · · ·                | · · · · · · · ·   | · · · · · · · ·     | • |
| · · · · · · · · · · · | · · · · · · · · · · · · ·                                                                                                                                                                         | $l5\chi + 9c$         | 1 = 75                         | · · · · · · · · · · · ·            | · · · · · · · · · | · · · · · · · ·     | • |
| A System =            | $\begin{array}{l} F & m & \text{linear equatio} \\ x_2 & + \cdots & + q_m x_n = b \\ x_2 & + \cdots & + q_{2n} x_m = \end{array}$                                                                 | s in a unknown        | s has the t                    |                                    | · · · · · · · · · | · · · · · · · · · · | • |
| a x + a               | $x_2 + \cdots + q_{min} x_n =$<br>$q_{ij}, b_i = constants$                                                                                                                                       | 6                     |                                |                                    | riables represent | ing unkaonts).      | • |
| Topically,            | when m=n we ca<br>m>n<br>m <n< th=""><th>n expect a migu</th><th>le solution;<br/>lection (incon</th><th>sistent syster);</th><th>· · · · · · · ·</th><th>· · · · · · · · · ·</th><th>•</th></n<> | n expect a migu       | le solution;<br>lection (incon | sistent syster);                   | · · · · · · · ·   | · · · · · · · · · · | • |
| · · · · · · · · · ·   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                             |                       |                                | · · · · · · · · · · ·              | · · · · · · · ·   | · · · · · · · ·     | • |
|                       |                                                                                                                                                                                                   | · · · · · · · · · ·   |                                |                                    | · · · · · · · ·   |                     | • |

| Example with m=n=3: a<br>Kim buys a bag of 26<br>cans of tim<br>apples<br>loaves of bread<br>How many of each item | system of 3 linear<br>items weighing 226<br>a. (\$ 1 each, 502 | equations in 3<br>oz. costi-g #34.<br>each ) | mknowns.<br>The items included |                                               |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|--------------------------------|-----------------------------------------------|
| apples<br>loaves of bread<br>How many of each item                                                                 | (\$\$ 1 each, soe<br>(\$ 3 each, 20 of<br>did Kim brug?        | each)<br>(say x cans of th                   | ma, y apples, z loave          | s of bread)                                   |
| 5x + 3y + 20z = 226<br>x + y + 3z = 34                                                                             | (2)<br>(3)                                                     |                                              | · · · · · · · · · · ·          |                                               |
| 2z = 8 z = 4 x + y = 22 5x + 8y = 146                                                                              | (3) - (1) = (4)<br>(3) - (1) = (4)                             |                                              |                                | - 5x22 = 196 - 110 = 36                       |
| 3y = 36<br>y = 12                                                                                                  | $(7) - 5 \times (6) = (8) + 3$                                 |                                              |                                |                                               |
| r = 6<br>The unique solution of -                                                                                  | (10) = (6) - 19<br>this system is (x                           | ·y, 2) = (10, 12, 4)                         | (Kim bought<br>and 4 loa       | 10 cans of time, 12 apples,<br>res of bread.) |
| Check! that all three                                                                                              | equations are satisf                                           | nea.                                         |                                |                                               |
|                                                                                                                    |                                                                |                                              |                                | · · · · · · · · · · · · · · · · · · ·         |
|                                                                                                                    |                                                                |                                              |                                |                                               |
|                                                                                                                    |                                                                |                                              |                                |                                               |

| Matrix formulation of linear systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| x + y + z = 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |
| x + y + 3z = 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sum_{i=1}^{n} 2i = 226 - 130$                                                                |
| $\begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1$ | 226 - 5 × 26 - C-6 150<br>= 96                                                                 |
