

$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$	
f(x,y) = (3x+2y, x-5y) can be represented as a matrix transformation	o n a a a
$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{bmatrix} 3 & 2 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x+2y \\ x - 5y \end{bmatrix}$	
Every linear operator can be expressed as matrix nultiplication	
ty consider solutions of y'+y=0 i.e. fit= a sinx + b cos x	
$f_{q} = constant = constant = h sin x$	
$Df(x) = a\cos x - b\sin x$ $\begin{bmatrix} a \\ b \end{bmatrix}$	
D(rfrsg) = rDf + sDg [b]	
$(rf+sg) = rf'+sg'$ $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 0 \end{bmatrix} \begin{bmatrix} -6 \\ 0 \end{bmatrix} = \begin{bmatrix} -6 \\ 0 \end{bmatrix}$	
$M = \begin{bmatrix} r & \sigma \end{bmatrix}$ $M = \begin{bmatrix} \sigma & \sigma \\ \sigma & -r \end{bmatrix}$	
$\mathcal{M}^{3} = \int_{-1}^{0} \int_{0}^{1} \int_$	
$\mathcal{M}^{4} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	
	• • • •
· · · · · · · · · · · · · · · · · · ·	• • • •

Every 2x2 real matrix A represents a linear transformation T: R2 -> R2 which is the
Every $2x^2$ real matrix A represents a linear transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ which is the matrix transformation $T_A \begin{bmatrix} x \\ y \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}$
eg. [0-'][x] = [-y] TA is a counter-clockwise 90° rotation about the origin in R ² :
$T_{A} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
$\begin{array}{c} \textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Domany R. Kange R. T.
$T_{A}^{f} = I \qquad I \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$
A counterclackwise rotation by angle & about the origin in R ² represented by
A counterclockwise rotation by angle θ about the origin in \mathbb{R}^2 represented by the matrix $\mathbb{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \theta & [\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = \begin{bmatrix} 0 \\ \sin \theta \end{bmatrix} = \begin{bmatrix} 0 \\ \sin \theta \end{bmatrix} = \begin{bmatrix} 0 \\ \cos \theta \end{bmatrix}$
ter en en en en la companya en la co
$\frac{\int \partial f_{1}}{\partial f_{2}} = \frac{\int \partial f_{2}}{\partial f_{2}} = \frac{\partial f_{2}}{\partial$
$\log \beta - \sin \beta \cap \cos \alpha - \sin \alpha \cap \beta \cos(\alpha + \beta) - \sin(\alpha + \beta)$
$R_{\beta}R_{\alpha} = R_{\alpha+\beta} \left[sin \beta \cos \beta \right] \left[sin \alpha \cos \beta \right] = \left[sin \left(\alpha+\beta\right) \right] \cos \left(\alpha+\beta\right) \right]$

Eq. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$ is a reflection about the line y = xa reflection represents represents a slear linear transformation: it takes 0 to 0 and it takes lines to lines. It may distort distances and angles. or points Every matrix transformation

Example of a "some what "generic transformation R2 -> R2 Every linear transformation $T: \mathbb{R}^{m} \to \mathbb{R}^{n}$ takes 0 ± 0 , $\begin{bmatrix} -1\\ 5 \end{bmatrix}$ takes lines to lines or points A function $f: A \to B$ is one-to-one if f(x) = f(y) implies x = y. (No two inputs give the same f is onto if for every be B there exists $a \in A$ such that f(a) = b. eg. $A = \begin{bmatrix} 2 & i \\ 6 & 3 \end{bmatrix}$ bedings a linear transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$, $T_A(\begin{bmatrix} x \\ y \end{bmatrix}) = A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + y \\ 6x + 3y \end{bmatrix}$. This function is not are to one e.g. $T_A(\begin{bmatrix} i \\ y \end{bmatrix}) = T_A(\begin{bmatrix} -i \\ 5 \end{bmatrix}) = \begin{bmatrix} 3 \\ 9 \end{bmatrix}$ And T_A is not onto \mathbb{R}^2 ; it meps onto the line y = 3x $\begin{bmatrix} 0 \\ 7 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $T_{A} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$

