

Eg. Exp	A -	[13 24 03 16 along	0 41 ° 11 7 0 4 3 5 The -] Hird	row.		let A :	= c			3 2	041	+ 0			(30 24 li	· · ·	· · ·		•	· · ·	•	· · ·	•	•	· ·	•	
· · · · · ·			· · · · · · · · · · · · · · · · · · ·	 		· · ·		- 3 - 3 66	(" (13 (55	7 5 -21	+ 41 + 41	(G-(I))))	- 4	(12-0	1 6 3 	3 2 3 1 (6-11) 3)		•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	•	•	· · · · · · · · · · · · · · · · · · ·		
(I Wed.	chec Nov. 8	red Test	this Con	e loc 2 a	Ce few	mp	utes	i,) zerlej	- #F	yer i	can	• •	• •		· ·	· ·	· ·	· ·	• •	•		•	· ·	•	•	· ·	•	
No I an	n ave	y Fri.	Nov.	17, 1	Non M	Jon 20	ی ا مارا	ecture	²s fa	er i	tiose	2 -tr 1:66	wo∶d ∵f£	ays	wil(be	pre	reco	ded care	- A	checi	le -10	je [d	wel -6	osite],	25	•	
No I an Recall This most Da t	n awa if formul component	y Fri. $A = \begin{bmatrix} a \\ c \end{bmatrix}$ a has tetional pon has	Nov. bd] dg tb	17, 1 Hen Everal Ficien find	Non N det izati t wa A ⁻¹ u	Jou 20 A = m wy there	o. 1 ad-6 for to A	ectura oc. n×n Compu	25 fr A matr te A 4x	ricea i' r 4.	Kose n.vert F The	2 tr 1:66 Crami n is 2 en	wo d ;ff er's ; lan tries	ays det Rule ge. of	いう(((= 0 () . A ' 1	be Th Th	pre wt is	rich is Com	ded care wefu von	A l a den	chec = cfho	k to d-be ngh	fe fe w	wel -6 a st = d) 16 16	e	•	
No I an Recall This most Oa t	n awe if formul compa	y Fri. A = [a ba has tetional yon had	Nov.	17, N then Everal Frid	Non 1 det izati t wa A ⁻¹ w	Nov 2e A = an uy there	o. 1 ad-1 for to A	ectur n×n Compu	es f A matr te A 4x	is in icea i' i 4.	hose niert F The	the crame n is 2 en	wo d ;ff er is i lan tries	ays det Rule ge. of	いう(((キロ) A ⁺ (be Th Lave	pre wt	irecon hich is	ded care netu	A l c den	chec := cflio	k tor	fe [d fe n	wel -6 ot = d	osite J te	25. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	· · · ·	
No I an Recall This most Oa f	n awa if formul comp fw z	y Fri. A = [a a has tetional jon had	Nov.	17, 1 Hen Everal Frid	Non P det izati t wa A ⁻¹ u	Nov 20 A = m there	o l ad-l for to A	ecture n×n is	A matr to A X	is in icea i 4	hose neod F The	2 tr Crama n is 2 en	vo d ;ff s lar tries	ays det Rule of	vii((+0 2) A ⁻¹ 1	be The	pre vid	ich is Comm	ded care meta	A l c den	chec zfho	le -10 id-be	fe fd w	wel -6 a ot = d	J. Ha	e		

