

Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$.	
4 2x-7y=-31 We are asking for the simultaneous system of two equations in two	solution of a mknowns & and y.
$\begin{cases} 5x^{2} + 3y = 25 \\ 2x - 7y = -31 \end{cases}$	2×3-5(-7) = 6+35
$5x + 3y = 25$ $41 y = 205$ $2x (1) - 5x (2) = (3)$ $y = 5$ $(4) = (3) \div 41$	$\begin{array}{c} = 41 \\ 2 \times 25 - 5 \times (-31) = 50 + 155 \\ = 205 \end{array}$
Solution: $(x, y) = (2, 5)$ is the $5x + 15 = 25$ unique Solution. $5x = 10$	
Example: Find all (r.y) such that 5x+ 3y=25 and 10x+ 6y=17.	· · · · · · · · · · · · · · · · · · ·
This system is inconsistent: if bad	no solution.
$5_{x} + 3_{y} = 25 (1)$ $10_{x} + 6_{y} = 17 (2)$	· · · · · · · · · · · · · ·
$0 = 33$ $2 \times (i) - (2)$ This is inconsistent.	
5x + 3y = 25	
10x + 6y = 17	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·

Example :	Find all (x,y) S	nch that 5x+3y	= 25 and	15x + 9y = 75.		
				n is consistent there are infin	but the solut	tion is not solutions.
		· · · · · · · · · · ·	· · · · · · ·	5x + 3y = 25 15x + 9y = 75		
					(3) - 3×(1)	- (2)
· · · · · · · · · ·	· · · · · · · · · · ·	5x+3y	=25	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · · ·
· · · · · · · · · · ·	· · · · · · · · · · · · · ·	$l5\chi + 9c$	1 = 75	· · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · ·
A System =	$\begin{array}{l} F & m & \text{linear equatio} \\ x_2 & + \cdots & + q_m x_n = b \\ x_2 & + \cdots & + q_{2n} x_m = \end{array}$	s in a unknown	s has the t		· · · · · · · · ·	· · · · · · · · · · ·
a x + a	$x_2 + \cdots + q_{min} x_n =$ $q_{ij}, b_i = constants$	6			riables represent	ing unkaburs).
Topically,	when m=n we ca m>n m <n< th=""><th>n expect a migu</th><th>le solution; lection (incon</th><th>sistent syster);</th><th>· · · · · · · ·</th><th>· · · · · · · · · ·</th></n<>	n expect a migu	le solution; lection (incon	sistent syster);	· · · · · · · ·	· · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · ·
		· · · · · · · · · ·			· · · · · · · ·	

Example with m=n=3: a Kim buys a bag of 26 cans of tim apples loaves of bread How many of each item	system of 3 linear items weighing 226 a. (\$ 1 each, 502	equations in 3 oz. costi-g #34. each)	mknowns. The items included	
apples loaves of bread How many of each item	(\$\$ 1 each, soe (\$ 3 each, 20 of did Kim brug?	each) (say x cans of th	ma, y apples, z loave	s of bread)
5x + 3y + 20z = 226 x + y + 3z = 34	(2) (3)		· · · · · · · · · · ·	
2z = 8 z = 4 x + y = 22 5x + 8y = 146	(3) - (1) = (4) (3) - (1) = (4)			- 5x22 = 196 - 110 = 36
3y = 36 y = 12	$(7) - 5 \times (6) = (8) + 3$			
r = 6 The unique solution of -	(10) = (6) - 19 this system is (x	·y, 2) = (10, 12, 4)	(Kim bought and 4 loa	10 cans of time, 12 apples, res of bread.)
Check! that all three	equations are satisf	nea.		
				· · · · · · · · · · · · · · · · · · ·

