

Example: Find all (x,y) such that 5x+3y=25 and 2x-7y=-31.	
4 2x-7y=-31 We are asking for the simultaneous system of two equations in two	solution of a mknowns & and y.
$ \begin{array}{c} $	2×3-5(-7) = 6+35
$5x + 3y - 25$ $4i y = 205$ $2x(i) - 5x(2) = (3)$ $4i y = 5$ $(4) = (3) \div 4i$	$2 \times 25 - 5 \times (-31) = 50 + 155 = 205$
Solution: $(x,y) = (2,5)$ is the $5x + 15 = 25$ unique solution. $5x = 10$	
Example: Find all (r.y) Such that 5x+ 3y=25 and 10x+6y=17.	· · · · · · · · · · · · · · · · · · ·
This system is inconsistent: if has	no solution.
$5_{x} + 3_{y} = 25$ (1) $10_{x} + 6_{y} = 17$ (2)	· · · · · · · · · · · · · ·
$0 = 33 2 \times (i) - (2)$	
5x + 3y = 25	
10x + 6y = 17	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	

Example: Find all (x,y) such that 5x+3y = 25 and 15	$\delta_{\mathbf{x}} + 9 = 75.$
This system unique:	is consistent but the solution is not there are infinitely many solutions.
	5x + 3y = 25 (1) 15x + 9y = 75 (2)
	0 = 0 (3) = $3x(r) - (2)$
$5_{x-x-3y} = 25$	
15x + 9y = 75	· · · · · · · · · · · · · · · · · · ·
A system of m linear equations in n unknowns has the form $\int q_{11}x_{1} + q_{12}x_{2} + \cdots + q_{m}x_{m} = b_{1}$ $\int q_{21}x_{1} + q_{22}x_{2} + \cdots + q_{2n}x_{m} = b_{2}$	⊷
$\begin{cases} a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \\ (a_{ij}, b_i - constants for i \in \{1, \cdots, m\}, j = \{1, 2, \cdots, m\}; \end{cases}$	x.,, x variables representing unknowns).
Tapically, when m=n we can expect a mirgue solution; m>n no solution (inconsis	tent systen);
more than one sould on	

Example with m=n=3: a Kim buys a bag of 26 cans of tim	system of 3 linear items weighing 226 a. (\$ 1 each, 502	equations in 3 oz. costi-g #34. each)	mknowns. The items included	
apples loaves of bread How many of each item	(\$\$ 1 each, soe (\$ 3 each, 20 of did Kim brug?	each) (say x cans of th	ma, y apples, z loave	s of bread)
5x + 3y + 20z = 226 x + y + 3z = 34	(2) (3)		· · · · · · · · · · ·	
2z = 8 z = 4 x + y = 22 5x + 3x = 146	(3) - (1) = (4) (6) = (8) - (5) (7)			- 5x22 = 196 - 110 = 36
3y = 36 y = 12	$(7) - 5 \times (6) = (8)$ $(9) = (8) \div 3$ (-2) = (6) - 18	>		
r = 6 The unique solution of -	(10) = (6) - (7 this system is (x	,y,≥)= (10,12,4) 0.1	(Kim bought and 4 loa	10 cans of time, 12 apples, res of bread.)
Check! that all three	equations are satisf	nea.		
				· · · · · · · · · · · · · · · · · · ·