| $\begin{bmatrix} 1 & 1 & 1 & 26 \\ 5 & 8 & 20 & 226 \\ 1 & 1 & 3 & 34 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 5 & 8 & 20 & 226 \\ 0 & 0 & 2 & 8 \end{bmatrix} \sim \begin{bmatrix} 5 & 8 & 20 & 226 \\ 5 & 8 & 20 & 226 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 0 & 3 & 15 & 76 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 0 & 3 & 15 & 76 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 0 & 1 & 5 & 32 \\ 0 & 0 & 1 & 4 \end{bmatrix}$<br>Subtract divide row 3 Subtract 5 times divide row 2<br>row 1 from row 2 by 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |
| subtract divide row 3 Subbract 5 times divide row 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
| now i from by 2 row / from now 2 by 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |
| f = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |
| $\sim 0 10 12 \sim 0 10 12 \sim 0 10 12 = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |
| 2 = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |
| now 3 from now 2 from now 1 from now 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |
| 1823 from 1822 from 1821 from 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · · · · · · · · ·                                                                        |
| $ \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 14 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 14 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 4 \end{bmatrix} $ $ = 10 $ $ y = 12 $ $ z = 4 $ Subfract 5 times subfract row 2 Subfract row 3<br>row 3 from row 2 trom row 1<br>From row 1<br>From row 2 Such that $5x + 3y = 25$ and $2x - 7y = -31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                          |
| Example: Find all $(x,y)$ such that $5x+3y=25$ and $2x-7y=-31$ .<br>-7-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{35}{5}$ $\frac{6}{5}$ $\frac{2}{5}$ $\frac{41}{5}$                                      |
| Example: Find all $(x,y)$ such that $5x+3y=25$ and $2x-7y=-31$ .<br>-7-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $=\frac{35}{5}-\frac{6}{5}=-\frac{41}{5}$<br>31-10=-41                                         |
| Example: Find all $(x,y)$ such that $5x+3y=25$ and $2x-7y=-31$ .<br>-7-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$<br>$\frac{31 - 10}{5} = -\frac{41}{5}$            |
| Example: Find all $(x,y)$ such that $5x+3y=25$ and $2x-7y=-31$ .<br>x = y<br>$\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$<br>divide row 1 subtract 2 times row 2 subtract 3 times row 2<br>by 5 & from row 2 by $-\frac{5}{41}$ from row 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$                                     |
| Example: Find all $(x,y)$ such that $5x+3y=25$ and $2x-7y=-31$ .<br>x = y<br>$\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$<br>divide row 1 subtract 2 times row 2 subtract 3 times row 2<br>by 5 & from row 2 by $-\frac{5}{41}$ from row 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31 - 10}{5} = -\frac{41}{5}$ |
| Example: Find all $(x, y)$ such that $5x + 3y = 25$ and $2x - 7y = -31$ .<br>$x - 7 - \frac{6}{5}$<br>$\begin{bmatrix} 5 & 3 &   25 \\ 2 & -7 &   -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 &   5 \\ 2 & -7 &   -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 &   5 \\ 0 & -41 &   -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 &   5 \\ 0 & 1 &   5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 &   27 \\ 0 & 1 &   5 \end{bmatrix} = -\frac{7}{5}$<br>divide rows subtrat 2 fines rows and subtract $\frac{2}{5}$ fines rows and $\frac{2}{5}$ fines rows and $\frac{2}{5}$ from rows and $\frac{2}{5}$ frows and $\frac{2}{5}$ from ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$<br>$\frac{31 - 10}{5} = -\frac{41}{5}$            |
| Example: Find all $(x, y)$ such that $5x + 3y = 25$ and $2x - 7y = -31$ .<br>$x - 7 - \frac{6}{5}$<br>$\begin{bmatrix} 5 & 3 &   25 \\ 2 & -7 &   -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 &   5 \\ 2 & -7 &   -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 &   5 \\ 0 & -41 &   -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 &   5 \\ 0 & 1 &   5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 &   27 \\ 0 & 1 &   5 \end{bmatrix} = -\frac{7}{5}$<br>divide rows subtrat 2 fines rows and subtract $\frac{2}{5}$ fines rows and $\frac{2}{5}$ fines rows and $\frac{2}{5}$ from rows and $\frac{2}{5}$ frows and $\frac{2}{5}$ from ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31 - 10}{5} = -\frac{41}{5}$               |
| Example: Find all $(x,y)$ such that $5x+3y=25$ and $2x-7y=-31$ .<br>x = y<br>$\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$<br>divide row 1 subtract 2 times row 2 subtract 3 times row 2<br>by 5 & from row 2 by $-\frac{5}{41}$ from row 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{4}{5}$                                      |

| Even better : $\begin{bmatrix} 5 & 3 &   25 \\ 2 & -7 &   -3  \end{bmatrix} \sim \begin{bmatrix} 1 & 17 & 87 \\ 2 & -7 &   -3  \end{bmatrix} \sim \begin{bmatrix} 1 & 17 & 87 \\ 0 & -41 &   -205 \end{bmatrix} \sim \begin{bmatrix} 1 & 17 & 87 \\ 0 & 1 &   5 \end{bmatrix}$<br>subtract a row 2 subtract 2 times divide row 2<br>from row 1 row 1 from row 2 by -41                                                                   | -31-2×87                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| from row 1 from row 2 by -41                                                                                                                                                                                                                                                                                                                                                                                                             | 5 - 31 - 174<br>= 1-805    |
