Solutions to HW3
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Note that this is a Vandermonde determinant with value (3—1)(4—1)(4—3) = 6.
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(b) The eigenvalues are A\; = 1, Ao = 2, A3 = —3.

(c) We find the eigenvectors v; as null vectors of A — \;I:
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. (a) The most obvious basis for U is probably
(z—1)(z—3), z(z—1)(z—3), 2z*(z—1)(z—3).



These three polynomials have degree at most 4, so they are in V'; and they vanish
at both 1 and 3, so they are in U. Polynomials in U are uniquely expressible
in the form (a+bx+cx?)(x—1)(x—3), which is uniquely expressible as a linear
combination of our basis vectors with coefficients a, b, ¢ respectively.

(b) By (a), dimU = 3.
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(¢) The matrix of T with respect to the standard basis 1, z, x*, x°, z* is
1 1 1 1 1
0 1 2 3 4
0O 01 3 6
0 0 0 1 4

0 00 0 1

The columns of this matrix represent the images of the five basis vectors
T(1) =1,
T(x)=1+z,
T(2z%) =1+ 2z + 22,
T(x*) =1+ 3z + 32* + 2°,
T(x*) =1+ 4z + 622 + 42® + 2.



