

| Eg.<br>Exp                                 | A=<br>banding                                   | [13]<br>24<br>03<br>L16<br>along                  | 9 41<br>11 7<br>0 4<br>3 5<br>7 Re H | ind re                          | т.,<br>т.,                            | det A                             | = 0                                     |                                          | - 3 2                                    | 041<br>117 + 0<br>351 · ·                           |                                          | 4 (30                            |                                                        |                                                                                                                                                                                                                                            | · · ·                                 | · · · ·                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · ·                        | · · ·                                   | · · · |
|--------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|-----------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------------|------------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|-------|
|                                            |                                                 |                                                   |                                      |                                 | · · · · · · · · · · · · · · · · · · · | W 11 11                           | - 3 (<br>- 3<br>669                     | (111 7<br> 3 5<br>(55-2)                 | + 41<br>  + 41 (                         | $ \begin{pmatrix} 2 & 1 \\ 1 & 3 \\ \end{pmatrix} $ | - 4 (1<br>- 4 (1)                        | +   <br> 6 3 -<br>2-66 -31       | <br>3   <sup>2</sup> <sup>11</sup><br>  3  <br>(6-11)) | $\left  \begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array} \right $ | · · · · · · · · · · · · · · · · · · · | · · · ·                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · ·                      | · · ·                                   | · · · |
| (J.<br>Wed.                                | Nov. 8                                          | rest.                                             | Cone<br>D 17                         | by<br>a fo                      | Com<br>no mi                          | pute                              | r, )<br>early                           | r ya                                     | er can                                   | · · · ·                                             | · · · ·                                  | · · · · ·                        | · · · ·                                                | • •                                                                                                                                                                                                                                        | · ·                                   | · · · ·                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · ·                        | · ·                                     | • •   |
| No<br>I an<br>Rocall                       | Quiz 1<br>n awa                                 | y = rri.<br>A = $rac{a}{c}$                       | Nov. 15                              | r, Mo<br>then                   | n Nov<br>det A                        | 20.<br>= ad-                      | lectures<br>bc.                         | for<br>A is                              | those                                    | two o<br>:66 ;ff                                    | ays w<br>det A ==                        | oll be                           | prereco<br>which                                       | rded -<br>care                                                                                                                                                                                                                             | - chec<br>A'=                         | ad-be                             | e wi<br>[d -<br>[-c ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | elosite<br>6 ] ·               | \$                                      |       |
| No<br>I an<br>Recall<br>This<br>most<br>Oa | Guiz<br>if<br>formul<br>compu<br>ffw z          | y Fri.<br>A = [a<br>a has<br>tetionall<br>yon had | Nov. 15<br>d]<br>d gen<br>to f       | then<br>craliz<br>cient         | det A<br>ation<br>way<br>"whe         | 20.<br>= ad-<br>for<br>to<br>Ne A | lectures<br>bc.<br>n×n<br>compute<br>is | A is<br>matrice<br>2 A'<br>4 x 7.        | those<br>inverti<br>a ((<br>if n<br>The  | two o<br>ible ;ff<br>Cramer's<br>is la<br>entries   | ays w<br>dot A =<br>Rule)<br>ge.<br>of A | ill be<br>0, in<br>The<br>have c | prereco<br>which<br>s is<br>r Com                      | rded<br>case<br>useful<br>won d                                                                                                                                                                                                            | A'=<br>afle<br>enoni                  | ek the<br>ad-be<br>righ<br>nator  | $e$ where $\int d - \frac{1}{2} d = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elosite<br>a],<br>the<br>dat A | 2 <sup>2</sup>                          |       |
