

Every $2x^2$ real matrix A represents a linear transformation T : $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ which is the matrix transformation $T_A \begin{bmatrix} x \\ y \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}$. \mathcal{L} . $\begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} =$ $\begin{bmatrix} -y \\ x \end{bmatrix}$ T_A is a counter-clockwise 90° rotation about the origin in \mathbb{R}^2 :
COUP If $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ T_A is a counter-clockwrise 8° rotation door the
 $T_A[\begin{array}{c} 1 \\ 0 \end{array}] = [\begin{array}{cc} 0 \\ 1 \end{array}] = [\begin{array}{cc} 0 \\ 0 \end{array}] = [\begin{array}{cc} 0 \\ 1 \end{array}] = [\begin{array}{cc} 0 \\ 1 \end{array}]$ $\begin{array}{rcl}\n\frac{1}{x} & 2x & 2 \text{ real matrix A} & \text{repri}\n\\ \n\frac{1}{x} & \text{free.} & \text{free.} & \text{free.} \\
\hline\n\begin{bmatrix}\n0 & -1 \\
0 & 0\n\end{bmatrix}\n\begin{bmatrix}\nx \\
y\n\end{bmatrix} = \begin{bmatrix}\n-1 \\
x\n\end{bmatrix} + \begin{bmatrix}\n0 \\
y\n\end{bmatrix} = \begin{bmatrix}\n-1 \\
x\n\end{bmatrix} + \begin{bmatrix}\n0 \\
y\n\end{bmatrix} = \begin{bmatrix}\n-1 \\
y\n\end{bmatrix} \\
\hline\n\begin{bmatrix}\n\$ $\frac{1}{\left[\frac{a_{n}}{a}\right]}$ $\frac{1}{\left[\frac{a_{n}}{b}\right]}$ $\frac{1}{\left[\frac{a_{n}}{b}\right]}$ $\frac{1}{\left[\frac{a_{n}}{b}\right]}$ $\frac{1}{\left[\frac{a_{n}}{b}\right]}$ $\frac{1}{\left[\frac{a_{n}}{b}\right]}$ $\frac{1}{\left[\frac{a_{n}}{b}\right]}$ $\mathcal{T}_A[f_1^{\sigma}] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ 2 real metrix A represents a linear transformation T_A : $R^2 \rightarrow R^2$ which
 $\mathcal{A} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $D = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$
Domain- R² Range R² $T(\frac{x}{y}) = \int_{0}^{a} f(y) dx$ -L Lly! Ly!
A counterclackwise rotation by angle θ about the origin in R² represented by the matrix $R_{\theta} = \begin{bmatrix} log(\theta) & -Sind^{\theta} \\ Sind\theta & log(\theta) \end{bmatrix}$ θ $R_{\theta} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$ $\begin{bmatrix} \cos \theta \\ \cos \theta \end{bmatrix}$ represented by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ = $\begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$ /int, cost $cos(4+\beta) = cos \alpha cos \beta - sin \alpha sin \beta$ $\sin(\alpha+\beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$ R_{β} = $R_{\alpha+\beta}$ (cs β -sin β cos α -sin α) = $(\cos(\alpha+\beta))$ -sin $(\alpha+\beta)$
 R_{β} = $R_{\alpha+\beta}$ $[\sin \beta$ cos β $]$ sin α = $\cos \alpha$ = $[\sin(\alpha+\beta)]$ cos $(\alpha+\beta)$ = I $[s_1^3] = \begin{bmatrix} s_1^3 \end{bmatrix}$

Wise rotation by angle θ about the origin in \mathbb{R}^2 represented
 $\begin{bmatrix} 2650 & -5i.0 \\ -1 & 1 \end{bmatrix}$
 $\begin{bmatrix} 65 \\ 1 \end{bmatrix}$

is a reflection about the line $y = \pi$ E_3 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$ represents a reflection $x - \alpha x is$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ represents a shear linear fransformation: it takes 0 to 0 and it takes lines.
To lines. It may distort distances and angles. Every matrix transformation

Example of a "constitute parametic fransformation $\mathbb{R}^2 \rightarrow \mathbb{R}^2$: somewhat ingeneric transformation $R^2 \rightarrow R^2$

(1)

(6)

for every be B there exists $a \in A$ such that $f(a)$

for every be B there exists $a \in A$ such that $f(a)$ $Bey^{\text{linear}} + \text{a}$ usformation $T: \mathbb{R}^m \rightarrow \mathbb{R}^n$ takes $0 \rightarrow 0$, $m \rightarrow \mathbb{R}$ takes $0 + 0,$ ⁸ [] takes lines to lines or points takes likes to likes or points
A fanction f: $X \rightarrow B$ is one-to-one if $f(x) = f(y)$ implies $x=y$. (No two inputs give the same F is onto if for every be B there exists a EA such that fla)= b Ben linear transformation $T: \mathbb{R}^m \rightarrow \mathbb{R}^n$ takes (ines to lines or points