Matrix formulation of linear systems	
x + y + z = 26	
5x + 8y + 20z = 226 5x + 8y + 20z = 226	
x + y + 3z = 34	$\sum_{i=1}^{n} 2i = 226 - 130$
$\begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1$	226 - 5 × 26 - C-6 150 = 96
$\begin{bmatrix} 5 & 8 & 20 \\ 1 & 1 & 3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 8 & 20 \\ 0 & 2 \\ 8 \end{bmatrix} \begin{bmatrix} 226 \\ 0 \\ 0 \\ 1 \\ 4 \end{bmatrix} \begin{bmatrix} 0 \\ 226 \\ 0 \\ 0 \\ 1 \\ 4 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 4 \\ 0 \\ 0 \\ 1 \\ 4 \end{bmatrix}$	
subtract divide row 3 Subbract 5 times divide row 2	
now i from by 2 row / from now 2 by 3	
f = 10	
$\sim 0 10 12 \sim 0 10 12 \sim 0 10 12 = 12$	
2 = 4	
now 3 from now 2 from now 1 from now 1	
1823 from 1822 from 1821 from 182	· · · · · · · · · · · ·
row 3 from row 2 from row 1 From low Find all (x 12) such that 5x+ 3y=25 and 2x-7y=-31	· · · · · · · · · · · · · · · · · · ·
For row 1 From row 1 Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. $-7-\frac{6}{5}$	$\frac{35}{5}$ $\frac{6}{5}$ $\frac{2}{5}$ $\frac{41}{5}$
For row 1 From row 1 Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. $\begin{bmatrix} 5 & 3 & 25 & 25 & 2 & 2 & -3 & -3 & 2 & -3 & -3 & 2 & -3 & -3 & 2 & -3 & -3 & -3 & 2 & -3 &$	$=\frac{35}{5}-\frac{6}{5}=-\frac{41}{5}$ 31-10=-41
For row 2 from row 2 from row 1 Example: Find all (x, y) such that $5x+3y=25$ and $2x-7y=-31$. $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -11 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -7 & -31 \\ 0 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & -7 & -7 & -31 \\ 0 & 1 & 5 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & -7 & -7 & -31 \\ 0 & 1 & 5 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 5 & 5 \\ 0 & 1 & 5 & 5 & 5 \\ 0 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 & 5 \\ 0 & 1 & 1 & 5 & 5 \\ 0 & 1 & 1 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \rightarrow $	$\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31 - 10}{5} = -\frac{41}{5}$
For row 1 For row 1 From row 1 Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. x = y $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -7 - \frac{6}{5}$ divide row 1 subtrat 2 times row 2 multiply row 2 subtract $\frac{2}{5}$ times row 2 by 5 from row 2 by $-\frac{5}{41}$ from row 1	$\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$
For row 2 from row 1 For row 1 Example: Find all (x, y) such that $5x+3y=25$ and $2x-7y=-31$. $x = \frac{1}{2} \begin{bmatrix} 25 \\ 2 \\ -7 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 35 \\ -7 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 35 \\ -7 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 2 \\ -7 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 2 \\ -7 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 35 \\ -7 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ -41 \\ -41 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 35 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -7 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ -7 \\ -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 2 \\ -7 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 35 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ -7 \\ -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 35 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ -7 \\ -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 35 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ -7 \\ -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -7 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ $	$\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31 - 10}{5} = -\frac{41}{5}$
row 3 from row 2 from row 1 Fixample: Find all (x, y) such that $5x+3y=25$ and $2x-7y=-31$. $\begin{bmatrix} 5 & 3 \\ 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 3y \\ 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 3y \\ 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 3y \\ 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 3y \\ 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 3y \\ 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 3y \\ 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 3y \\ 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 2 \\ -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 2 \\ 5 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 2 \\ 5 \\ -3i \end{bmatrix} = \begin{bmatrix} 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 2 \\ -7 \\ -3i \end{bmatrix} = \begin{bmatrix} 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 2 \\ -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 2 \\ -7 \\ -3i \end{bmatrix} = \begin{bmatrix} 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 2 \\ -7 \\ -3i \end{bmatrix} = \begin{bmatrix} 2 & -7 \\ -3i \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & -4i \\ -4i \end{bmatrix} \sim \begin{bmatrix} 1 & 3y \\ 0 & 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 & -7 \\ 0 & 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 & -7 \\ -3i \end{bmatrix}$	$\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31 - 10}{5} = -\frac{41}{5}$
$\begin{array}{c} \text{Form row 1} \\ \text{From row 2} & \text{from row 1} \\ \hline \text{From row 2} & \text{from row 1} \\ \hline \text{From row 2} & \text{from row 1} \\ \hline \text{From row 2} & \text{from row 1} \\ \hline \text{From row 2} & \text{from row 1} \\ \hline \text{From row 2} & \text{from row 2} \\ \hline \text{from row 1} & \text{subtract 2 fines row 2} \\ \text{from row 2} & \text{by } -\frac{7}{11} \\ \hline \text{from row 1} \\ \text{Solution : } (x, y) = (2, 5) \\ \hline \text{Attermotively :} \\ \begin{bmatrix} 5 & 3 \\ 2 \\ -7 \\ -3 \end{bmatrix} \sim \begin{bmatrix} 2 & -7 \\ 2 \\ -7 \\ -3 \\ -7 \\ -5 \\ -7 \\ -5 \\ -7 \\ -7 \\ -5 \\ -7 \\ -7$	$\frac{1}{2} - \frac{35}{5} - \frac{6}{5} - \frac{-4}{5}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{4}{5}$

