UNIVERSITY UN Math 2250-Fall 2023 *Elementary Linear Algebra* $\det(A)$

OF WYOMING

Department of

Mathematics

SOLUTIONS to Final Examination, December, 2023 1. $AB = BD$ where $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 1 $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $D = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 0 $\binom{0}{2}$ and $B^{-1} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ −2 −1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, so $A = BDB^{-1} = \begin{bmatrix} -1 \\ -6 \end{bmatrix}$ −6 1 $\left[\begin{smallmatrix} 1 \\ 4 \end{smallmatrix}\right]$. 2. (a) $A =$ \lceil $\overline{}$ 1 2 0 −1 0 1 1 1 1 0 −1 2 2 3 0 2 1 $\vert \cdot$ (The columns are given by the images $T(\mathbf{e}_1), T(\mathbf{e}_2)$, $T(\mathbf{e}_3)$, $T(\mathbf{e}_4)$ of the four standard basis vectors.) (b) $A =$ $\sqrt{ }$ $\overline{}$ $1 \quad 2 \quad 0 \ -1$ 0 1 1 1 1 0 −1 2 2 3 0 2 1 $| \sim$ \lceil $\overline{}$ $1 \quad 2 \quad 0 \ -1$ 0 1 1 1 $0 -2 -1 3$ 2 3 0 2 1 $| \sim$ \lceil $\overline{}$ 1 2 0 −1 0 1 1 1 $0 -2 -1 3$ $0 -1 0 4$ 1 $\vert \sim$ $\sqrt{ }$ $\overline{}$ $1 \t 0 \t -2 \t -3$ 0 1 1 1 $0 -2 -1 3$ 0 −1 0 4 1 $\overline{}$ ∼ $\sqrt{ }$ $\overline{}$ $1 \quad 0 - 2 - 3$ 0 1 1 1 0 0 1 5 $0 -1$ 0 4 1 $\vert \sim$ \lceil $\overline{}$ $1 \quad 0 - 2 \ -3$ 0 1 1 1 0 0 1 5 0 0 1 5 1 $\vert \sim$ $\sqrt{ }$ $\overline{}$ $1 \quad 0 - 2 \ -3$ 0 1 1 1 0 0 1 5 0 0 0 0 1 \vert ∼ $\sqrt{ }$ $\overline{}$ 1 0 0 7 0 1 1 1 0 0 1 5 0 0 0 0 1 $\overline{}$ ∼ $\sqrt{ }$ \vert 1 0 0 7 $0 \quad 1 \quad 0 \ -4$ 0 0 1 5 0 0 0 0 1 $\vert \cdot$

Since A has rank 3, dim(Nul A) = 1 and by inspection, Nul A has basis $\begin{cases} \begin{bmatrix} -7 \\ 4 \\ -5 \end{bmatrix} \begin{bmatrix} -7 \\ 4 \\ 1 \end{bmatrix}$ $\big]$ (c) No; $\{T(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^4\} = \text{Col } A$ has dimension 3, so it does not equal \mathbb{R}^4 .

- (d) The rank of A is 3 (the number of pivots in the reduced row echelon form above).
- (e) No, T is not invertible since its rank (the rank of A) is less than 4. There are many ways to say this: $\det A = 0$; T has a nonzero null space; the column space of A is a proper subspace of \mathbb{R}^4 .
- 3. (a) V has basis $\begin{cases} 1 & \text{if } \\ 0 & \text{if } \end{cases}$ 0 0 0 0 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 1 0 0 $\begin{smallmatrix} 0\ 0 \end{smallmatrix}$, $\begin{smallmatrix} 0\ 0 \end{smallmatrix}$ 0 0 0 1 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 0 0 0 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 0 1 0 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 0 0 0 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ so dim $V = 6$.
	- (b) Using $A^{-1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ −5 −1 S_3^{-1} , we solve for $M = A^{-1} \begin{bmatrix} 0 \\ 3 \end{bmatrix}$ 3 1 4 2 $\begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} -3 \\ 9 \end{bmatrix}$ 9 −2 7 −1 $\left[\begin{smallmatrix} 1\ 5 \end{smallmatrix}\right].$
	- (c,d) Yes, T is both one-to-one and onto since it is invertible. Just as $T: V \to V$ is the linear map given by left-multiplication by $A, T^{-1}: V \to V$ is the linear map given by left-multiplication by A^{-1} as demonstrated in (b).

