

HW3

(Due Monday, December 4, 2023 by 5:00pm on WyoCourses)

Instructions: Work by hand. Show your work. Always check your answers wherever feasible (you may use software to *check* your work). Write clearly, using complete sentences where appropriate, and always using correct vocabulary, spelling, punctuation and notation. Total value of questions: 85 points.

1. (30 points) Compute each of the following determinants, in simplified form:

				1	1	1		0	T	2	3	
(-)	a	2a+b	(\mathbf{l})		1		(c)	1	0	1	2	
(a)	b	$\begin{vmatrix} 2a+b\\a+2b \end{vmatrix}$	(b)		ა ი	$\frac{4}{1c}$	(C)	2	1	0	1	
		1		1	9	10		3	2	1	0	

2. (30 points) Consider the matrix

$$A = \begin{bmatrix} -7 & -5 & 1\\ 8 & 7 & -2\\ 8 & 5 & 0 \end{bmatrix}.$$

- (a) Determine the characteristic polynomial of A.
- (b) Find the eigenvalues $\lambda_1, \lambda_2, \lambda_2$ of A.
- (c) Find a basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ consisting of eigenvectors \mathbb{R}^3 corresponding to the eigenvalues found in (b), i.e. $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for i = 1, 2, 3.
- 3. (25 points) Consider the vector space of all polynomials in x of degree at most 4, with real coefficients:

$$V = \{a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 : a_0, a_1, a_2, a_3, a_4 \in \mathbb{R}\}.$$

Note that V has dimension 5; and the standard basis for V is $\{1, x, x^2, x^3, x^4\}$.

- (a) Let U be the subspace consisting of all $f(x) \in V$ such that f(1) = f(3) = 0. Find a basis for U.
- (b) Determine the dimension of U.
- (c) Consider the linear transformation $T: V \to V$ defined by T(f(x)) = f(x+1). Find the matrix expressing T (with respect to the standard basis listed above).