Ēg.	A =		2 5 1 3 6 4]		det f		2 5 1 3 6 4		2 0-3 7 (4	5 -7 = 4		1 2 5 0 3 7 7 6 9		- 0	2 5 3 7 -8 -3	=	0	2 3 8	5 7 31	=	/ 2 0 -	<u>5</u> 37 10		· ·	•
			• •							= [[3	7. =	1.3	7.									•		
• • •			• •	• •	Â	has t	nactio	al M-	entries [16]	with 1241	(2) 2 7 6	 	denoni	mator -13	37. 5	• •			• •		• •	• •			
· · ·	· · ·		· ·	· ·	Madiritsc	97 m/.•		- 1-(25	(24) 1 2!51	12	2 2	- 22	-31	~8 -3				• •	• •	• •	· ·	•	• •	•
					 .el:		22	י י ר	[[13	1 231			·.'	- r					• •			• •	•	• •	•
	• • •		• •	•••	A = 1 3	7 13	-31	7		apple	inspos diech	e; uboard							• •	• •		· ·	•	••••	•
• • •	• • •	• • •	• •	• •	· · ·		22	377	••••	divid	de by	det A	· · ·	•••	• •	•••			• •	• •	• •	• •	•	• •	•
• • •	• • •	• • •	• •	• •	. .	1 <u>1</u> 37 6	- <u>31</u> 37	7 37 3	• • •	• •	• • •	• •	• • •	• •	• •	•••			• •	• •	• •	• •	•	• •	•
			• •	• •		37	37	37		• •		• •		•••		• •			• •				•	• •	
Chec	k:::::	$A \bar{A}^{1} =$	1/2	25] [-14 13 -	22 1 7 31 7	= <u>l</u> 27	0	0 37	0	=	1 0 0 1	0		/						• •				
 የበ	· · · ·	 	۲ <u>۲</u> ۲	64	Jls :	8 -3] Hi iut	5(D004	LO estric	D 25 An	37 d det) `A`='	, ° (±1.	> 1. Then	Ă`	als o	has	i În	teger	ent	ies.	• •	• •	•	• •	•
. د ۲۰ ۲۰	14 . 75 	* 7					eger .				• • •	.) .						v .	• •		• •	• •	•	• •	
	• • •		• •	• •	• • •	••••	• •	• •	• • •	• •	• • •	• •	••••	• •	• •	• •			• •					• •	•
• • •	· · ·	• • •	• •	• •		· · ·		• •	· · ·	• •	· · ·	• •	· · ·	• •	• •	• •			• •		• •	• •	•	• •	•
	••••		• •	• •		· · ·	• •	• •	• • •	• •	••••	• •	· · ·	• •	• •	• •			• •		• •	• •	•	• •	•
				• •						0 0						• •									

Find a constant a such that the collowing matrix has determined	ant zero;
$\begin{bmatrix} 5 & 3 & 6 \end{bmatrix} \leftarrow u = (5 & 3 & 6)$	
$A = \left(\begin{array}{c} 1 & 2 & 4 \end{array} \right) \longleftrightarrow V = \left(\begin{array}{c} 1 & 2 & 4 \end{array} \right)$	
[7, 7, c] = (7, 7, 7, 14)	a (A is a A suggetible)
It c= 14 then A has linearly dependent rows so det A = 0 in Thes	Vale (H is not invertible)
If c # 14 then A has linearly independent rows then w # (77 H and (001) is a linear combination of 4, v, w i.e. Row A conto) ains $u_1 \vee (0 \circ i)$.
$det \begin{bmatrix} 5 & 3 & 6 \\ 1 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix} = 7 \neq 0$	· · · · · · · · · · · · · · · · · · ·
If $A = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix}$, then $A^{10} = \frac{1}{2}$	$\begin{bmatrix} a & o \\ o & b \end{bmatrix} \begin{bmatrix} c & o \\ o & d \end{bmatrix} = \begin{bmatrix} ac & o \\ o & bd \end{bmatrix}$
If $D = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$, then $D' = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$	
A det A = -2	
$\begin{vmatrix} -13 & 56 \\ -18 & 26 \end{vmatrix} = -25 \times 26 + 36 \times 18 = -2$	Basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ standard basis
There is a basis {u, v} for R' such that Au = -u, Av = 2v	$\begin{bmatrix} x_1 \\ y \end{bmatrix} = \pi e_1 + y e_2$
$A^{2}v = AAA - Av \qquad A^{2}v = AAv = A(2v) = 2Av = Av$	· · · · · · · · · · · · · · · · · · ·
$A^{2}u = AAu = A(u) = -Au = u \qquad A^{3}v = 8v$ $A^{3}u = AAAu = -u \qquad A^{10}v = 1024v$	1, v are eigen vectors of A with corresponding eigenvalues -1, 2.
$A^{19}u = u$	

Definition IF A is an non motion, and vER", then v is an eigenvector for A with eigenvalue λ if
$\Delta \mathbf{v} = \lambda \mathbf{v}$
How do we find eigenvalues and eigenvectors?
If $Av = \lambda v$ then $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$. This is the form $Av - \lambda v = 0$ i.e. $Av - \lambda Iv = 0$ i.e. $(A - \lambda I)v = 0$.
We should assume v to is a nonzero will vector for A-AI. (ms an only neppen " and for each vieles)
This condition allows us to solve for the corresponding eigenvector(s) v. (each eigenvalue), solve (A-21) v = o for the corresponding eigenvector(s) v.
For $A = \begin{bmatrix} 25 & 36 \\ -18 & 26 \end{bmatrix}$, $A - \lambda I = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} -25 - \lambda & 36 \\ -18 & 26 - \lambda \end{bmatrix}$
$\begin{vmatrix} -25 - \lambda & 36 \\ -25 - \lambda & -2 \\ -25 - \lambda & -2 \\ -2 & -2$
The characteristic coherenial has two roots $\lambda_1 = -1$, $\lambda_e = 2$, (the two eigenvalues).
To find the corresponding eigenvectors V, V:
First take $\lambda_1 = -1$ and solve $AV_1 = -V_1$ i.e. $(A+I)V_1 = 0$ $A+I = \begin{bmatrix} -18 & 27 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$ (by inspection)
$Or \begin{bmatrix} -24 & 36 \\ -18 & 27 \end{bmatrix} \sim \begin{bmatrix} 1 & -3_2 \\ -18 & 27 \end{bmatrix} \sim \begin{bmatrix} 1 & -3_2 \\ 0 & 0 \end{bmatrix} \text{ has well space } Span \left\{ \begin{bmatrix} 3_2 \\ 1 \end{bmatrix} \right\} \text{ with basis } \begin{bmatrix} 3_2 \\ 1 \end{bmatrix}$
$\begin{bmatrix} 0 & -3/2 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} 0 & y \end{bmatrix} = \begin{bmatrix} x & -\frac{3}{2}y \end{bmatrix} = \begin{bmatrix} 0 & y \end{bmatrix} = \begin{bmatrix} 1 & y \end{bmatrix} = \begin{bmatrix} 0 & y \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
We can take v, to be any nonzero scalar multiple of [32]. I'll take v= [3]. So Av= A, v= -v.

