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We have gained some geometric understanding of the action of a linear transformation

T : R2 → R2 in certain cases (including rotations, reflections, shears and dilations). Among

those transformations most readily understood are those represented by diagonal matrices

of the form A =
[
a
0

0
d

]
. Such a transformation T (x) = Ax maps the standard basis vectors

e1 =
[
1
0

]
and e2 =

[
0
1

]
to ae1 and de2 respectively. Thus T stretches by a factor a in the

horizontal direction, while also stretching by a factor d in the vertical direction. (To say

T ‘stretches’ in the horizontal direction is perhaps only accurate for a > 1; if 0 < a < 1

then T actually shrinks in the horizontal direction; if a < 0 then T reverses the horizontal

direction; and if a = 0 then T flattens everything into the y-axis and so is not invertible.

Similar observations apply for the vertical direction.) Examples:

In each case, vectors in any direction other than horizontal or vertical do not retain their

direction when T is applied. That is, for diagonal matrices of the form A =
[
a
0

0
d

]
with

a 6= d, the only vectors x ∈ R2 for which T (x) is a scalar multiple of x, are horizontal and

vertical vectors.

For a general linear transformation T : V → V , if T (x) = λx, then x is called

an eigenvector, and λ ∈ R is the corresponding eigenvalue. (But we need a nonzero

eigenvector x 6= 0 in order to call λ an eigenvalue; for otherwise every scalar would

qualify as an eigenvalue for 0). For diagonal matrices, the standard basis vectors (or scalar

multiples thereof) are eigenvectors; and the diagonal entries are the eigenvalues. For more

general linear transformations, some more work is required to determine the eigenvalues

and eigenvectors (if any); and this information provides geometric insight into how the

linear transformation acts.
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Example

Consider the linear transformation T : R2 → R2 represented by the matrix A =
[

29
−18

45
−28

]
.

Here is a suggestive illustration of how T acts:

This illustration is not to scale! (The vectors T (e1) =
[

29
−18

]
and T (e2) =

[
45

−28

]
are much

too long to fit with the same scale; and the second parallelogram has such extreme angles

that the figure is not easily recognized.) Since detA = −29·28 + 45·18 = −2, T doubles

areas and reverses orientation (this much at least is roughly depicted by the illustration).

In order to find eigenvalues and eigenvectors for T , we must solve the equation Ax =

λx, i.e. (A − λI)x = 0 for some nonzero x ∈ R2; here we have the 2 × 2 identity matrix

I = I2 =
[
1
0

0
1

]
. Thus eigenvectors for λ are vectors in the null space of A−λI; and in order

for λ to be an eigenvector of A (or of T ), the null space of A − λI must have dimension

at least 1. This means that A − λI is not invertible, i.e. det(A − λI) = 0. This gives a

polynomial equation (of degree n, if A is n×n) called the characteristic equation for A;

and det(A − λI) is the characteristic polynomial of A. In our case, the characteristic

polynomial is

det(A−λI) =

∣∣∣∣ 29−λ 45
−18 −28−λ

∣∣∣∣ = (29−λ)(−28−λ)− 45(−18) = λ2−λ−2 = (λ+1)(λ−2).

The eigenvalues are the roots of this polynomial, namely −1 and 2. An eigenvector for

λ1 = −1 is any vector v1 spanning the null space of

A−λ1I = A+I =

[
30 45
−18 −27

]
;

we may take v1 =
[

3
−2

]
. An eigenvector for λ2 = 2 is any vector v2 spanning the null

space of

A−λ2I = A−2I =

[
27 45
−18 −30

]
;

we may take v2 =
[

5
−3

]
. Note that Av1 = −v1: every vector in the line spanned by v1

(the line of slope − 2
3 through the origin in R2) is reversed by T . Also Av2 = 2v2: every
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vector in the line spanned by v2 (the line of slope − 3
5 through the origin in R2) is doubled

by T . Moreover the only vectors on which T acts by simply scaling by a factor, are the

vectors in these two lines.

Note that T scales areas by the factor detA = −2 = λ1λ2 in agreement with our previous

observation.

Every vector v ∈ R2 can be expressed as a linear combination of the new basis vectors

v1,v2 as v = c1v1 + c2v2. With respect to the new basis, computing

Av = A(c1v1 + c2v2) = −c1v1 + 2c2v2

is quite straightforward. Compare: using the standard basis one has v = a1e1 + a2e2 for

some a1, a2 ∈ R; and then

Av = A(a1e1 + a2e2)

= a1(29e1− 18e2) + a2(45e1− 28e2)

= (29a1 + 45a2)e1 − (18a1 + 28a2)e2 .

When considering linear transformations T : Rn → Rn for larger values of n, the advantage

of a basis consisting of eigenvectors becomes increasingly apparent, with n terms in the

expansion of T (v) with respect to a basis of eigenvectors, as compared with n2 terms (in

the worst case) when another basis is used instead.
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