

Final Examination

December, 2023

Instructions. The only aids allowed are a hand-held calculator and one 'cheat sheet', i.e. an $8.5'' \times 11''$ sheet with information written on one side in your own handwriting. No cell phones are permitted (in particular, a cell phone may not be used as a calculator). Answer as clearly and precisely as possible. *Clarity is required for full credit!* Total value of questions: 100 points (plus 10 bonus points). Time permitted: 120 minutes.

1. (15 points) Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Find a 2 × 2 matrix A having eigenvalues 1 and 2, with eigenvectors \mathbf{v}_1 and \mathbf{v}_2 respectively.

2. (30 points) Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation defined by

$$T(\begin{bmatrix} x\\ y\\ z\\ w \end{bmatrix}) = \begin{bmatrix} x+2y-w\\ y+z+w\\ x-z+2w\\ 2x+3y+2w \end{bmatrix}.$$

(a) Write down the matrix A defining T (so that $T(\mathbf{v}) = A\mathbf{v}$).

(b) Find a basis for the null space of A.

(c) Is every vector in \mathbb{R}^4 of the form $T(\mathbf{x})$ for some $\mathbf{x} \in \mathbb{R}^4$? Justify your answer.

(d) What is the rank of A?

(e) Is T invertible? Explain.

3. (20 points) Let V be the vector space of all 2 × 3 matrices with real entries, and let T: V → V be the linear transformation defined by T(M) = AM where A = [³_{5 2}].
(a) What is the dimension of V? State a basis for V.

(b) Find M such that $T(M) = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{bmatrix}$.

(c) Is T one-to-one? Explain.

(d) Is T onto? Explain.

4. (15 points) The row space of the matrix

$$A = \begin{bmatrix} -1 & 1 & 3\\ 2 & 1 & -1\\ 1 & 2 & 2 \end{bmatrix}$$

is a two-dimensional subspace of \mathbb{R}^3 , i.e. a plane through the origin. Find a linear equation of the form ax + by + cz = 0 defining this plane.

- 5. (30 points) Answer TRUE or FALSE to each of the following statements.
 - (a) If A is an $m \times n$ matrix, then the column space of A is $\{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}$. (*True/False*)

(b) Every linear system $A\mathbf{x} = \mathbf{b}$ has at least one solution. (*True/False*)

(c) If 0 is an eigenvalue of A, then A is not invertible. _____(*True/False*)

- (d) If λ is an eigenvalue of A, then λ^2 is an eigenvalue of A^2 . (*True/False*)
- (e) Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_6}$ be a set of vectors in \mathbb{R}^n . If the subsets ${\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ and ${\mathbf{v}_4, \mathbf{v}_5, \mathbf{v}_6}$ are both linearly independent, then S must be linearly independent. (*True/False*)
- (f) Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m}$ be a set of vectors in \mathbb{R}^n . If m > n, then Span S must equal \mathbb{R}^n . (True/False)
- (g) If three of the columns of a 3×6 matrix A are linearly independent, then the rows of A must be linearly independent. (*True/False*)
- (h) If A and B are two $n \times n$ matrices satisfying AB = BA, and **v** is an eigenvector of A, then $B\mathbf{v}$ is an eigenvector of A. _____(*True/False*)
- (i) Let A be a 9×9 matrix with (i, j)-entry equal to a_{ij} . If A has rank one, then $det \begin{bmatrix} a_{ij} & a_{i\ell} \\ a_{kj} & a_{k\ell} \end{bmatrix} = 0$ for all i, j, k, ℓ between 1 and 9. _____(*True/False*)
- (j) If A and B are $n \times n$ matrices, and B is diagonal, then AB = BA. (A diagonal matrix has all its nonzero entries on the main diagonal; that is, a matrix is diagonal if its (i, j)-entry is zero whenever $i \neq j$.) _____(True/False)