Math 2200-01 (Calculus I) Spring 2020

Book 3

Sec 4.5 : Optimization April ^b $p.285$ #19. of all boxes with a square base and a volume 8 m^3 , which one has the surface area ? #19 of ell boxe $\int \frac{u}{x}$ area $\frac{1}{\sqrt{2}}$ $\frac{1}{h} = 8 \implies h = \frac{b}{x^2}$
= $\frac{2}{x} + 4xh = 2x^2 +$ $4x \frac{8}{x^2} = 2x^2 + \frac{32}{x}, \quad x > 0$ top and sides bottom The domain is (0,00), an unbounded open interval. $\frac{dA}{dx} = 4x - \frac{32}{x^2} = \pm \frac{1}{x^2}(x^3 - 8)$ (The critical point is at x=2. fee call : critical points are where the derivative is ^I zero or undefined . There are no points of the For $0 < x < 2$, $\frac{dA}{dx} < 0$ so A(x) is dereasing domain where $\frac{dA}{dx} = 0$.) It $A \setminus \bigcup$ For $x=2$, $\frac{dA}{dx}=0$.
For $x=2$, $\frac{dA}{dx}=0$. Those are no For $x > 2$, $\frac{dA}{dx} > 0$ so $A(x)$ is increasing. So the minimum surface area $A(1) = 12m^2$. occurs for a box of site $2m \times 2m$. en interval.

It is at x=2.

ints are ushere the
 $\frac{1}{1000}$ are no points
 $\frac{1}{1000}$ are no points
 $\frac{1}{1000}$ are no points
 $\frac{1}{1000}$ are no points

Sec 4.5 p. 287 #41. Let r be the radius of the semicirenter window pane πr The perimeter is $P = \pi r + 2r + 2h = 26$ $h = 10 - \frac{T+2}{2}r$ $(\pi + 2) r + 2h = 20$ $2h = 20 - \pi r - 2r$ h 41. A window consists of rectangular pane of glass surmounted by

a semicircular pane of glass (see figure). If the perimeter of the window is 20 feet, determine the dimensions of the window that maximize the area of the window.

 $A = (20 - \frac{\pi + 4}{2})r$

 $2r$

 $A₁$

 $A = \frac{97}{2}r^2 + 2rh$

 $\frac{20}{1}$

 $=\frac{\pi}{2}r^{2}+2r\left(10-\frac{\pi+2}{2}r\right)$

= $20r + (\frac{\pi}{2} - (\pi + 2))r^2$

 $= 20r - \frac{\pi + 4}{2}r^2$

The critical point is at $r = \frac{20}{\pi + 4}$.
When $0 < r < \frac{20}{\pi + 4}$, $\frac{dA}{dr} > 0$ so A is When $\frac{20}{\pi+4}$ 2 r < $\frac{40}{\pi+4}$, $\frac{dA}{dr}$ < 0 so A is decreasing. So the maximum area occars
requires - to be in 10, TH4, we need only
chock A at endpoints and the critical point.

 $\frac{dA}{dr} = 20 - (\pi + 4)v$

For x close to a, $f(x) \approx L(x) = f(a) (x-a) + f(a) = \Box x + \Box$
approximately linearization $f(a)$
equal to of f at $(a, f(a))$ Example: Use the linearization of \sqrt{x} at (25,5) to approximate 126. $S = \frac{1}{\sqrt{x}}$ $y = \sqrt{x}$ $f(x) = \frac{1}{2\sqrt{x}}$ $f(25) = 5$ The linearization of \sqrt{x} at $(25, 5)$ is $\frac{1}{25}$ 26 $L(x) = f(65)(x-25) + f(65)$ $=$ $\frac{1}{10}(x-25) + 5$. If $x \approx 25$ then $\sqrt{x} \approx \frac{1}{10}(x-25) + 5$. $Eq. 126 \approx \frac{1}{10}(26-25)+5 = 5.1$) correct to 3 significant digits. Conder approximation: V26 25. (correct to one significant digit)

 $\frac{1}{x}$ If we move from (25,5)
(x, f(x)) on the graph, o 5) to
our actual $=dx$ function $f(x) = \sqrt{x}$ changes by $x = \frac{dy \cdot \frac{dy}{dx}}{dx} = \frac{dx}{dx}$
 $y = \frac{1}{x}$ If we move
 $y = \frac{1}{x}$ (x, f(x)) on the
 $y = \frac{1}{x}$ function $f(x) = \sqrt{x}$

an exact amount
 $\Delta y = f(x) - 1$
 $\Delta z = f(x) - 1$

Les slope $\Delta y = f(x)$ $\Delta g = f(x) - f(25)$ 25 The secant line from $(25, 5)$ to $(x, f(x))$ On the tangent line, has slope $\Delta g = f(x) - f(z)$ $=$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{2}$ $\frac{1}{2$ $\Delta x =$ dx Until now we have written dy as an indivisible symbol. Now we are interpreting dx and dy as changes in x and g. They are changes on the tangent line (just like Δx and Δy are corresponding changes on the actual curve of f).
dx and dy are differentials. de and dy are differentials.
We'll interpret the x 5.1 in this new language:

Some books define e^a = $\frac{um}{x \rightarrow \infty}$ $\left(1+\frac{q}{x}\right)^x$.

This limit comes from compound interest.

If you deposit a principal amount A in the bank at nominal interest vate r (eg. 5% interest per annum would give F- 0.05) . If interest is compounded annually then after one year you have earned rA interest. The total balance in the bank after a year would be $A + rA = (1+r)A$. If interest is compounded semianmually (every 6 months) then after 6 months you have (it =)A as balance after 6 months; then at the end of the year you have $(1+\frac{r}{2}) \cdot (1+\frac{r}{2})A = (1+\frac{r}{2})^2A = (1+r+\frac{r^2}{4})A$ $\frac{1}{\sqrt{2}}$
- + $\frac{1}{4}$
Herin If interest is compounded a times per year then every to year your balance is multiplied by 1+5. After one year your balance is (it =)"A. For continually compounded interest we let $n\rightarrow\infty$. $\lim_{n \to \infty} (1 + \frac{1}{n})^n A = e^r A$. Eg. 5% interest compounded continuously results in

