Linear Algebra

Book 3

Expanding along the third row, det A = 0 - 3 2 11 7 + 0 - 4 2 30 1 63 $-3\left(\begin{vmatrix} 11 & 7 \\ 3 & 5 \end{vmatrix} + 41 \begin{vmatrix} 2 & 11 \\ 1 & 3 \end{vmatrix} \right) - 4 \left(\begin{vmatrix} 4 & 11 \\ 6 & 3 \end{vmatrix} - 3 \begin{vmatrix} 2 & 11 \\ 1 & 3 \end{vmatrix} \right)$ = -3 (5-21 +41(6-11)) -4 (12-66-3(6-11)) (I checked this by computer,) Wed. Nov. 8 Test. Come a few minutes early if you can No Quiz Fri. Nov 10, 17. No Quiz tri. Nov 10, 17.

I am away Fri. Nov. 17, Mon Nov 20. lectures for those two days will be prerecorded - check the websites.

Recall: if A = [a b] then det A = ad-bc. A is invertible iff det A + 0, in which case A = ad-bc [-c a].

This formula has a generalization for nxn matrices (Cramer's Rule). This is useful athough not the most computationally efficient way to compute A' if n is large.

On the z you had to find A' where A is 4x4. The entries of A' have a common denominator 6 = det A.

Check: $AA = \frac{1}{57} \begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 3 \\ 7 & 6 & 4 \end{bmatrix} \begin{bmatrix} -14 & 22 & 1 \\ 13 & -51 & 7 \\ 5 & 8 & -3 \end{bmatrix} = \frac{1}{37} \begin{bmatrix} 37 & 0 & 0 \\ 0 & 37 & 0 \\ 0 & 0 & 37 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

If A is a square matrix with integer entries and det A = ±1, then A' also has integer entries.

Find a constant a such that the following matrix has determinant zero: $A = \begin{bmatrix} 5 & 3 & 6 \\ 1 & 2 & 4 \\ \hline 7 & 7 & c \\ \hline \end{pmatrix} \begin{array}{c} u = (5 & 3 & 6) \\ \leftarrow & V = (1 & 2 & 4) \\ \hline \end{array}$ If c=14 then A has linearly dependent rows so det A = 0 in their case (A is not invertible) If C+14 then A has linearly independent rows then w + (77 H)
and (001) is a linear combination of 4, v, w i.e. Row A contains u, v, (001). $\det \begin{bmatrix} \frac{5}{2} & \frac{3}{4} & \frac{6}{4} \\ 0 & 0 & 1 \end{bmatrix} = 7 \times | 2 + 7 \neq 0$ If A = [-25 36], then A'0 = 2V [a o] [c o] = [ac o] If D= [02], then D' $\begin{vmatrix} -25 & 36 \\ -18 & 26 \end{vmatrix} = -25 \times 26 + 36 \times 18 = -2$ Basis er=[0], ez=[1] standard basis [x] = xe, + yez There is a besis/ {u, v3 for R such that Au = -u, Av = 2v $A^2v = AAv = A(2v) = 2Av =$ Au = AAA...Av u, v are eigenvectors of A with corresponding eigenvalues -1, 2. A²v= 8v Au = AAu = A(u) = -Au = u A" = 1024 v . A3 u = . AAA u = -u

Definition IF A is an non matrix, and vER", then v is an eigenvector for A with eigenvalue & $\Delta v = \lambda v$. How do we find eigenvalues and eigenvectors?

If $Av = \lambda v$ then $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$. We should assume $v \neq 0$ is a nonzero null vector for $A - \lambda I$. This can only happen of This condition allows us to solve for the corresponding eigenvalue λ . Solve for λ ; and for each value λ (each eigenvalue), solve $(A-\lambda I)_{V=0}$ for the corresponding eigenvector(s) V.

for $A = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix}$, $A - \lambda I = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} -25 - \lambda & 36 \\ -18 & 26 - \lambda \end{bmatrix}$

 $\begin{vmatrix} -25 - \lambda & 36 \\ -18 & 26 - \lambda \end{vmatrix} = (-25 - \lambda)(26 - \lambda) + 36 * 18 = \lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2)$

The characteristic polynomial bas two roots $\lambda_1 = -1$, $\lambda_2 = 2$ (the two eigenvalues). To find the correspoinding eigenvectors V_1, V_2 :

First take $\lambda_1 = -1$ and solve $AV_1 = -V_1$ i.e. $(A+I)V_1 = 0$. $A+I = \begin{bmatrix} -24 & 36 \\ -18 & 27 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (by inspection)

Or $\begin{bmatrix} -24 & 36 \\ -18 & 27 \end{bmatrix} \sim \begin{bmatrix} 1 & -3/2 \\ 0 & 0 \end{bmatrix}$ has nucl space $Span\{\begin{bmatrix} 3/2 \\ 1 \end{bmatrix}\}$ with basis $\begin{bmatrix} 3/2 \\ 1 \end{bmatrix}$

 $\begin{bmatrix} 0 & -3/2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad x - \underbrace{\frac{3}{2}} y = 0 \qquad \text{Introduce a parameter } t$ $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{2}t \\ t \end{bmatrix} = t \begin{bmatrix} x \\ 1 \end{bmatrix}$ 0 = 0

We can take v, to be any nonzero scalar multiple of [3/2]. I'll take v,= [3]. So Av,= 1,v,= -v,.

to
$$\lambda = 2$$
: Solve $Av_{+} = h_{v}v_{+} = 2v_{+}$ i.e. $(A-21)v_{+} = 0$ June $A-21 = \begin{bmatrix} 125 & 36 \\ -16 & 24 \end{bmatrix} - \begin{bmatrix} 16 & 0 \\ -16 & 24 \end{bmatrix} = \begin{bmatrix} 16 & 0 \\ -16 & 24 \end{bmatrix} + \begin{bmatrix} 16 & 0 \\ -16 & 24 \end{bmatrix} = \begin{bmatrix} 16 & 0 \\ -16 & 24 \end{bmatrix} + \begin{bmatrix} 16 & 0 \\ -16 & 24 \end{bmatrix} = \begin{bmatrix} 16 & 0 \\ -16 & 24 \end{bmatrix} + \begin{bmatrix} 16 & 0 \\ -16$