4.
$$
A = \begin{bmatrix} -1 & 1 & 3 \\ 2 & 1 & -1 \\ 1 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 3 \\ 0 & 3 & 5 \\ 1 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 3 \\ 0 & 3 & 5 \\ 0 & 3 & 5 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 0 \end{bmatrix}
$$
, so $\left\{ \begin{bmatrix} 4 \\ -5 \\ 3 \end{bmatrix} \right\}$ is a basis

for Nul A. In other words, the row space of A is the plane $4x - 5y + 3z = 0$.

5. (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) T F T T F F T T T F

Although you are not expected to explain your answers to True/False questions, the following remarks may help to understand the solution key:

- (a) As shown in class, any vector of the form $A\mathbf{x} \in \mathbb{R}^m$ is a linear combination of the *n* columns of A with weights given by the entries of $\mathbf{x} \in \mathbb{R}^n$.
- (b) An example of an inconsistent linear system is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 2 $\left[\frac{x_1}{x_2}\right]$ $x_1 \brack x_2} = \begin{bmatrix} 1 \ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
- (c) If 0 is an eigenvalue for A, then a corresponding eigenvector $\mathbf{v} \neq \mathbf{0}$ lies in Nul A.
- (d) If $A\mathbf{v} = \lambda \mathbf{v}$ where $\mathbf{v} \neq \mathbf{0}$, then $A^2\mathbf{v} = A(A\mathbf{v}) = \lambda A\mathbf{v} = \lambda^2 \mathbf{v}$.
- (e) One counterexample is provided by the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_6 \in \mathbb{R}^3$ given by $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ $\Big], \Big[\begin{smallmatrix} 0 \ 1 \ 1 \ 0 \end{smallmatrix}$ $\Big], \Big[\begin{smallmatrix} 0 \ 0 \ 0 \ 1 \end{smallmatrix}$ $\Big], \Big[\begin{smallmatrix} 1 \ 1 \ 1 \ 1 \end{smallmatrix}$ $\Big], \Big[\begin{smallmatrix} 1 \ 0 \ 0 \ 1 \end{smallmatrix}$ $\Big], \Big[\begin{smallmatrix} 2 \ 3 \ 3 \ 4 \end{smallmatrix}$ | respectively.
- (f) One counterexample is provided by the vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ $\Big], \Big[\begin{smallmatrix} 1 \ 1 \ 1 \ 0 \end{smallmatrix}$ $\Big], \Big[\begin{smallmatrix} 1 \ 2 \ 2 \ 0 \end{smallmatrix}$ $\Big], \Big[\begin{smallmatrix} 3\ 7 \ 7 \ 0 \end{smallmatrix}$ $\Big]$ in \mathbb{R}^3 .
- (g) Since Col A has dimension 3, Row A must also have dimension 3.
- (h) If $A\mathbf{v} = \lambda \mathbf{v}$, then $AB\mathbf{v} = BA\mathbf{v} = B(\lambda \mathbf{v}) = \lambda B\mathbf{v}$.
- (i) If det $\begin{bmatrix} a_{ij} \\ a_{ij} \end{bmatrix}$ a_{kj} $a_{i\ell}$ $a_{i\ell}^{a_{i\ell}} \geq 0$, then rows i and k are linearly independent; also columns j and ℓ are linearly independent. Either way, this forces A to have rank at least two.
- (j) One counterexample is $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 0 $2⁰$]. If you pick an example 'at random', the chance of A and B commuting is essentially 0% .