For $\lambda_2 = 2$: Solve $Av_2 = \lambda_2 v_2 = 2v_2$ i.e. $(A - 2I)v_2 = 0$ shere $A - 2I = \begin{bmatrix} -25 & 36 \\ -18 & 26 \end{bmatrix} = \begin{bmatrix} -27 & 36 \\ -18 & 24 \end{bmatrix}$
A null vector of $A-21$; $v_2 = \begin{pmatrix} x_3 \\ 1 \end{pmatrix}$ or $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ $S_a \begin{bmatrix} -2t & 36 \\ -18 & 24 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ i.e. $Av_2 = \lambda_2 v_2 = 2v_2$.
$v_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ is a basis of \mathbb{R}^2 consisting of eigenvectors of A. Check: A is similar D (A = DDD).
We started with $e_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ as the standard basis,
To find A ¹⁰ : two approaches. frace of A = tr A = 1, tr D=1
Let $B = \begin{bmatrix} V_1 & V_2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$. Then $AB = A\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -3 & 8 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} = BD$, $D = \begin{bmatrix} 0 & 2 \end{bmatrix}$ (diagonal matrix)
so $ABB' = BDB'$ i.e. $A = BDB'$
$S_{o} A'' = (BDB')(BDB') - (BDB') = BD''B' = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1024 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} -8183 & 12276 \\ -6129 & 9208 \end{bmatrix}$
To check: det $(A'') = (det A)'' = (-2)'' = 1024$.
dut A = (-25)(26) - (36)(-18) = -2.
det A = (det B)(det D)(det B) = 1*(-2)*1 - 2
Second approach: $A^{0}v_{1} = v_{1}$, $A^{0}v_{2} = 1024v_{2}$ $v_{1} = \begin{bmatrix} 3\\2 \end{bmatrix} = 3e_{1} + 2e_{2}$ $\Rightarrow e_{1} = 3v_{1} - 2v_{2} = 5\lfloor 2 \rfloor - 2\lfloor 3 \rfloor - \lfloor 0 \rfloor$
$V_{2}^{*} \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 4e_{1} + 5e_{2} \qquad e_{2}^{*} = -4[z_{1} + 5(z_{2} + 5(z_{1} + 5(z_{2} + 5$
$A^{10}_{4} - A^{10}_{4}(3y - 2y) = 3.4 - 2 \times 1024 y = 3 \begin{bmatrix} 3 \\ 3 \end{bmatrix} - 2048 \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -8183 \\ -6138 \end{bmatrix}$
$A^{10}_{0} = A^{10} \left(-4 y + 3 y\right) = A y + 3 x \left[024 y = -4 \left[3\right] + 3072 \left[4\right] = \left[12276\right]$
nez-ri (11112) [v, + 5 10012 [2] 200] Le procent the same linear transformation
A ¹⁰ = [-6138 9208] A and D are similar integrated basis.

