Math 2200-01 (Calculus I) Spring 2020

Book 1

Calculus I : Single-variable calculus y =f(x) for example (one input variable x, one 29 elculus I: Single-variable calculus y=f1x) for example (one input variable).
output variable). Derivatives (vates of change): differential calculus.

Calculas II i also single-variable. Integral calculus.

Calculus III : multi variable ie . several input variables and/or several output variables who II multiveriable ie. sereral iapst variables and or several output variables
eg. position (xrl), yrt), ert) of an object at time t: one input t, three valput $\overrightarrow{varables}$ xets, y tts, zits. Eg. Temperature in this room as a function of position T(x,g,z) $(there$ imputs x, y, z ; one output T) Eg. Wind relacity as a function of position : three ignts x, g, z; three outputs are the components of wind velocity . tangent line Jan 28 Tangent lines to curves secant line \sim is $\frac{1}{2}$ tingent

 T_{1} T_{2} T_{3} T_{4} T_{2} T_{3} T_{4} T_{5} T_{6} T_{7} T_{8} T_{9} T_{10} T_{11} T_{22} T_{11} T_{22} T_{12} T_{13} T_{14} T_{15} T_{16} T_{17} T_{18} T_{19} T_{10} T_{11} T_{12} T_{13} Temperature T as ^a function of time t During the time interval $[t_1, t_2]$ i.e. $t_1 \leq t \leq t_2$ t_2 the temperature rises from T_1 to T_2 "ly average rôte of change of temperature during this time isterval is ΔT $T_z - T$ The average rate of change of temperature
 $\Delta T = T_z - T_r \leftarrow$ change is temperature
 $\Delta T = \frac{T_z - T_r}{t_z - t_r} \leftarrow$ time elassed ⁼ slope of the secant line from $\Delta t = \frac{z}{t_z - t}$, \leftarrow time elapsed. $(L, T,)$ to (L_2, T_2) on the graph. We want to understand the instantaneous rate of change of temperature at time t. . To determine this, first consider the average rate of charge at time t. To determine this, first consider the average rate of the
over smaller and smaller time intervals [t, Ez] where we take tz -+, H_z gets closer and closer to ti). from
the graph
perolence
te of change
te - t.
Lan 29 Jan 29 ϵ وځ $t_{2} = \frac{T_{1}-T_{1}}{t_{2}-t_{1}}$ In any example, $t_{1}=3$ We unite 4 2 degrees/hour we write $\lim_{t\to 3} \frac{z-t}{t-t_1} = 2.2$ $\frac{4}{3.2}$ $\frac{2}{3.1}$ $\frac{2.17}{2.19}$ $\frac{1}{2}$ 3.061 2.197 The Cinit is 22 The limit is 2.2 . I the limit of $\frac{t-3}{2}$
(The temperature at 3pm as to approchage 3 $\frac{2}{2}$ - - is 2.2 $\frac{29}{2.23}$ $\frac{2.23}{2.31}$ is changing at a rate of as $\frac{1}{2}$ approaches 3). 2. 2 degrees per hour.

what is $\sqrt{2}$? Why does man a number exist? Consider $f(x) = x^2 - 2$. f is continuous because it is a polynomial (See Sec 2.6). By the Intermediate because it is a polynomial (See Sec 2.6). By the Julius
I Value theorem (sing f(0) < 0, f(2) > 0) there
exists c between 0 and 2 such that f(c) at is $\sqrt{2}$? Why does such a number exist? Consider $f(x) = x^2 - 2$.
is continuous because it is a polynomial (see sec 2 b). By the Internation
2 $\sqrt{6}$ Value thrower (since $f(0) < 0$, $f(1) > 0$) there
exists c between 0 Later, as we'll see, there is only one such c. $\sqrt{2}$ -2 I We call this value VE. Another example : At this moment there are two points which are antipodes on the Earth 's surface having exactly the same temperature. Consider the equator and let $T(\theta)$, $0 \le \theta < 2\pi$, be the temperature on the considér at angle θ with respect to 0° longitude (i.e. θ is longitude). D $\theta = \pi$
 $\theta = \pi$ $\hat{f}(\theta)$ = $T(\theta+\pi) - T(\theta)$ = difference in temperature between longitude θ and its artipode (at θ +r). If $f(0) < 0$ ie. $T(r) < T(0)$ then $f(\pi) > 0$. $\theta = \frac{3\pi}{2}$ There exists c, $0 < c < \pi$ such that $f(c) = 0$. i.e. $T(c) = T(c + \pi)$.

A derivative is an instantaneous rate of change. eg if s= sit) is position at time t then $\frac{\Delta s}{\Delta t} = \frac{s(t_2) - st_1}{t_2 - t_1} = \text{average velocity during the time interval } t_i \le t \le t_2$
vit) = $s'(t) = \text{instantaneous rate of change of position with respect to time at time } t$ = $\lim_{x \to 0}$ $s(t + \Delta t) - s(t)$ $\uparrow \downarrow \rightarrow o$ Nôte: If position a is in feet and time t is in seconds then velocity (average or Acceleration is the rate of change of velocity i.e. act) = v'(t) = s''(t) in ft/sec-
In differential notation v= $\frac{ds}{dt}$, a= $\frac{dv}{dt} = \frac{d}{dt}(\frac{ds}{dt}) = \frac{d^2s}{dt^2}$ (dee two s by dae t squared). Think of It as an instantaneous replacement for At d^2 Δ s 9.187 #24.