and \mathbb{R}^n . The state of \mathbb{R}^n takes (ines to lines or points

and \mathbb{R}^n . The every be B there exists $a \in A$ such that $f(a) =$ σ replies e g . $A = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$ defines (a linear transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^3$, $T_A([r]_J) = A[r]_J^x$) = $\begin{bmatrix} 2\pi + g \\ 6\pi + 3g \end{bmatrix}$. This function is not one to one e. g $\mathcal{T}_A([\cdot])$ = $\mathcal{T}_A([\cdot \, \cdot \, \cdot])$ = $\begin{pmatrix} 3 \\ 9 \end{pmatrix}$ And T_A is not onto R^2 ; it maps onto the line y= 3x $\frac{1}{2}$ (ii) $\frac{1}{2}$ (iii) $\frac{1}{2}$ (iii) $\frac{1}{2}$ (iii) $\frac{1}{2}$ $\begin{array}{lll} \text{m/s} & \text{m/s} & \text{m/s} \\ \text{m/s} & \text{m/s} & \text{m/s} \\ \text{m/s} & \text{m/s} & \text{m/s} \end{array} \qquad \qquad \begin{array}{lll} \text{m/s} & \text{m/s} & \text{m/s} \\ \text{m/s} & \text{m/s} & \text{m/s} \end{array} \qquad \qquad \begin{array}{lll} \text{m/s} & \text{m/s} & \text{m/s} \\ \text{m/s} & \text{m/s} & \text{m/s} & \text{m/s} \end{array}$ $\sqrt{4}T_{A}^{0}$ = $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ = $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ l_D l

eg the plane 5x+3y +7z=pris spanned $\begin{array}{r|l|l}\n\hline\n0 & 5x + 3y + 7z = p - iz \text{ spanned by } & \begin{bmatrix} 2x \\ 6y \end{bmatrix}, & \begin{bmatrix} 3x \\ 6y \end{bmatrix}, & \begin{bmatrix} 3x \\ 4y \end{bmatrix} \\
\hline\n\end{array}$

The $\begin{array}{r|l|l}\n\hline\n5 & -y \\
\hline\n0 & -y \\
\hline\n0 & -y\n\end{array}$

Separa the plane $5x + 3y + 7z = 0$

Set of vectors $S \subset \math$ $= v_{1}$ $\begin{picture}(120,140)(-0,0) \put(0,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,$ $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -5 \end{bmatrix}$ $5x + 3y + 7z = p - is$ ⑧ \mathcal{Q} $\left|\frac{\circ}{55}\right|$ = v
Z v_1 , v_2 , v_3 span the plane $5x+3y+7z=0$ Given any set of vectors $S \subset \mathbb{R}$, the span of S (denoted any set of vectors $S \subseteq \mathbb{R}^3$, the span of S (denoted span $S = \frac{S}{2}$ linear combinations of vectors in $S_5^>$) is either $2 \cdot 3$ or a line through 2 , or a plane through 2 , or \mathbb{R}^3 . Friday : Quiz 5 on Span. Forday: cours in fronc.
The image of T is $\S^{T\mu}_{A}$: $Y\in$ domain of T_{A} is the span of the columns of A.

 E_g A = $\begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ defines a linear transformation T_A $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$ (here \mathbb{R}^3 consists of 3x1 colemn vectors) $T_A(v) = A \begin{bmatrix} \frac{9}{2} \\ \frac{9}{2} \end{bmatrix} =$ $\begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ *
2
7 = x
2 $V = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
 $= \begin{bmatrix} x - y \\ y \\ z \end{bmatrix}$ The image of T_A is $\{T_A \vee : \vee \in \mathbb{R}^3\} = \{T_{A+2} \vee ... \vee T_{A+3} \}$ y , $\begin{pmatrix} 4-2 \\ -1 \\ -1 \\ -1 \end{pmatrix}$: $\begin{pmatrix} 4 & 2 \\ -1 & 3 \end{pmatrix}$
 $\begin{pmatrix} 4 & -4 \\ -1 & 3 \end{pmatrix}$ The image of Ta is the span of
the columns of A $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (a linear combination of the columns) T_A is not onto R^3 . $x = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

The image of Ta is f_R is $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. $x \in \mathbb{R}^3$

The image of Ta is the span of
 f_R is $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$
 f_R is $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ of $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ of $\begin{bmatrix} 2 \\$ because the colums of ^A Any 3 linearly independent vectors in IR will span all of \mathbb{R}^3 (their span is \mathbb{R}^3).

Another example : $B=\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ defines a linear framsformation $T_g : \mathbb{R}^3$ $\Rightarrow \mathbb{R}^3$. Once again T_g is not onto \mathbb{R}^3 its image Her example: $B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \end{bmatrix}$ defines a line
Once again .
Si the span .
Si the plane of the columns of B i.e. is the span or the fluorigh the origin in $y = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ $\frac{1}{2}$
 $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ = $\begin{bmatrix} 3 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ has three linearly independent columns spanning \mathbb{R}^3
i.e. the image of \mathbb{T}_c is \mathbb{R}^3 i.e. \mathbb{T}_c is onto i.e. the image of T_c is \mathbb{R}^3 i.e. T_c is onto \mathbb{R}^3 . Rock : If a_{n-1}^{3} + b_{n-1}^{3} + c_{n-1}^{3} + c_{n-1}^{3} = $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ = $\begin{bmatrix} 3a-b-c \\ -a+2b-c \\ -a-b+2c \end{bmatrix}$