Eq. diagonalize the matrix $A = \begin{bmatrix} t & -1 & i \\ 2 & i & 2 \end{bmatrix}$ dot $A = \begin{bmatrix} t & -1 & i \\ 2 & -1 & 2 \end{bmatrix} = \begin{bmatrix} t & -1 & i \\ 2 & -1 & 2 \end{bmatrix} = \begin{bmatrix} t & -1 & i \\ 2 & -1 & 2 \end{bmatrix}$
First compute the characteristic polynomial det $(A - \lambda I) = \begin{vmatrix} 1 & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix}$
$= [\lambda^2 - 5\lambda + 6](3 - \lambda) = (\lambda - 2)(\lambda - 3)(3 - \lambda) = -(\lambda - 2)(\lambda - 3)^2 \text{ has roots } 2, 3, 3 \text{ (the eigenvalues of } A).$
Find eigenvector v_i for $\lambda_i = 2$: solve $(A - \lambda_i I)v_i = 0$ i.e. $\begin{bmatrix} 2 & -1 & 2 \\ 2 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $v_i = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 7$ $Av_i = 2v_i$.
Find eigenvectors v_2, v_3 for $\lambda_2 = \lambda_3 = 3$: solve $(A - 3I) v = 0$ i.e. $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \end{bmatrix} \begin{bmatrix} v \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Take $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
Form the matrix $B = \begin{bmatrix} v_1 & v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ whose almost are the eigenvectors. $\begin{pmatrix} v_1, v_2, v_3 \\ v_1, v_2, v_3 \end{pmatrix}$ is our basis of eigenvectors. (v_1, v_2, v_3 is our basis of eigenvectors)
Then $AB = BD$ where $D = \begin{bmatrix} \partial_1 & \partial_2 & \partial_1 \\ \partial_1 & \partial_2 & \partial_3 \end{bmatrix} = \begin{bmatrix} \partial_1 & \partial_2 & \partial_1 \\ \partial_1 & \partial_2 & \partial_3 \end{bmatrix}$ i.e. $ABB = BDB^{*}$. We have diagonalized A.
$AB = A\left[\frac{v_1}{v_2} \right] = \left[Av_1 \left Av_2\right Av_3\right] = \left[2v_1 \left 3v_2\right 3v_3\right] = \left(\frac{v_1}{v_2} \left v_3\right \right) \left[\frac{2}{3}\right] = BD$
Check: $trA \stackrel{?}{=} trD$, $detA \stackrel{?}{=} detD$ $8 = 8$, $18 = 18$, 18^3 has an eigenvector v, with eigenvalue $\lambda = 2$ v_i and an eigenspace Span $\{v_k, v_s\}$ with eigenvalue 3.
x-y+z=0 (Span {V2, V3})

The eigenspace for λ is Nul $(A - \lambda I) = { all eigenvectors having eigenvalue \lambda }$
= {all v satisfying Av = Av }.
[5050] Les a single eigenspace R ³ with eigenvalue 5.
Actually, we don't necessarily have a basis of eigenvectors.
Consider $A = \begin{bmatrix} -7 & 16 \\ -4 & q \end{bmatrix}$
Find the characteristic polynomial det $(A - \lambda I) = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix} = (-1)^{-4} = (-1)^{-4} = (-1)^{-4}$
which has roots 11. (Valy one wistingt eigenvalue) $VA=2$ all $A=1$ (sole for eigenvectors: $(A-T)V=0$ i.e. $\begin{bmatrix} -8 & 16 \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$. Take $V_i = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
Try to complete this to a basis $v = l^2$, l'_1 , $R = \lfloor v \mid v \rfloor = \lfloor 2 \mid 1 \rfloor$
$AR = A[y_1 y_2] = [Ay Ay_2] = [2 9] = R[14]$
$AB = BM \iff A = BMB$
$Av_2 = \begin{bmatrix} -7 & 6 \\ -4 & g \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ -5 \end{bmatrix}$ [2 17[1 4] - [2 9] having the same trace,
deterarinant, chavaiteristic
$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 9 \\ 1 & 5 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$
B M AB B' = +[-1, -1] = [-1, -1]
$M = BAB = \begin{bmatrix} -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 9 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 47 \\ 0 & 17 \end{bmatrix}$

141 Sular shear also . A : í n r A is not diagonalizable; R² does not have a basis consisting of eigenvectors for A. (we have one eigenvector only).

An example with no eigenvectors or eigenvalues:
$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} represents a 90° rotation counterclockwise \begin{bmatrix} 0 \\ -1 \end{bmatrix}$
Algebraically: compute the characteristic polynomial
$det(A - \lambda I) = det(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}) = \begin{bmatrix} -1 \\ 1 & -\lambda \end{bmatrix} = \lambda^2 + 1$
Over R there are no roots of 22+1 (you cannot factor this)
Over $C = \{a + b\}$: $a \in \mathbb{R} \{ \}$ however, we factor $\lambda^2 + 1 = (\lambda + i)(\lambda - i)$
so the roots $i, -i$ give two eigenvalues in \mathbb{C} . $i^2 = -1$
find eigenvectors for A $Av_{i} = iv_{i} \leftarrow 7$ $(A - iJ)v = 0$ i.e. $\begin{bmatrix} -i & -i \\ i & -i \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Take $v_{i} = \begin{bmatrix} i \\ i \end{bmatrix}$ as an eigenvector.
$Av_{2} = -iv_{2}, v_{2} = \begin{bmatrix} -i \\ 1 \end{bmatrix}$
So $A = BDB$ $D = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$ $B = \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}$ $A \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 4v_1 & 4v_2 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$
$D = \overline{B}AB$ $V_1 V_2$ $A = BD\overline{B}'$
{v1, v2} is a basis of C ² = { [² ₁] : 21, 22 ∈ C } is a 2-dimensional vector space over
the field (of complex numbers
A is not allogonalizable over the real numbers the but it is diagonalizable over C.