Even better: $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 17 & 87 \\ 2 & -7 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 17 & 87 \\ 0 & -41 & -205 \end{bmatrix} \sim \begin{bmatrix} 1 & 17 & 87 \\ 0 & 1 & 5 \end{bmatrix}$	-31-2×87
from row 1 row 1 from row 2 by -41	5 - 31 - 174 =205
	· · · · · · · · · ·
Subtract 17 fines $row 2$ Check $\frac{5 \times 2}{2 \times 2} + \frac{5 \times 5}{2 \times 5} = 25$	
Elementary our operations: (i) add a multiple of one row to another	· · · · · · · · · ·
(iii) interchange two rows	· · · · · · · · · ·
A ~ B means that A, B are linear systems having the same solutions. We use Baussian elimination to reduce A, ~ A. ~ A. ~ Am where A, represents the linear system (i.e. having the same solutions) but Am is and Am represent an equivalent linear system (i.e. having the same solutions) but Am is A. Each step A: ~ Ait, is obtained by one elementary row operation.	ear system simpler than
$ \begin{array}{c} \text{voluy just ene operation at a fine } \\ 5x + 3y = 25 \\ 2x - 7y = -31 \end{array} \left[\begin{array}{c} 5 & 3 & 25 \\ 2 & -7 & -31 \end{array} \right] \sim \left[\begin{array}{c} 1 & 35 & 5 \\ 1 & -\frac{7}{2} & -\frac{31}{2} \end{array} \right] \left[\begin{array}{c} 0 & \frac{1}{2} & \frac{41}{2} \\ 0 & -\frac{91}{2} & -\frac{91}{2} \end{array} \right] \sim \left[\begin{array}{c} 0 & 1 & 5 \\ 0 & 0 & \end{array} \right] \sim \left[\begin{array}{c} 0 & 1 & 5 \\ 0 & 0 & \end{array} \right] \\ \hline \text{divide row 1 by 5} \qquad \text{subtract row 2 from row} \end{array} \right] $	
divide row 2 by 2 subtract row 1 from row 2 migne Solution (2,5) intimited	te many
Gauss Gaussian distribution >0(

0	they cert	to o the sin	177 197 Implified	o o s any fur] are then by e	exangle clanentar	s of met	peration	reduc	ed row	echo	lon for	m :	
	87	is alu	ost reduc	ed; it	is in m	echelo	form .	2 ship	Ser 16	e unkne	was Ti.	Я2 ·	я	
tor a we so eg.	linear su Rive for 2 S 3 7 O 2 11	5 lem wh 5 , then 9 4 7 i	s in roui	r tu-2,	, x, br	y <u>back</u> -	substitution		· · ·			· · · ·		· · ·
Every In 6	linear s my mich	ystem ha	o a uniq a <u>pivo</u>	ne reduce	e first n	echelon onzero Q	form. intry in 1	ts now.	· · ·	· · · · ·	· · · ·	· · · ·		
(Pivot In or	der for pivots	hlighted a a matrix in array re ero rows	bove.) fo be i m must occur at	n row ev occur to t the bot	helon form the righton.	it of pi	uist have vots in an	ny previ	ous n	ms;	· · · ·	· · · ·		· · · ·
Assun	ng a m very pivi	atrix is	already in must be a	row ec	helon form	a, then	to be in	reduced		echelon	form	, we.	must	have
· · · ·	every al	m tavi	g a pi	vot has	only one	noa7900	entry.		• •			• • •		
· · · · ·		· · · · ·	· · · · · ·	· · · · · ·	· · · · ·		· · · · ·	· · · ·	• •	· · · · ·	· · ·	· · ·		
· · · · ·)	· · · · ·			· · · · · ·			· · · · ·	· · ·	· · · · ·	· · · ·	· · · ·		