Matrix formulation of linear systems	
x + y + z = 26	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
x + y + 3z = 34	$\sum_{i=1}^{n} 2i = 22i = 13n$
$\begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \\ 1 & 2 & 2 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \\ 1 & 2 & 2 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \\ 1 & 2 & 2 & 26 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 26 \\ 1 & 2 & 2 & 26 \end{bmatrix}$	226 - 5 × 26 - C-6 750 = 96
$\begin{bmatrix} 1 & 1 & 1 & 26 \\ 5 & 8 & 20 & 226 \\ 1 & 1 & 3 & 34 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 5 & 8 & 20 & 226 \\ 0 & 0 & 2 & 8 \end{bmatrix} \sim \begin{bmatrix} 5 & 8 & 20 & 226 \\ 5 & 8 & 20 & 226 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 0 & 3 & 15 & 76 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 0 & 3 & 15 & 76 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 0 & 1 & 5 & 32 \\ 0 & 0 & 1 & 4 \end{bmatrix}$ Subtract divide row 3 Subtract 5 times divide row 2 row 1 from row 2 by 3	
subtract divide row 3 Subbract 5 times divide row 2	
row 3 by 2 row / from row 2 by 3	
r = 10	
$\sim 0 10 12 \sim 0 10 12 \sim 0 10 R 12. y = 12$	
$2 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = 2 = 2$	
White Trance would for 2 The for	
now 3 from now 2 from now 1 from now 1	
1823 from now 2 from now 1	· · · · · · · · · · ·
$ \sim \begin{bmatrix} 1 & 1 & 1 & 26 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 14 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 14 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 4 \end{bmatrix} $ $ = 10 $ $ y = 12 $ $ z = 4 $ Subtract 5 times subtract row 2 Subtract row 3 row 3 from row 2 trom row 1 From row 1 From row 2 Such that $5x + 3y = 25$ and $2x - 7y = -31$	· · · · · · · · · · · · · · · · · · ·
Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. -7-5	$\frac{35}{5} \cdot \frac{6}{5} \cdot \frac{2}{5} \cdot \frac{41}{5}$
Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. -7-5	$=\frac{35}{5}-\frac{6}{5}=-\frac{41}{5}$
Example: Find all (x,y) such that $5x+3y=25$ and $2x-7y=-31$. -7-5	$\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31}{5} - \frac{10}{5} = -\frac{41}{5}$
Example: Find all (x, y) such that $5x+3y=25$ and $2x-7y=-31$. x y $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$ divide row 1 subtract 2 times row 2 subtract 3 times row 2 by 5 & from row 2 by $-\frac{5}{41}$ from row 1	$\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$
Example: Find all (x, y) such that $5x+3y=25$ and $2x-7y=-31$. x y $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$ divide row 1 subtract 2 times row 2 subtract 3 times row 2 by 5 & from row 2 by $-\frac{5}{41}$ from row 1	$\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$ $\frac{31}{5} - \frac{10}{5} = -\frac{41}{5}$
Example: Find all (x, y) such that $5x + 3y = 25$ and $2x - 7y = -31$. $x - 7 - \frac{6}{5}$ $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$ divide rows subtrat 2 fines rows multiply rows 2 subtract $\frac{2}{5}$ times rows 2 by 5 from row 2 by $-\frac{5}{41}$ from rows 1 Solution: $(x, y) = (2, 5)$	$\frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$
Example: Find all (x, y) such that $5x + 3y = 25$ and $2x - 7y = -31$. $x - 7 - \frac{6}{5}$ $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$ divide rows subtrat 2 fines rows multiply rows 2 subtract $\frac{2}{5}$ times rows 2 by 5 from row 2 by $-\frac{5}{41}$ from rows 1 Solution: $(x, y) = (2, 5)$	$= \frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$
Example: Find all (x, y) such that $5x+3y=25$ and $2x-7y=-31$. x y $\begin{bmatrix} 5 & 3 & 25 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 2 & -7 & -31 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & -41 & -41 \end{bmatrix} \sim \begin{bmatrix} 1 & 35 & 5 \\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 27 \\ 0 & 1 & 5 \end{bmatrix} = -3$ divide row 1 subtract 2 times row 2 subtract 3 times row 2 by 5 & from row 2 by $-\frac{5}{41}$ from row 1	$\frac{1}{2} - \frac{35}{5} - \frac{6}{5} = -\frac{41}{5}$

•	•	Ę	len Ven		beel	tte	5				M 97- 1	-	-31 -31 Su] btm Fro	~ ect	2-f	I Zne W	1 5 2 1	7 7		87 31 51] 161	naci I	t fr	2.	1 D fin no	~Q5 m 2	רו -4 2	,	8'-20	7 5 J	ivid	le	(((((ک م	17	- - - -	5 5)	•	•				- 2× - 1 55			· ·
•		•	•		· ·		, . , .	0 1 5 A		2.5				•	•			•	- : [. (бж, 1 5	y) ~~ :		رء) ⊦	5 }×)), 5	•	25		•	•	J	•	· · ·	•	•	· · ·	•	•	•	•	•		. – 2		•	•	· ·
		•		•	•				•	0	•			•		•	• •			•	•					•								• •			• •						•	• •		•		
		•		•	•						•			•			• •	•		•					•	•								• •						•			•	• •			•	
		•	•	•	•	• •			0		•		•	•	•		• •			•	•	•	•		•	•	•	• •		•		•	•	• •		•	• •	•		•	•	•	•	• •		•		
		•			•			•	•		•	•	•							•		•	•		•		•				•	•	•		•	•	• •		•	•	•	•	•			•		
					•				٠		٠						• •		٠													٠	•	• •		٠	• •						•					• •
									•										•	•			•				•				•	•	•			•	• •	•	•	•	•	•	•		•	•		
		•		•	•						•			•												•											• •			•		•					•	
																											•						•	• •		•	• •		•	•		•				•		
	•	•	•	•	•			•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•			•	•	•	•		•	•	• •	•	•	•	•	•	•		•	•		
																	• •																				• •											
	•	•	•	•		• •		•	•	•	•	•	•	•	•			•	•	•		•	•	•	•	•	•			•	•	•	•		•	•		•	•	•	•	•	•		•	•		• •
	•	•	•	•	•	•		•	٠	•	٠	•	•	•	•		• •		٠	•	•	•	•		•	•	•	• •	•	٠	•	٠	•	• •		٠	• •			٠	•	•	•	• •	•	•	•	
			•							•															•							•				•				•								