Vector Spaces: Chapter A Scalars: real numbers / complex numbers / rational numbers / gene A field is a set of scalars in which we can add, subtract, m A vector space is a set V whose elements are called vectors, includin +, -, scalar multiplication satisfying	eral fields miltiply and divide. Ing a zero vector Q, and operations (scalar + scalar = scalar, scalar + vector
1. for $\underline{u}, \underline{v} \in V$, $\underline{u} + \underline{v} \in V$. (vector + could be rector) 2. $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ 3. $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$ 4. $u + \underline{0} = u = 0 + \underline{u}$	vector x vector
5. For each $\underline{u} \in V$, there is a vector $-\underline{u} \in V$ such that $\underline{u} + (-\underline{u}) = \underline{0}$ 6. Scalar multiplication: For every scalar c and $\underline{u} \in V$, $c\underline{u} \in V$ 7. Distributivity: $c(\underline{u}+\underline{v}) = c\underline{u} + c\underline{v}$	(scalar × vedor = vector)
8. $(c+d)\underline{v} = c\underline{v} + d\underline{v}$ 9. Associativity: $(cd)\underline{v} = c(d\underline{v})$ 10. $1\underline{u} = \underline{u}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Add - 0 <u>u</u> 40 both sides:
$P_{y}(s) \qquad \underbrace{O_{u} + \underline{O}}_{O_{u}} = \underline{O}$	

Examples of vector spaces: R" (actually, R" is column vectors of length n; R" is row vectors of length n).	•
Subspaces of R"	
The set of all polynomials of degree < n in x is an n-dimensional vector space	•
$V = \{a_0 + a_1 x + a_2 x^2 + \dots + a_{m-1} x^{m-1} : a_0, a_1, a_2, \dots, a_{m-1} \text{ are scalars } \}$	•
$\{1, \pi, \pi^2, \dots, \pi^{n-1}\}$ is a basis for V , χ is an inductor (i.e. which is a symbol).	
$\{1, x, \pi(x-1), \pi(x-1)(x-2), \dots, \pi(x-1)(x-2) - (x-n+1)\}$ is also a basis.	•
The set of all polynomials in x is a vector space which is infinite-dimensional.	•
A basis is $\{1, x, x^2, x^3, x^4, \dots \}$	
Examples of polynomials: $5-3x+2x^2$, $1-x^3+3x^7+1/x^8$,	•
Not portuge in the first	
The set of all functions R-R.	
As a subspace of this, the continuous functions R-7R.	
An even smaller subspace: differentiable functions ik ~ K	
Even smaller: the space of smooth functions V = (f: K-7K : 1 et is	•
A linear transformation T: V -> V is defined by I = D+I (D = tx) ie. I+ - + +.	
The rank of T is infinite dimensional. I is not one to one. THE rank of T is infinite dimensional. I is not one to one. THE P iff f(x) = a give + 6 cos x for some a, b e R.	•
A basis for Nul $T = \{f : Tf = 0\}$ is $\{sin \times .cos \times \}$.	
D: V -> V has Nul D = { constant functions } having basis {1}; Nul D is one-dimensional. I is one-dimensional	•
D has eigenvectors! eg. Der = 3er. For every lett, the sel or eigenvectors and a der and the basis ferra 3.	