| $  \left[ \begin{array}{c} 0 \\ 0 \end{array} \right] = \left[ \begin{array}{c} 2 \\ 5 \end{array} \right] $ Solution: $(\pi, y) = (2, 5). $                                                                                                                                                                                                                                                                                             |                            |
| Subfract 17 fines 2002 Check! 5×2 + 3×5 = 25<br>from row 1 2×2 - 7×5 =-31                                                                                                                                                                                                                                                                                                                                                                |                            |
| Elementary our operations:<br>(i) add a multiple of one row to another                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · ·        |
| Elementary nour operations:<br>(i) add a multiple of one row to another<br>(ii) multiply a row by a nonzero constant<br>(iii) interchange two rows                                                                                                                                                                                                                                                                                       |                            |
| A ~ B means flat A, B are linear systems having the same solutions.<br>We use Gaussian elimination to reduce A, ~ A. ~ Am where A, represents the linear system (i.e. having the same solutions) but Am is<br>and Am represent an equivalent linear system (i.e. having the same solutions) but Am is<br>A. Each step A: ~ Ait, is obtained by one elementary rows operation.                                                            | ear system<br>simpler than |
| $5x + 3y = 25 \left\{ \begin{bmatrix} 5 & 3 \\ 2 & -7 \\ -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 \\ 3 & 5 \\ 1 & -\frac{2}{2} \end{bmatrix} - \frac{31}{2} \right\} = \begin{bmatrix} 0 & \frac{1}{16} & \frac{1}{2} \\ 0 & -\frac{21}{16} & -\frac{21}{2} \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 5 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 5 \\ 0 & -\frac{21}{16} & -\frac{21}{2} \end{bmatrix}$ |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | le many<br>extions         |
| Gauss Gaussian distribution                                                                                                                                                                                                                                                                                                                                                                                                              |                            |

| [0 1 3], [0<br>0 0 0], [0<br>they cannot be | o 7], [o] s] are<br>simplified any further by el                                                        | exangles of matrices in<br>mentary row operations | reduced row            | echelon for | <u>^</u> :    |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------|-------------|---------------|
| [1] 17   87 ] ic                            | almost reduced. It is in rows                                                                           | echelon form                                      |                        |             |               |
| eg. [5] 2 11 4                              | whose matrix is in row echel<br>x x, then x, x, by<br>is in row echelon torm.                           | back - substitution.                              | ·<br>· · · · · · · · · |             | · · · · · · · |
| Every linear system                         | has a unique reduced row ac<br>a pivot is the first nor                                                 | helon torm.<br>12000 autry in its row.            | · · · · · · · ·        |             |               |
| In prace 10 a mer                           | row must occur to the right                                                                             | of pivots in any previou                          | us rows;               | · · · · · · |               |
| Assuming a matrix is<br>every pivot entry   | s occur at 12 control.<br>is abready in row echelon form,<br>y must be a 1<br>wing a pivot has only one | then to be in reduced                             | row echelon f          | en, we      | must have     |
| • courge =                                  |                                                                                                         | · · · · · · · · · · · · · · · · · · ·             | · · · · · · · · · ·    | · · · · · · | · · · · · ·   |
|                                             |                                                                                                         |                                                   |                        |             |               |

| Example: Solve the following linear system                                                                                                                                                                            | in of 5 equations in 5 u                                       | mkaowns:                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{cases} x_1 + 4x_2 - x_3 + 2x_4 + 3x_5 = 6 \\ 2x_1 + 8x_2 - x_3 + 7x_4 + 4x_5 = 19 \\ -x_1 - 4x_4 + 4x_3 + 8x_4 - 4x_5 = 26 \end{cases} \begin{bmatrix} 1 & 4 & -1 \\ 2 & 8 & -1 \\ -1 & -4 & 4 \end{bmatrix}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$          | $ \begin{bmatrix} 3 & 6 \\ -2 & 7 \\ -4 & 26 \end{bmatrix} \sim \begin{bmatrix} 1 & 7 & 7 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 3 & 10 & -1 & 32 \end{bmatrix} $ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                | n an 🕺 🕺                         | - t is a free parameter.<br>= 11-5t                                                                                                                         |