| No<br>I an<br>Recall<br>This<br>most<br>Oa | Guiz<br>if<br>formul<br>compo<br>fw z           | y Fri.<br>A = [a<br>a has<br>tetionall<br>yon had | Nov. 15<br>bd]<br>d gen<br>to f      | , Me<br>Ken<br>oraliz<br>icient | n Nov<br>det A<br>ation<br>way<br>whe | 20.<br>= ad-<br>for<br>to<br>ne A | lectures<br>bc.<br>n×n<br>Comput        | for<br>A is<br>natrice<br>2 A'<br>4×4.   | kuose<br>inverti<br>a ((<br>ef n<br>The  | two o<br>ible ;ff<br>iramer's<br>is lar<br>entries  | ays w<br>dot A =<br>Rule)<br>ge.<br>of A | ill be<br>0, in<br>The<br>have c | prereco<br>which<br>s is                               | rded<br>care<br>useful<br>non d                                                                                                                                                                                                            | - chec<br>A'=<br>athr                 | ele the<br>ad-be<br>righ<br>vator | e where $e$ is the second s                                                                                                                                                                                                                                                                                                                                                                                                                            | elosite<br>4]<br>-the<br>det A | 2 · · · · · · · · · · · · · · · · · · · |       |
| No<br>I an<br>Recall<br>This<br>most<br>Da | Guiz<br>a awe<br>if<br>formul<br>compo<br>ffw z | y Fri.<br>A = [a<br>a has<br>tetionall<br>yon had | Nov. 15<br>d gen<br>to f             | , Me<br>Chen<br>Craliz<br>Cient | det A<br>ation<br>way<br>whe          | 20.<br>for<br>to<br>re A          | lectures<br>oc.<br>n×n<br>Gomput        | for<br>A is<br>matrice<br>2 A'<br>4 × 4. | kuose<br>inverti<br>a (((<br>cF n<br>7he | two o<br>ible ;ff<br>Tramer's<br>is la<br>entries   | ays w<br>dot A =<br>Rule)<br>ge.<br>of A | il be<br>0, in<br>The            | prereco<br>which<br>s is                               | rded<br>case<br>useful<br>non d                                                                                                                                                                                                            | - chec<br>A'=<br>athr                 | le the<br>ad-be<br>rugh<br>nator  | $e$ where $\int_{-c}^{c} d = \int_{-c}^{c} d = \int_{-c}^{c$ | ebsite<br>4]<br>Ha<br>det A    | 2 · · · · · · · · · · · · · · · · · · · |       |

| Ēg.          | A =                    |                   | 2 5<br>1 3<br>6 4 ] |     | det f            |                       | 2 5<br>1 3<br>6 4 |              | 2<br> 0-3<br> 7 (4 | 5<br>-7 =<br>4 |                   | 1 2 5<br>0 3 7<br>7 6 9 |              | - 0          | 2 5<br>3 7<br>-8 -3 | =   | 0       | 2 3 8      | 5<br>7<br>31 | =    | / 2<br>0 - | <u>5</u><br>37<br>10 |   | · ·  | • |
|--------------|------------------------|-------------------|---------------------|-----|------------------|-----------------------|-------------------|--------------|--------------------|----------------|-------------------|-------------------------|--------------|--------------|---------------------|-----|---------|------------|--------------|------|------------|----------------------|---|------|---|
|              |                        |                   |                     |     |                  |                       |                   |              |                    | = [ [          | 3                 | 7. =                    | 1.3          | 7.           |                     |     |         |            |              |      |            |                      | • |      | • |
| • • •        |                        |                   | • •                 | • • | Â                | has t                 | nactio            | al<br>M-     | entries<br>[16]    | with<br>1241   | (2)<br> 2<br> 7 6 | <br>                    | denoni       | mator<br>-13 | 37.<br>5            | • • |         |            | • •          | • •  | • •        | • •                  |   |      |   |
| · · ·        | · · ·                  |                   | · ·                 | · · | Madiritsc        | 97 m/.•               |                   | - 1-(        | 25                 | (24)<br>1 2!51 | 12                | 2<br>2                  | - 22         | -31          | ~8<br>-3            |     |         |            | • •          | • •  | • •        | · ·                  | • | • •  |   |
|              |                        |                   |                     |     | <br>.el:         |                       | 22                | י י<br>ר     | [[13               | 1 231          |                   |                         | ·.'          | - <b>r</b>   |                     |     |         |            | • •          |      |            | • •                  | • | • •  | • |