Fibonacci Numbers		
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,		
Recursive formula $F_n = \{1, if n = 1\}$		•
$(f_{n-1}+F_{n-2}), \text{if } n \ge 2$		•
Consider $[0], [1], [2], [3],$		•
· · · · · · · · · · · · · · · · · · ·		
So $V_n = \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$ so $A = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ defines a map $V_n \longrightarrow AV_n = V_{n+1}$ i.e. $A \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} F_{n+1} \\ F_{n+1} \end{bmatrix} = V_{n+1}$	· · · · · ·	•
Starting with $v_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, we get $v_1 = Av_0$, $v_2 = Av_1 = A^2v_0$, \cdots , $v_n = \begin{bmatrix} t_{n+1} \\ t_n \end{bmatrix} = A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \text{first column of } A^n$.		
$A^{2} = \begin{bmatrix} i & j \\ i & j \end{bmatrix} \begin{bmatrix} 2 & j \\ i & j \end{bmatrix}, A^{3} = \begin{bmatrix} 2 & j \\ i & j \end{bmatrix} \begin{bmatrix} i & j \\ i & j \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & i \end{bmatrix}, A^{4} = \begin{bmatrix} 3 & 2 \\ 2 & i \end{bmatrix} \begin{bmatrix} i & 0 \\ 0 & j \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}, \cdots$		
To find an explicit formula for A" (and thereby Fn), diagonalize A.		•
Characteristic polynomial of A:	1-5	
$det (A - xI') = det ([I + 0] - [x + 0]) = [I + 1 + 1] = (I - x)(-x) - I = x^2 - x - I = (x - x)(x - \beta) \text{where } \alpha = \frac{1}{2}, \beta = \frac{1}{2}$	2	•
Eigenrector for a : solution of Av= av i.e. (A-axI)v=0 golden notio_	0.6(8	
$\begin{bmatrix} 1-\alpha & 1 \\ 1 & -\alpha \end{bmatrix} \begin{bmatrix} \alpha \\ y \end{bmatrix} = 0 A \text{ nonzero solution is } \begin{bmatrix} \alpha \\ 1 \end{bmatrix} Check: \begin{bmatrix} 1-\alpha & 1 \\ 1 & -\alpha \end{bmatrix} \begin{bmatrix} \alpha \\ 1 \end{bmatrix} = \begin{bmatrix} (1+\alpha-\alpha^2) \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \approx \begin{bmatrix} 1.6(8) \\ 0 \end{bmatrix}$		•
Eigenvector for B: Av=Br i.e. (A-BI)v=0. loke [[].	1 1 M 4 1 1	•
$B = \begin{bmatrix} \alpha & \beta \end{bmatrix} \text{ has the eigenvectors as its columns.} A B = \begin{bmatrix} A \begin{bmatrix} \alpha \\ 1 \end{bmatrix} & A \begin{bmatrix} \beta \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \alpha & \beta \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ 1 \end{bmatrix} \begin{bmatrix} \alpha & \beta \end{bmatrix} = BD, I$	$D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.	•
Diagonalizing A gives $D = \begin{bmatrix} \alpha \\ 0 \\ \beta \end{bmatrix}$. $ABB' = BDB'$ i.e. $A = BDB'$ $D' = \begin{bmatrix} \alpha \\ 0 \\ \beta \end{bmatrix}^n = \begin{bmatrix} \alpha \\ 0 \\ \beta^n \end{bmatrix}$		•
$A'' = (BDB')(BDB')(BDB')/\cdots/(BDB') = BD'B'$ $B = [i] B' = f = [i]$	· · · · ·	•
h times $bar B = \alpha - \beta = \sqrt{5}$		•

 $\beta = -1 \qquad \alpha \beta^{2} = \left(\frac{(+\sqrt{5})}{2}\right) \left(\frac{1}{\sqrt{5}}\right)$ $A^n = BDB^i = \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix}$ $\alpha \beta = -1$ γ $= \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha^{n+1} - \beta^{n+1} & \alpha^{n+1} \\ \alpha^{n} - \beta^{n} & \alpha^{n+1} - \alpha^{n+1} \beta & \alpha^{n+1} \\ \alpha^{n} - \beta^{n} & \alpha^{n+1} - \alpha^{n+1} \beta & \alpha^{n+1} \\ \alpha^{n+1} - \beta^{n+1} & \alpha^{n+1} - \beta^{n+1} \end{bmatrix}$ a- B= 55 $F_{n} = \frac{\alpha^{n} - \beta^{n}}{\sqrt{5}} = \frac{\binom{1+\sqrt{5}}{2}^{n} - \binom{1-\sqrt{5}}{2}}{\sqrt{5}} \quad \text{grows exponentially}$ (faster than power law n^k) $V_{h} = A^{n} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} f_{h+1} \end{bmatrix} = \begin{bmatrix} \alpha^{h+1} - \beta^{h+1} \\ F_{h} \end{bmatrix}$ · · 50 · eq. Fo 1= 21 = $f_{i} = \frac{\alpha - \beta}{R}$ $F_2 = \frac{\alpha^2 - \beta^2}{\sqrt{5}} = \frac{(\alpha + 1) - (\beta + 1)}{\sqrt{5}} = 1$ etc. $F_{30} = \frac{\alpha^{30} - \beta^{30}}{\sqrt{5}} = 832040$