| This matrix is in row<br>echelon form. This<br>can be used to solve the<br>linear system by back-substitution.                                                                                                        | $\chi_3 + 3\chi_4 - 2\chi_5 = 7$<br>$\chi_3 = 7 - 3\chi_4 + 1$ | $2\pi_{5} = 7 - 3(11 - 5t) + 2t = -26 + 17t$                                                                                                                |
| Can be used to by back-substitution.                                                                                                                                                                                  | $x_1 + 4x_2 - x_3 + 2x_4 + 3x_5 = x_4 = s$ is                  | another free parameter                                                                                                                                      |
|                                                                                                                                                                                                                       | $\chi_1 = 6 - 4 \chi_2 + \chi_3 - 2 \chi_4$                    | $-3x_5 = 6 - 4s + (-26 + 17t) - 2(11 - 5t) - 3t$                                                                                                            |
| Solutions: $(x_1, x_2, x_3, x_4, x_5) = (-42 - 45 + 24t, $                                                                                                                                                            | s, -26+17t, 11-st, t) where                                    | = -42 - 45 + 24t<br>s,t are arbitrary                                                                                                                       |
| Geometrically, the set of solutions forms a                                                                                                                                                                           | plane (2-dimensional surf                                      | ece) in R <sup>S</sup> .                                                                                                                                    |
| R <sup>5</sup> (30,3,-9,6,1)                                                                                                                                                                                          |                                                                | s,t are coordinates for the plane                                                                                                                           |
| 1 > Solu                                                                                                                                                                                                              | tion set                                                       | The point corresponding to                                                                                                                                  |
| (-42,0,-26, 11,0) Solut                                                                                                                                                                                               | inside R <sup>s</sup> .                                        | (s, t) = (3, 1) is (30, 3, -9, 6, 1)<br>is another solution                                                                                                 |
| Ono system is consistent but the solution                                                                                                                                                                             | ris not emique.                                                |                                                                                                                                                             |
|                                                                                                                                                                                                                       |                                                                |                                                                                                                                                             |
|                                                                                                                                                                                                                       |                                                                |                                                                                                                                                             |

| $ \begin{bmatrix} 4 & -1 & 2 & 3 & 6 \\ 0 & 0 & 3 & -2 & 7 \\ 0 & 0 & 0 & 5 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 4 & 0 & 5 & 1 &  3] \\ 0 & 0 & 1 & 3 & -2 & 7 \\ 0 & 0 & 0 & 5 &  1] \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 1 & 3 & -2 & 7 \\ 0 & 0 & 0 & 5 &  1] \\ 0 & 0 & 0 & 5 &  1] \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 0 & -24 & -42 \\ 0 & 0 & 0 & 3 & -2 & 7 \\ 0 & 0 & 0 & 5 &  1] \\ 0 & 0 & 0 & 5 &  1] \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 0 & -24 & -42 \\ 0 & 0 & 0 & -17 & -26 \\ 0 & 0 & 0 & 5 &  1] \\ 0 & 0 & 0 & 5 &  1] \end{bmatrix} $ (reduced row echelon form) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To solve a linear system in reduced row echelon form, introduce parameters for the free variables<br>(the variables whose columns do not contain a pivot).<br>In the example above, x2 and x5 are the free variables. Introduce s,t. x2=s, x5=t can be<br>chosen freely. Solve for the variables x1, x3, x4 using the equations appearing in the reduced<br>row echelon form:                                                                                                                                                                                                                                   |