The null space of a linear transformation Null $T = \{v : Tv = 0\}$.	(the set of Null
Recall: $To = D$	vectors of T)
$N_{\mathcal{A}} [2] = N_{\mathcal{A}} [T] = \{ [x] : x \in \mathbb{R} \}$	· · · · · · · · · · · · · · · · · · ·
$A \begin{bmatrix} x \\ -2x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	Vecioi.
T is one-to-one iff NulT= { of (the only mill vector is Q).	· · · · · · · · · · · · ·
On the one hand, suppose I is one to one. It is out if T is one-to-	then $V = 0$. one then Nul $T = \{0\}$
Conversely, suppose NtilT = JOZ IF Ty = Tw then T(Y-W) = 14-	= 0 i.e. y = y.
"Span" can be used as a norm or as a verb.	V,, Vk.
"Span" can be used as a norm or as a verb. "Span" can be used as a norm or as a verb. The span of a list of vectors v_1, \dots, v_k is the set of all linear combinations of the span of the vectors $v_1 = \begin{bmatrix} -i \\ -i \end{bmatrix}, \underbrace{v_1 = \begin{bmatrix} 0 \\ -i \end{bmatrix}}_{in R^3}$ is the plane $x + y + z = 0$ in R^3 i.e. the plane $\overline{z} = -\overline{x} \cdot y$. or $[\underbrace{v_1 = v_2}_{i = 1 - 1}] = v_2$ or $[\underbrace{v_1 = v_2}_{i = 1 - 1}] = v_2$ is in R^3	say that the
in \mathbb{R}^3 of $\mathbb{Z}^2 - X^2 Y$.	the plane x+y+2=0.
	x+y+z=0.

og the plane 5x + 3y + 7z = p is spanned by $\begin{bmatrix} -3\\5\\6 \end{bmatrix}$, $\begin{bmatrix} 7\\6\\-5 \end{bmatrix}$ $\left|\frac{5}{5}\right| = v_1$ V, V2, V3 span the plane 5x+3y+72=0. Friday: Quite 5 on Span. is ξT_V : ve domain of $T_A \xi$ is the span of the columns of The image of

Eq. $A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ defines a linear transformation $T_A : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ $T_{A}(v) = A \begin{bmatrix} y \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ y \\ z \end{bmatrix} = \begin{bmatrix} y - z \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ y \\ z \end{bmatrix} = \begin{bmatrix} y - z \\ -\pi + z \\ x - y \end{bmatrix}$ The image of T_A is $\{T_A \vee : \vee \in \mathbb{R}^3\} = \{ \begin{bmatrix} y-z \\ -x+z \\ x-y \end{bmatrix} : T_Y, z \in \mathbb{R} \}$ The image of TA is the span of the columns of A $\mathcal{K} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + \mathcal{Y} \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} + \mathcal{Z} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ $\left(\begin{array}{c} 0\\ -1\\ 1 \end{array} \right)$ (a linear combination of the columns of A) T_A is not onto R³. This happens because the columns of A fail to span R³. 0 Xty+z=0 (-r) Any 3 linearly independent vectors in \mathbb{R}^3 will span all of \mathbb{R}^3 (their span is \mathbb{R}^3).