|              | • • •                  |                   | • •                 | ••• | A = 1<br>3       | 7 13                  | -31               | 7            |                    | apple          | inspos<br>diech   | e;<br>uboard            |              |              |                     |     |         |            | • •          | • •  |            | · ·                  | • | •••• | • |
| • • •        | • • •                  | • • •             | • •                 | • • | · · ·            |                       | 22                | 377          | • • •              | divid          | de by             | det A                   | · · ·        | •••          | • •                 | ••• |         |            | • •          | • •  | • •        | • •                  | • | • •  | • |
| • • •        | • • •                  | • • •             | • •                 | • • | <b>.</b> .       | 1 <u>1</u><br>37<br>6 | - <u>31</u><br>37 | 7 37 3       | • • •              | • •            | • • •             | • •                     | • • •        | • •          | • •                 |     |         |            | • •          | • •  | • •        | • •                  | • | • •  |   |
|              |                        |                   | • •                 | • • |                  | 37                    | 37                | 37           |                    | • •            |                   | • •                     |              | • •          |                     | • • |         |            | • •          |      |            |                      | • | •••  |   |
| Chec         | k:::::                 | $A \bar{A}^{1} =$ | 1/2                 | 25  | ] [-14<br>  13 - | 22 1 7<br>-31 7       | = <u>l</u><br>27  | 0            | 0<br>37            | 0              | =                 | 1 0<br>0 1              | 0            |              | /                   |     |         |            |              |      | • •        |                      |   |      |   |
| <br>የበ       | · · · ·                | <br>              | 27 L7               | 64  | Jls :            | 8 -3]<br>Hi iut       | 5(<br>D004        | LO<br>estric | D<br>25 An         | 37<br>d det    | ) <br>`A`='       | , ° (<br>±1.            | > 1.<br>Then | Ă`           | als <del>o</del>    | has | i<br>În | teger      | ent          | ies. | • •        | • •                  | • | • •  | • |
| . د ۲۰<br>۲۰ | <del>14</del> . 75<br> | * 7               |                     |     |                  |                       | eger .            |              |                    |                | • • •             | . <b>)</b> .            |              |              |                     |     |         | <b>v</b> . | • •          |      | • •        | • •                  | • | • •  |   |
|              | • • •                  |                   | • •                 | • • | • • •            | ••••                  | • •               | • •          | ••••               | • •            | • • •             | • •                     | ••••         | • •          | • •                 | • • |         | •          | • •          |      |            |                      |   | • •  | • |
| • • •        | · · ·                  | • • •             | • •                 | • • |                  | · · ·                 | • •               | • •          | · · ·              | • •            | · · ·             | • •                     | · · ·        | • •          | • •                 | • • |         |            | • •          |      | • •        | • •                  | • | • •  | • |
|              | ••••                   |                   | • •                 | • • |                  | · · ·                 | • •               | • •          | • • •              | • •            | ••••              | • •                     | · · ·        | • •          | • •                 | • • |         |            | • •          |      | • •        | • •                  | • | • •  | • |
|              |                        |                   |                     | • • |                  |                       |                   |              |                    | 0 0            |                   |                         |              |              |                     | • • |         |            |              |      |            |                      |   |      |   |

| Find a constant a such that the following matrix has determine                                                                | nant zero;                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{bmatrix} 5 & 3 & 6 \end{bmatrix} \leftarrow u = (5 & 3 & 6)$                                                          |                                                                                                                                              |
| $A = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix} \longleftrightarrow \forall f = (1 & 2 & 4)$                                     |                                                                                                                                              |
| $\begin{bmatrix} 7 & 7 & c \end{bmatrix} = \begin{bmatrix} -u & u + 2v = (7 + 14) \end{bmatrix}$                              | a (A is at sugesting)                                                                                                                        |