| $x_1 + 7s - 27t - 12$ ) $(x - x - x_1) = (-4z - 4z + 24t - s - 26 + 17t - 11 - 5t - t)$ where st are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| As long as the rightmost column has no pivot, infinitely many solutions.)<br>The system is consistent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The general solution can be written as<br>$(x_r, x_z, x_3, x_4, x_5) = (-4z - 4s + 24t, s, -26 + 17t, 11 - 5t, t)$<br>= (-4z, 0, -26, 11, 0) + s(-4, 1, 0, 0, 0) + t(24, 0, 17, -5, 1)                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)  (vector addition)$ $c (a_1, a_2, \dots, a_n) = (ca_1, ca_2, \dots, ca_n)  (scalar multiplication)$ $f_{a_1} \qquad vector$                                                                                                                                                                                                                                                                                                                                                                                         |

| A        | lgebrai<br>If | `с өр<br>А=          | eration<br>[2 3<br>[1 -7                                  | ons =<br>5]<br>∥]      | for n<br>a                                             | matri<br>nd                           | ices<br>B=      | -2<br>-2   | 1)                                    |       | then      | ß    | • <b>A</b> = | <b>6</b><br>[-2] | 3][            | פ<br>ן | 5 <u>5</u><br>7 1 | []         | =       | [ <mark>13</mark><br>[-1 | <br>2   | 1 41<br>27 23 |       |       | ere   | AB<br>Kfinal |
|----------|---------------|----------------------|-----------------------------------------------------------|------------------------|--------------------------------------------------------|---------------------------------------|-----------------|------------|---------------------------------------|-------|-----------|------|--------------|------------------|----------------|--------|-------------------|------------|---------|--------------------------|---------|---------------|-------|-------|-------|--------------|
|          |               | matr<br>A =          | ix ha<br>[a <sub>1,1</sub><br>a <sub>zr1</sub>            | es fls<br>91,2<br>92,2 | 2 6                                                    | * * * * * * * * * * * * * * * * * * * |                 |            | · · · · · · · · · · · · · · · · · · · | · · · | ļ:<br>, j | is   | the          | 2×               | 2<br>)-en      | ty e   | <u>2 x [</u><br>4 | 3<br>Hie   | ma      | frix                     | 2x<br>A | 3             | _ ک   | · ·   | · ·   | · ·          |
| IF<br>We | A<br>Can't    | is<br>- nul          |                                                           | · · · ·                | ר א<br>ר א                                             |                                       | nxr             |            | pen<br>he                             | Λ.    | ا لرا ه   |      |              | • •              | • •            | •      | •                 |            |         |                          | • •     | • •           | • •   | • •   |       | • •          |
| eg.      |               | 3 5<br>7 (1 -<br>2×3 | $\left  \begin{array}{c} 0 \\ 0 \\ 2 \end{array} \right $ |                        | -<br>[12<br>23                                         | - 87<br>8 9                           | . ນັ            | hereas     |                                       | <br>  |           | -7   | · (1         | - <b>-</b><br>   | 1              | -7.    |                   |            | · · · · | •                        | · ·     | · · ·         | · · · | · · · | · · · | · · ·        |
| Γf       | A =           |                      | ] +@                                                      | len A                  | $f = \begin{bmatrix} 2 \\ 1 \\ \hline f \end{bmatrix}$ | 3]{2<br>-[]{[<br>i                    | 3<br>−r] =<br>Ã | 7 3<br>1 9 |                                       | Å.    | = A       | ÊA.≏ |              | 3<br>4)[*        | 2 3 )<br>1]. ] |        | 7 /3              | <b>,</b> ] | · · · · | •                        | · ·     | · · ·         | · · · | · · · | · · · | · · ·        |
| · · · ·  | · · · ·       |                      | · · · ·                                                   | · · · ·                | · · ·                                                  | · · ·                                 | · · · ·         |            |                                       |       |           |      | • •          | • •              | • •            | • •    | • •               |            |         |                          |         | • •           | · · · |       | · · · | · · ·        |
|          |               |                      |                                                           |                        |                                                        | • •                                   |                 |            | • •                                   | • •   | • •       |      | • •          | • •              | • •            | • •    | • •               |            |         |                          | • •     | • •           | • •   | • •   | • •   | • •          |