A 2-dimensional vector space: the solutions of y"+y=0.	
Over R, & sinx, cos x } is a basis for the solutions:	
Over C, {e ^{ix} , e ^{-ix} } is another basis.	•
If $y = e^{ix}$ then $y' = ie^{ix}$, $y'' = -e^{ix}$, $y'' + y = -e^{ix} + e^{ix} = 0$	
Let V be the vector space consisting of all solutions of y"+y=0.	
D: V -> V, Dy = y' is a linear fransformation.	•
D is represented by the matrix [10] with respect to the first choice of besis:	•
$T \left(a c + b a c \right) = -b s in x + a cos x$	
(nonzero)	•
$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -6 \\ 0 \end{bmatrix} = \begin{bmatrix} -6 \\ 0 \end{bmatrix}$ Over \mathbb{R} , D has no eigenvectors.	•
$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} \text{Over } \mathbb{R}, D \text{ has no eigenvectors.}$ But over $\begin{bmatrix} 0 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} \text{Over } \mathbb{R}, D \text{ has no eigenvectors.}$	•
$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} Over \ \mathbb{R}, D has no eigenvectors.$ But over C_i , e^{ix} is an eigenvector with eigenvalue i; e^{-ix}	•
$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} Over \ \mathbb{R}, \ D \ has no \ eigenvectors.$ But over C_i e^{ix} is an eigenvector with eigenvalue i ; e^{ix} , e^{-ix} ? is a basis of V consisting of eigenvectors of D.	•
$D\left[\frac{a \operatorname{Size} x + o \operatorname{Uss}}{[i \ o]}\right]^{2} = \begin{bmatrix} -b \\ a \end{bmatrix} Over \ R, D has no eigenvectors.$ But over $C_{i} = e^{ix}$ is an eigenvector with eigenvalue i ; $e^{ix} = e^{ix} is a basis of V consisting of eigenvectors of D.$	
$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} Over R, D \text{ has no eigenvectors.}$ But over C, e^{ix} is an eigenvector with eigenvalue i; e^{ix} , e^{-ix} is a basis of V consisting of eigenvectors of D.	
$\begin{bmatrix} a & f(a) \\ f(a) \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} Over R, D has no eigenvectors.$ But over $C_i = \begin{bmatrix} e^{ix} \\ e^{ix} \end{bmatrix}$ is an eigenvector with eigenvalue i ; $e^{ix} = \begin{bmatrix} e^{ix} \\ e^{ix} \end{bmatrix}$ is a basis of V consisting of eigenvectors of D .	• • • • • • •
$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} \text{Over } R, D \text{ has no eigenvectors.}$ But over $C_i e^{ix}$ is an eigenvector with eigenvalue i ; e^{ix} ; e^{-ix} } is a basis of V consisting of eigenvectors of D .	
$\begin{bmatrix} a & b & b & c \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} Over R, D \text{ has no eigenvectors.}$ But over C, e^{ix} is an eigenvector with eigenvalue i ; e^{ix} $\{e^{ix}, e^{-ix}\}$ is a basis of V consisting of eigenvectors of D.	

Over R: consider the vector space V consisting of all polynomials in x of degree < n.
$V = \begin{cases} a_0 + q_1 x + q_2 x^2 + \dots + q_n x^{n-1} \\ a_0, q_1, \dots, q_n \in \mathbb{R} \end{cases}$
$D: V \rightarrow V$, $Df(x) = f'(x)$ is linear since $D(af + bg) = (af + bg)' = af + bg'$ = $a Df + bDg$.
In matrix terminology
$D\left(q_{0}+q_{1}x+q_{2}x^{2}+\cdots+q_{n-1}x^{n-1}\right) = q_{1}+2q_{2}x+3q_{3}x^{2}+\cdots+(n-1)q_{n-1}x^{n-2}$
$ \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ \vdots \\ q_n \\ \vdots \\ q_{n-1} \end{bmatrix} = \begin{bmatrix} 2q_2 \\ 3q_n \\ \vdots \\ q_{n-1} \end{bmatrix} $
Not invertible; if has rank n-1 The characteristic polynomial of D is det $(D - \lambda I) = \begin{pmatrix} -\lambda & 2 \\ -\lambda & 3 \\ -\lambda & 3 \end{pmatrix} = (-\lambda)^n$
The only voot is $\lambda = 0$. An eigenvector $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ for this eigenvalue is 1. $D_1 = 0 = 0.1$. (Eigenvectors for eigenvalue 0 and the same thing as mult vectors.)
(L'Jenverne (une)