Example: Solve the following linear system	- of S equations in 5 m	ukaowns:
$\begin{cases} x_1 + 4x_2 - x_3 + 2x_4 + 3x_5 = 6 \\ 2x_1 + 8x_2 - x_3 + 7x_4 + 4x_5 = 19 \\ -1 - 4 = 4 \end{cases}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c} & \lambda_{1} & -1 & \lambda_{2} & +0 & \lambda_{3} & +0 & \lambda_{4} & -1 & \lambda_{5} & -\psi \\ & & & & & & & & & \\ & & & & & & & & $	$\chi_{q} + 5\chi_{5} = 11 \qquad \chi_{5}$	et is a free parameter. = 11-5t
This matrix is in row echelon form. This	$\chi_3 + 3\chi_4 - 2\chi_5 = 7$ $\chi_3 = 7 - 3\chi_4 + 3$	$2x_5 = 7 - 3(11 - 5t) + 2t = -26 + 17t$
Can be used to by back-substitution. linear system by back-substitution.	$x_1 + 4x_2 - x_3 + 2x_4 + 3x_5 = x_4 = s$ is c	ther free perameter
	$\chi_{1} = 6 - 4\chi_{2} + \chi_{3} - 2\chi_{4}$	$-3x_5 = 6 - 45 + (-26 + 17t) - 2(11 - 5t) - 3t$
Solutions: (x1, x2, x3, x4, x5) = (-42-45+24t, 5	s, -26+17t, 11-st, t) where	= -42 - 45 + 24t s,t are arbitrary
Geometrically, the set of solutions forms a	plane (2-dimensional surfa	(2) in RS. Alla dans
R ⁵ (30,3,-9,6,1)	two parameters s	s,t are coordinales for the put
1 > Solio	fion set	The point corresponding to
(-42,0,-26,11,0)	inside R ^s .	(s,t)= (3,1) is (30,3,-9,6,1) is another solution
Ono system is consistent but the solution	is not anique.	

				•		• •				÷.,		 	2	5		· ·						• •			•		• •				• •				• •		•	
- K	r -	4	-1	· 2	1	3	6	٦		1	. (). D	0	ň	3 -	21	<u>ר</u>				•	•			•	•		•			•	• •	•	•	•	• •		•	•
٠T	0	0	11	_	5	-2.	7		\sim	(\cdot, \cdot)			0		5 1	[·					•			•	•		• •				• •	•	•	•	• •	•	• •	
. L	0	0.	.0	2.	1)	5.	- 11	1			0		Ĭ.			. .					•				•		• •					•	•			•	• •	
												• •															• •											
•	•						•			•	•	• •			•				•					•	•	•	• •		•	•				•				
	•									•		• •			•	• •						• •					• •			•	• •			•	• •			
	•										•	• •				• •									•		• •				• •				• •		• •	
	•				•		•			•	•	• •				• •	•		•		•	• •		•	•	•	• •		•		• •	•	•	•	• •		• •	
	•				•	• •					•	• •									•				•		• •				• •			•	• •		•	•
	•				•					•	•	• •			•	• •			•		•	• •		•	•		• •			•	• •			•	• •	•	•	•
	•				•						•					•					•				•		•				• •		•	•	• •		• •	
	•				•	• •	•			•	•	• •				• •					•	• •		•	•	•	• •	•	•	•	• •			•	• •		•	•
	•				•					•	•	• •				• •					•	• •		•	•		• •				• •		•	•	• •		• •	
	•	•			•	• •				•	•	• •			•						•	• •		•	•		• •			•				•	• •	•	• •	• •
	•									•		• •													•		• •						•		• •		•	