| Recall: the linear system<br>One way to solve this<br>matrix (i.e. column ver                                                                  | $5x + 3y = 25$ $2x - 7y = -31$ has a unique solution $(x, y) = (2, 5)$ . $2x - 7y = -31$ invariant of linear system as $Ay = b$ where $A$ is a $2 \times 2$ matrix, $V = \begin{bmatrix} x \\ y \end{bmatrix}$ is a the linear system as $Ay = b$ where $A$ is a $2 \times 2$ matrix, $V = \begin{bmatrix} x \\ y \end{bmatrix}$ is a tor of length 2) and $b = \begin{bmatrix} 25 \\ -31 \end{bmatrix}$ is a $2 \times 1$ matrix of constants.                           | ( <mark>2</mark> × [ |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Here $\left[2 - 7\right]$ .<br>Av = 6 says                                                                                                     | $\begin{bmatrix} 5 & 3 \\ 2 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 25 \\ -31 \end{bmatrix}  i.e.  \begin{bmatrix} 5x+3y \\ 2x-7y \end{bmatrix} = \begin{bmatrix} 25 \\ -31 \end{bmatrix}$ $2xy  ix  ix  ix  ix  ix  ix  ix  $                                                                                                                                                                                                          |                      |
| Compare: To solve<br>To solve Ar=b, muttig                                                                                                     | $3x = 5$ multiply both sides by $3 = \frac{1}{5}$ on the left; $35x = 3.5$ i.e. $x = \frac{5}{3}$ .<br>By both sides on the left by $A = \frac{1}{41} \begin{bmatrix} 7 & 3 \\ 2 & -5 \end{bmatrix} = \begin{bmatrix} \frac{3}{41} & \frac{2}{41} \\ \frac{2}{41} & -\frac{5}{41} \end{bmatrix}$                                                                                                                                                                          | · · · ·              |
| A = b $A'A = A'A$                                                                                                                              | $\frac{1}{41} \begin{bmatrix} 7 & 3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 2 & -7 \end{bmatrix} \begin{bmatrix} 7 \\ y \end{bmatrix} = \frac{1}{41} \begin{bmatrix} 7 & 3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} 25 \\ -31 \end{bmatrix}$ $\frac{1}{41} \begin{bmatrix} 41 & 0 \\ 0 & 41 \end{bmatrix} \begin{bmatrix} 7 \\ y \end{bmatrix} = \frac{1}{41} \begin{bmatrix} 82 \\ 205 \end{bmatrix}$ $T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ | · · · ·              |
|                                                                                                                                                | $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ $I_n = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $I_n = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                               | · · ·                |
| $IF \begin{array}{c} (ABC) = A(BC) \\ 2\pi7 \ 1\pi3 \ 3\pi5 \\ 2\pi3 \\ 2\pi5 \end{array} = \frac{A(BC)}{2\pi7} \\ 2\pi5 \\ 2\pi5 \end{array}$ | by associativity, you can do the first way since that is faster.                                                                                                                                                                                                                                                                                                                                                                                                          | · · · ·              |
|                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |

| i.e. $\begin{cases} 3x+2 & 3y+\omega \\ 4z & 4\omega \\ 3x+2 & 5x \\ 3y+\omega & = x+4 \\ 4z & = 3z \\ 4\omega & = z+4 \end{cases}$  | = [3 4]         | x y z<br>x y z<br>0 0 0 ' | = (x ;<br>2 | () () () () () () () () () () () () () ( |                     | $\begin{array}{c} 5x & x+ 9y \\ 5z & z+ 4w \end{array}$ | · · · · · · · · · · · · · · · · · · · |           | linear system of                                                                                          |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|----------------------------------------------------------------------------|------------------------------------------|---------------------|---------------------------------------------------------|---------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|
| g, w are free<br>Jutroduce s t<br>and solve for                                                                                      | as pa<br>x, २ : | rameters<br>x = -st       | g-:<br>t, z=                                                               | 0 50                                     | $t = \int_{0}^{5*}$ | ts] = s[-1<br>t]                                        | 0] + t[                               |           | $\mathcal{P} \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ | · · ·                                 |
| Check: If s=1, t=1                                                                                                                   | then .          | B= [-1                    | 17 01                                                                      | RA =                                     | ΔR                  |                                                         | a unear a                             | mometion  |                                                                                                           | /                                     |
|                                                                                                                                      |                 | - 10                      | 5 J. and                                                                   |                                          | געודו               |                                                         |                                       |           |                                                                                                           | • •                                   |