If we more beyond polynomials then $D = \frac{1}{4\pi}$ has an eigenvector for every scalar λ : $D \in \mathbb{R}^{2} = \lambda e^{\lambda \pi}$. So $e^{\lambda \pi}$ is an eigenvector with eigenvalue λ . This works over both R and C. ($e^{\lambda \pi}$ is an 'eigenfunction''). Eq. Let V be the set of all rational functions in x of the form $\frac{ax+b}{x^2+8x+15}$. First decompose $\frac{ax+b}{x^2+8x+15} = \frac{ax+b}{(x+3)(x+5)} = \frac{A}{x+3} + \frac{B}{x+5}$ We know there exist A, B (for every choice of a, b). V is a vector space over R. $\frac{ax+b}{x^2+8x+15} + \frac{cx+d}{x^2+8x+15} = \frac{(a+c)x+(b+d)}{x^2+8x+15}$ $c \frac{ax+b}{x^2+8x+15} = \frac{(a)x+cb}{x^2+8x+15} \in V$ dim V = 2 because $\frac{a + b}{x^2 + 8x + 15} = a \frac{x}{x^2 + 8x + 15} + b \frac{1}{x^2 + 8x + 15}$ expresses your vector aniquely as a linear combination of x 1 x + 8x+15' X787775

We First	want	to Tha	conclus t -	$\frac{1}{1+3} =$	$\frac{x+5}{(x+3)(x+3)}$	{ <u>1</u> { 1 1 1 1 1 1 1 1 1 1	, 1 8+5 V	and	is also $\frac{1}{x+5} =$	a başı <u>x+3</u> (x+3)(x+5)	ŝ. ←V,		
Eg .	Deco	mpose	$-\frac{7x}{x^2+}$	(+ 8x+5	into	its	parts	by	the met	hod of	partial	fractions	
· · · · · ·	x x	² x+1(+8x+5	- = -	₹* + 11_ r+3)(r+	- = 5)	$\frac{A}{\pi + 2}$	$\frac{1}{3}$ + $\frac{1}{\pi}$	<u>B</u> +5 =	$\frac{-5}{x+3}$ +	<u>12</u> X+5	· · · · · ·	· · · · · · · ·	
· · · · · ·	Ŧĸ	+/(=	(*+5) A (+.	(x + 3)	B	· · ·	· · ·	· · · · · · ·	· · · · · ·	· · · · · ·	· · · · · · · ·	, , , ,
tor x=	-3	-10 =	= 2A	5 20	A = -	· 5 、	• • •	· · ·	· · · · · · ·	· · · · · ·	· · · · ·	· · · · · · · ·	
tor x=	-5,	- 27				, C	· · ·	· · ·	· · · · · · ·	· · · · · ·	· · · · ·	· · · · · · · ·	
· · · · · ·	· · · ·	· · · · ·	· · · ·	· · · ·	· · · ·	· · ·	· · ·	· · ·	· · · · · · ·	· · · · · ·	· · · · · ·	· · · · · · · ·	•
· · · · · ·		· · · · ·	· · · ·	· · · · ·	· · · ·		· · ·	· · ·	· · · · · · ·	· · · · · ·	· · · · · ·	· · · · · · · ·	
· · · · · ·		· · · · ·	· · · · ·	· · · · ·	· · · · ·		· · ·	· · ·	· · · · · · ·	· · · · · ·	· · · · · ·		

Find eigenvalues and eigenvectors of A = [47 -30]
The charactes istic polynomial is
$\det (A - \lambda I) = \begin{vmatrix} 47 - \lambda & -30 \\ 75 & -48 - \lambda \end{vmatrix} = (47 - \lambda)(-48 - \lambda) + 2250 = \lambda^2 + \lambda - 6 = (\lambda - 2)(\lambda + 3)$
The eigenvalues are $\lambda_1 = 2$, $\lambda_2 = -3$.
for $\lambda_{1}=2$, v, is a well vector of $A-2I = \begin{bmatrix} 45 & -30 \\ -3 & -2 \end{bmatrix} \sim \begin{bmatrix} 3 & -2 \\ -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 3 & -2 \\ -2 & -2 \end{bmatrix} \leq v_{1}=\begin{bmatrix} 2 \\ -2 \end{bmatrix}$
Check: $A_{V_1} = \begin{bmatrix} 47 & -30 \\ 75 & -48 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
$- \frac{2V_{1}}{1}$
For $\lambda_2 = -3$, V_2 is a mult vector of $4+51 = \begin{bmatrix} 75 & -45 \end{bmatrix} = \begin{bmatrix} 75 & -45 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$ so $V_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ Check: $AV_2 = \begin{bmatrix} 47 & -30 \\ 75 & -48 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -9 \\ -15 \end{bmatrix} = -3 \begin{bmatrix} 3 \\ 5 \end{bmatrix}$
Another check: $+rA = -1$, det $A = -6$.
A is similar to $\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} = D $ $t \cdot D = -1$, $dot D = -6$. V