| If c=14 then A has linearly dependent rows so det A = 0 in Thes                                                               | Case (H is not invertice).                                                                                                                   |
| If c # 14 then A has linearly independent rows then w # (77 H<br>and (001) is a linear combination of 4, v, w i.e. Row A cont | $\frac{4}{1}$                                                                                                                                |
| $det \begin{bmatrix} 5 & 3 &   & 6 \\ 1 & 2 &   & 4 \\ 0 & 0 &   & 1 \end{bmatrix} = 7 \neq 0$                                | · · · · · · · · · · · · · · · · · · ·                                                                                                        |
| If $A = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix}$ , then $A'' = \frac{1}{2}$                                        | $\begin{bmatrix} a & b \\ 0 & b \end{bmatrix} \begin{bmatrix} c & d \\ 0 & d \end{bmatrix} = \begin{bmatrix} ac & 0 \\ 0 & bd \end{bmatrix}$ |
| If $D = \begin{bmatrix} -i & 2 \\ 0 & 2 \end{bmatrix}$ , then $D^{\prime } = \begin{bmatrix} -i & 2 \\ 0 & 2 \end{bmatrix}$   |                                                                                                                                              |
| A det $A = -2$                                                                                                                |                                                                                                                                              |
| $\begin{bmatrix} -25 & 56 \\ -18 & 26 \end{bmatrix} = -25 \times 26 + 36 \times 18 = -2$                                      | Basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ , $e_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ standard bags                              |
| There is a basis {u, v} for R° such that Au = -u, Av = 2v                                                                     | $\begin{bmatrix} x \\ y \end{bmatrix} = \pi e_1 + y e_2$                                                                                     |
| $A^{2}v = AAA - Av \qquad A^{2}v = AAv = A(2v) = 2Av = 4v$                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                        |
| $A^{2}u = AAu = A(u) = -Au = u \qquad A^{2}v = 8v$<br>$A^{3}u = AAAu = -u \qquad A^{10}v = 1024v$                             | U, v are eigen vectors of A<br>with corresponding eigenvalues -1, 2.                                                                         |
| $A^{\prime\prime} u = u$                                                                                                      |                                                                                                                                              |

| Definition IF A is an non motion, and vER", then v is an eigenvector for A with eigenvalue $\lambda$ if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Delta \mathbf{v} = \lambda \mathbf{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| How do we find eigenvalues and eigenvectors?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| If $Av = \lambda v$ then $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$ .<br>This is the form $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| We should assume v to is a nonzero will vector for A-AI. (ms an only neppen " and for each vieles )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| This condition allows us to solve for the corresponding eigenvector(s) v.<br>(each eigenvalue), solve (A-21) v = o for the corresponding eigenvector(s) v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| For $A = \begin{bmatrix} 25 & 36 \\ -18 & 26 \end{bmatrix}$ , $A - \lambda I = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} -25 - \lambda & 36 \\ -18 & 26 - \lambda \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{vmatrix} -25 - \lambda & 36 \\ -25 - \lambda & -2 \\ -25 - \lambda & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2$ |
| The characteristic coherenial has two roots $\lambda_1 = -1$ , $\lambda_e = 2$ , (the two eigenvalues).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| To find the corresponding eigenvectors V, V:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| First take $\lambda_1 = -1$ and solve $AV_1 = -V_1$ i.e. $(A+I)V_1 = 0$ $A+I = \begin{bmatrix} -18 & 27 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$ (by inspection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $Or \begin{bmatrix} -24 & 36 \\ -18 & 27 \end{bmatrix} \sim \begin{bmatrix} 1 & -3_2 \\ -18 & 27 \end{bmatrix} \sim \begin{bmatrix} 1 & -3_2 \\ 0 & 0 \end{bmatrix} \text{ has well space } Span \left\{ \begin{bmatrix} 3_2 \\ 1 \end{bmatrix} \right\} \text{ with basis } \begin{bmatrix} 3_2 \\ 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{bmatrix} 0 & -3/2 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} 0 & y \end{bmatrix} = \begin{bmatrix} x & -\frac{3}{2}y \end{bmatrix} = \begin{bmatrix} 0 & y \end{bmatrix} = \begin{bmatrix} 1 & y \end{bmatrix} = \begin{bmatrix} 0 & y \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{bmatrix} 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| We can take v, to be any nonzero scalar multiple of [32]. I'll take v= [3]. So Av= A, v= -v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| For $\lambda_2 = 2$ : Solve $Av_2 = \lambda_2 v_2 = 2v_2$ i.e. $(A - 2I)v_2 = 0$ shere $A - 2I = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix} = \begin{bmatrix} -27 & 36 \\ -18 & 24 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A null vector of $A-21$ ; $v_2 = \begin{pmatrix} x_3 \\ 1 \end{pmatrix}$ or $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ $S_a \begin{bmatrix} -2t & 36 \\ -18 & 24 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ i.e. $Av_2 = \lambda_2 v_2 = 2v_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $v_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ is a basis of $\mathbb{R}^2$ consisting of eigenvectors of A. Check: A is similar D (A = DDD)<br>so $tr A = tr D$ det $A = det D$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| We started with $e_1 = [0]$ , $e_2 = [0]$ as the standard basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| To find A <sup>10</sup> : two approaches. frace of A = tr A = 1, tr D=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Let $B = \begin{bmatrix} V_1 & V_2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$ . Then $AB = A\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -3 & 8 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} = BD$ , $D = \begin{bmatrix} 0 & 2 \end{bmatrix}$ (diagonal matrix)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| so $ABB' = BDB'$ i.e. $A = BDB'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $S_{o} A'' = (BDB')(BDB') - (BDB') = BD''B' = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1024 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} -8183 & 12276 \\ -6129 & 9208 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| To check: det $(A'') = (det A)'' = (-2)'' = 1024$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| dut A = (-25)(26) - (36)(-18) = -2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| det A = (det B)(det D)(det B) = 1*(-2)*1 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Second approach: $A^{0}v_{1} = v_{1}$ , $A^{0}v_{2} = 1024v_{2}$ $v_{1} = \begin{bmatrix} 3\\2 \end{bmatrix} = 3e_{1} + 2e_{2}$ $\Rightarrow e_{1} = 3v_{1} - 2v_{2} = 5\lfloor 2 \rfloor - 2\lfloor 3 \rfloor - \lfloor 0 \rfloor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $V_{2}^{*} \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 4e_{1} + 5e_{2} \qquad e_{2}^{*} = -4[z_{1} + 5(z_{2} + 5(z_{1} + 5(z_{2} + 5$ |
| $A^{10}_{4} - A^{10}_{4}(3y - 2y) = 3.4 - 2 \times 1024 y = 3 \begin{bmatrix} 3 \\ 3 \end{bmatrix} - 2048 \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -8183 \\ -6138 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $A^{10}_{0} = A^{10} \left(-4 y + 3 y\right) = A y + 3 x \left[024 y = -4 \left[3\right] + 3072 \left[4\right] = \left[12276\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nez-n ( n 2) [v, + 5 noci z 1 [2] 2008]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A <sup>10</sup> = [-8183 12276] A and D are similar integrated basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Eq. diagonalize the matrix $A = \begin{bmatrix} t & -1 & i \\ 2 & i & 2 \end{bmatrix}$ dot $A = \begin{bmatrix} t & -1 & i \\ 2 & -1 & 2 \end{bmatrix} = \begin{bmatrix} t & -1 & i \\ 2 & -1 & 2 \end{bmatrix} = \begin{bmatrix} t & -1 & i \\ 2 & -1 & 2 \end{bmatrix}$                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First compute the characteristic polynomial det $(A - \lambda I) = \begin{vmatrix} 1 & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix}$ |
| $= [\lambda^2 - 5\lambda + 6](3 - \lambda) = (\lambda - 2)(\lambda - 3)(3 - \lambda) = -(\lambda - 2)(\lambda - 3)^2 \text{ has roots } 2, 3, 3 \text{ (the eigenvalues of } A).$                                                                                                                                                                                                                                                                                                                                                                   |
| Find eigenvector $v_i$ for $\lambda_i = 2$ : solve $(A - \lambda_i I)v_i = 0$ i.e. $\begin{bmatrix} 2 & -1 & 2 \\ 2 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ , $v_i = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 7$ $Av_i = 2v_i$ .                                                                                                                                                                                                                              |
| Find eigenvectors $v_2, v_3$ for $\lambda_2 = \lambda_3 = 3$ : solve $(A - 3I) v = 0$ i.e. $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \end{bmatrix} \begin{bmatrix} v \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ . Take $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ , $v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ .                                                                                                                                                                                                           |