|                                                                                                                                      |                 | • • • •                   |                                                                            |                                          |                     | <br>                                                    |                                       | · · · · · |                                                                                                           | • •                                   |
| $\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | 33)             | • • • •                   |                                                                            |                                          |                     |                                                         |                                       | · · · · · |                                                                                                           | · ·                                   |
|                                                                                                                                      | 33)             | • • • •                   |                                                                            |                                          |                     |                                                         |                                       | · · · · · |                                                                                                           | · · ·                                 |
| $\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | 33)             | • • • •                   |                                                                            |                                          |                     |                                                         |                                       | · · · · · |                                                                                                           | · · ·                                 |
| $\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | 33)             | • • • •                   |                                                                            |                                          |                     |                                                         |                                       | · · · · · |                                                                                                           | · · · · · · · · · · · · · · · · · · · |
| $\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | 33)             | • • • •                   |                                                                            |                                          |                     |                                                         |                                       | · · · · · |                                                                                                           | · · · · · · · · · · · · · · · · · · · |
| $\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | 33)             | • • • •                   |                                                                            |                                          |                     |                                                         |                                       | · · · · · |                                                                                                           | · · · · · · · · · · · · · · · · · · · |
| $\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | 33)             | • • • •                   |                                                                            |                                          |                     |                                                         |                                       | · · · · · |                                                                                                           |                                       |
| $\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | 33)             | • • • •                   |                                                                            |                                          |                     |                                                         |                                       | · · · · · |                                                                                                           |                                       |
| $\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | 33)             | • • • •                   |                                                                            |                                          |                     |                                                         |                                       | · · · · · |                                                                                                           |                                       |
| $\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | 33)             | • • • •                   |                                                                            |                                          |                     |                                                         |                                       | · · · · · |                                                                                                           |                                       |