Austier example: B=[-12-1] defines a linear fransformation To: R3 R3 Once again To is not onto R³; its image is the span of the columns of B ic. the plane #+y+2=0 through the origin in R³ has three linearly independent clems sparning R³ i.e. the image of T_c is R³ i.e. T_c is onto R³. Check: If $a \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix} + b \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix} + c \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3a-b-c \\ -a+2b-c \\ -a-b+2d \end{bmatrix}$

$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ has } \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} : x, y \in \mathbb{R} \right\} \text{ as the}$	span of its columns. To is not onto.
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
The span of the rows of A is { [a, 2a, b]	$: a, b \in \mathbb{R}$ }
A subspace of R" generalizes the notion of §03 line origin, etc. up to and including R" itself. The dimension Given any set SCR" (any set of vectors) then spa	e through the origin, plane windy me on of such a subspace is 0,1,2,3,, n. nS = { linear combinations of vectors ins? us linear system in n variables.
origin, etc. up to and motion is the space of vectors) then space of \mathbb{R}^n . Another way is to solve any homogeneous the latter case is the same thing as finding the null In particular if A is an mxn matrix then NulA = $\{\underline{v} \in I\}$	space of a linear transformation. $\mathbb{R}^n : A \underline{v} = 0$ is a subspace of \mathbb{R}^n . $\mathbb{L}_{\mathbb{R}^m}^m$

<i>μ</i> =	Eg	a two an E		2-d vay	ime B. [-1] 0]	3		/	zulo : 7				•	• •	1		pl Afti		e-th ativ	'rong 'ely	j,	Ha U	ני ג	{] E 1	R		1 · 3 ·	-1]	ין ד דין	ia = 0 {} {	either R}	
· ·	ġ.	a	1	- da	nen	¥ جنم	ral	Su	bap	A CC	of	R	3. 3.	(i.e	i a	li	ine	the	ion C	zh	fi	he	orig	qin)	· ·	•	· ·	•••	•	•••	· ·	· · ·	••••
· ·		••••	• •		• •	• •		• •	27	• •				• •	• •	• •			• •	U=	 . .	Nul		1' 1' 2 4_]	₹.[×9]	ER?	ľ	1 1 2 4) (X - 	z [0	;]{
•••	•		• •			/) . 				• •	•			•	• •	•		•	• •	••••		•	ie.	5 я+	• y +	2 =	= 0 = 0		
• •	•	• •	· · ·			[-3]		• •	•	• •			•	• •	•		•	•	• •	•) i 1 , 1 2	4]	~ [' 0		1 ~~	 [10	∕ × ⊀ -2 ٦	+ 24+	- 1 2 *	-	eriable z varia for y,7	• •
• •				0				•••	•	• •			•	• •	•		•	•	• •	•	• •	Ú=	N	l [o	0-2	.]	L Ø 1	. ,	r,y a	re l	asic N	oriable	s;
	*			•	· ·				•				•		•		•	•	• •	•	· ·	2:	=t	wh	ere	t	3 a	rbita	213	is Sol	a th	82 Varia 01 y,7	61e. X
	•			•				• •					•		•		•	•		•		y= x=	= -31 = 21										
				•											•			•			Ŭ	1 =	5	2t -3t	2 1	t e R	2 =	: 3	+ -3] :	te	R{	
0 0	0			0				0 0						0 0	0			0	0 0					- -	0 0				21.		0 0		
	•								•																							· · ·	

The solutions of y"+ y=0 form a vector space {y: y"+ y=0} = span { sin x, cosx}
$= \{a \sin x + b \cos x : a, b \in \mathbb{R} \}$ Here $Ty = y'' + y$ is a function mapping one function to another. = Nul T.
T: {functions } -> {functions }
T is a linear transformation since $T(ay, + bg_e) = qTy, + bTy_2$.
Let T: V-> W be a linear transformation. T is one-to-one iff NulT=0. T is onto iff every we W has the form w=Tv for some veV. T is onto iff every we W has the form w=Tv for some veV. T is bijective iff it is both one-to-one and outo. Such functions T have an inverse T'. T is bijective iff it is both one-to-one and outo. Such functions T have an inverse T'. T must also be linear. T = R ² - R ²
T is bijective iff it is both one to one and outo. Such functions I have un involu
T must also de linear.
Eq. consider the $2\kappa^2$ matrix $A = \begin{bmatrix} 8 5 \end{bmatrix}$ which equivalent a (mean quantum A in A
Eq. consider the 2x2 matrix A= [85] which equisiting a menu from a