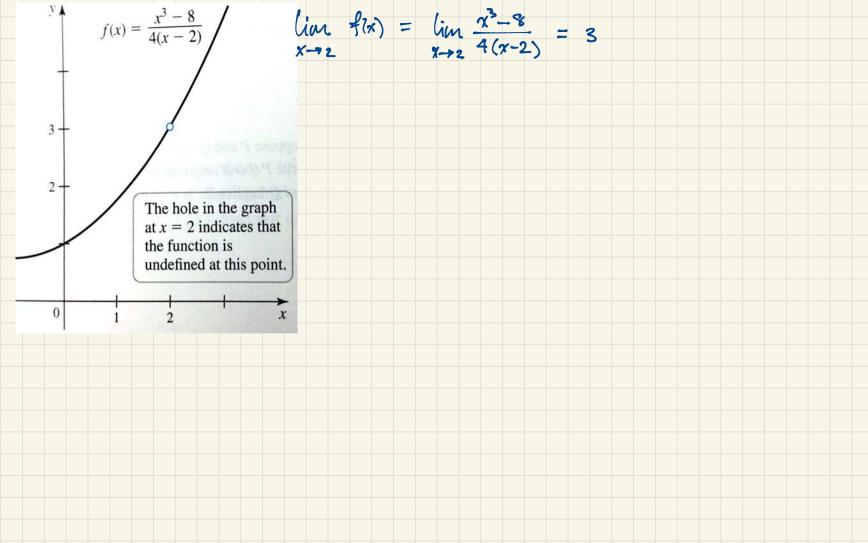

Math 2200-01 (Calculus I) Spring 2020

Book 1



Calculus I: Single variable calculus y= f(x) for example (one input variable x, one output variable). Derivatives (votes of change): differential calculus. Calculas II - also single-variable. Integral calculus. Calculus III: multivariable ie. several iaput variables and/or several output variables
eg. position (xrt), yrt), zrt) of an object at time t: one imput t, three output
variables xrt), yrt), zrt). Eg. Temperature in this room as a function of position T(x,y,z) (three inputs x,y,z; one output T) Eg. Wind relocity as a function of position: three inpits x, y, z; three outputs are the components of wind relocity. Jan 2 Tangent line There is second line There is tangent line here

- Temperature T as a function of fine t During the time interval [4., t2] i.e. t, \le t \le t_2 The average rate of change of temperature during this time iterval is $\Delta T = T_z - T_i \qquad \text{change in temperature} \\ = \text{slope of the Becart line from} \\ \Delta t = t_z - t_i \leftarrow \text{time elapset}. \qquad (t_i, T_i) + o (t_z, T_z) \text{ on the graph.}$ We want to under stand the instantaneous rate of change of temperature at time to To determine this, first consider the average vate of change over smaller and smaller time intervals [t, fz] where we take to - t. (to gets closer and closer to ti). We write $\lim_{t\to 3} \frac{t-t_1}{t-t_1} = 2.2$ 4 2 dogress/hour The (iant is 22 (the limit of T2-T1 is 2.2 The temperature at 3pm is changing at a rate of 2.2 degrees per hour. as to approaches 3). 2.23 2.31

It a function has a sufficiently vice formula of polynomial, then we have algebraic rules that provide definite ways to evaluate limits, eliainating guesswork based on the graph or table & values. Eg. Find the slope of the tangent line to the graph of $y = x^2$ at (2,4). Solution The secont line from (2,4) to $(x, f(x)) = (x, x^2)$ has slope $\frac{\Delta y}{\Delta x} = \frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x - 2)}{x - 2} = x + 2$ The slope of the tangent line is $\lim_{x\to 2} \frac{x-4}{x-2} = \lim_{x\to 2} (x+2) = 2+2=4$ Both of these Sunctions satisfy $\lim_{x\to 2} f(x) = 4$ Both of these Sunctions satisfy $\lim_{x\to 2} f(x) = 4$