| Form the matrix $B = \begin{bmatrix} v_1 & v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ whose almost are the eigenvectors. $\begin{pmatrix} v_1, v_2, v_3 \\ v_1, v_2, v_3 \end{pmatrix}$ is our basis of eigenvectors. ( $v_1, v_2, v_3$ is our basis of eigenvectors)                                                                                                                                                                                                                            |
| Then $AB = BD$ where $D = \begin{bmatrix} \partial_1 & \partial_2 & \partial_1 \\ \partial_1 & \partial_2 & \partial_3 \end{bmatrix} = \begin{bmatrix} \partial_1 & \partial_2 & \partial_1 \\ \partial_1 & \partial_2 & \partial_3 \end{bmatrix}$<br>i.e. $ABB = BDB^{*}$ . We have diagonalized A.                                                                                                                                                                                                                                                |
| $AB = A\left[\frac{v_1}{v_2} \right] = \left[Av_1 \left Av_2\right Av_3\right] = \left[2v_1 \left 3v_2\right 3v_3\right] = \left(\frac{v_1}{v_2} \left v_3\right \right) \left[\frac{2}{3}\right] = BD$                                                                                                                                                                                                                                                                                                                                             |
| Check: $trA \stackrel{?}{=} trD$ , $detA \stackrel{?}{=} detD$<br>$8 = 8$ , $18 = 18$ , $18^3$ has an eigenvector v, with eigenvalue $\lambda = 2$<br>$v_i$ and an eigenspace Span $\{v_k, v_s\}$ with eigenvalue 3.                                                                                                                                                                                                                                                                                                                                |
| x-y+z=0 (Span {V2, V3})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| •                                                                                                                                                                                                                                                                                                                                              | The  | •             | eige     | ms         | pac     | e-        |                 | er i      | . )              | , .           | t                         | Ŝ, | •   | Nu | l   | (4  | <i>f</i> – | λI   | :) | 2        |                  | ξa<br>5 | <u></u>       | eie      | zen v    | ect | prs<br>p - | <br>       | jowi | نم<br>م. | e          | ige<br>S. | nval<br>3 | luq   | κ | - 3<br>- 3 | • | · ·   | • | • | • •  | • | • | • |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|----------|------------|---------|-----------|-----------------|-----------|------------------|---------------|---------------------------|----|-----|----|-----|-----|------------|------|----|----------|------------------|---------|---------------|----------|----------|-----|------------|------------|------|----------|------------|-----------|-----------|-------|---|------------|---|-------|---|---|------|---|---|---|
| $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ les a single eigenspace $\mathbb{R}^3$ with eigenvalue 5.                                                                                                                                                                                                                  |      |               |          |            |         |           |                 |           |                  |               |                           |    |     |    | •   | •   |            |      |    |          |                  |         |               |          |          |     |            |            |      |          |            |           |           |       |   |            |   |       |   |   |      |   |   |   |
| Actuelly, we don't necessarily have a basis of eigenvectors.<br>Consider $A = \begin{bmatrix} -7 & 16 \\ -4 & q \end{bmatrix}$ .<br>Find the characteristic polynomial det $(A - \lambda I) = \begin{bmatrix} -7 - \lambda & 16 \\ -4 & q - 1 \end{bmatrix} = (-7 - \lambda)(q - \lambda) + (64 = \lambda^2 - 2\lambda + 1) = (\lambda - 1)^2$ |      |               |          |            |         |           |                 |           |                  |               |                           |    |     |    |     | •   |            |      |    |          |                  |         |               |          |          |     |            |            |      |          |            |           |           |       |   |            |   |       |   |   |      |   |   |   |
| •                                                                                                                                                                                                                                                                                                                                              | Lor  | rd<br>v<br>ok | rhi<br>J | ich<br>for | h<br>ei | as<br>gls | ~ac<br>n<br>n√e | eri<br>ot | (ST)<br>5<br>145 | ις<br>Ι,<br>: | ۲ <sup>و</sup><br>1.<br>( | Á. | - 1 |    | √ = | - 0 |            | i.e. |    | -8<br>-4 | -<br>- 16<br>- 8 | ][      | - <br>x<br>y] | 4<br>= [ | 9-<br>0] |     |            | Tak        | e V  | ;=       | [2]<br>[2] | •         | •         | · · · |   |            | • | · · · | • | • | · ·  | • | • | • |
| •                                                                                                                                                                                                                                                                                                                                              | · ·  | •             | •        | •          | · ·     | •         | •               | • •       | •••              | •             | •                         | •  | •   | •  | •   | •   | ••••       | •    | •  | •        | •                | •••     | •             | •        | • •      | •   | •          | · ·        | •    | •        | · ·        | •         | •         | · ·   | • | •          | • | · ·   | • | • | •••• | • | • | • |
| •                                                                                                                                                                                                                                                                                                                                              | •••  | •             | •        | 0          | 0 0     | 0         | 0               | • •       | • •              |               | 0                         | •  | •   | •  | •   |     | • •        | •    | 0  | •        | 0                | • •     | 0             |          | • •      |     |            | 0 0<br>0 0 |      | •        |            | •         | •         |       | • | 0          | • | • •   | • | 0 | • •  |   | • | • |
| •                                                                                                                                                                                                                                                                                                                                              | · ·  | •             | •        | •          | ••••    | •         | •               | •         | • •              | •             | •                         | •  | •   | •  | •   | •   | ••••       | •    | •  | •        | •                | · ·     | •             | •        | · ·      | •   | •          | ••••       | •    | •        |            | •         | •         | ••••  | • | •          | • | · ·   | • | • | •••• | • | • | • |
| •                                                                                                                                                                                                                                                                                                                                              | •••• | •             | •        | •          | • •     | •         | •               | •         | • •              |               | •                         | •  | •   | •  | •   |     | • •        | •    | •  |          | •                | • •     | •             | •        | • •      | •   | •          | •••        | •    | •        |            | •         |           |       | • | •          | • | • •   |   | • | • •  | • | • | • |
| •                                                                                                                                                                                                                                                                                                                                              | • •  | •             | •        |            | • •     | •         |                 |           | • •              |               | •                         | •  | •   | •  |     |     | • •        |      |    |          | •                | • •     | •             |          | • •      | •   | •          | • •        | •    |          |            | •         |           |       |   | •          |   |       |   | • | • •  |   |   | • |
| •                                                                                                                                                                                                                                                                                                                                              | • •  |               | •        | •          |         |           | •               |           | • •              |               |                           | •  | •   | •  | •   | •   | • •        |      |    | •        | •                |         |               |          | • •      |     |            | • •        |      | •        |            |           |           |       |   | •          | • | • •   |   |   | • •  |   |   | • |