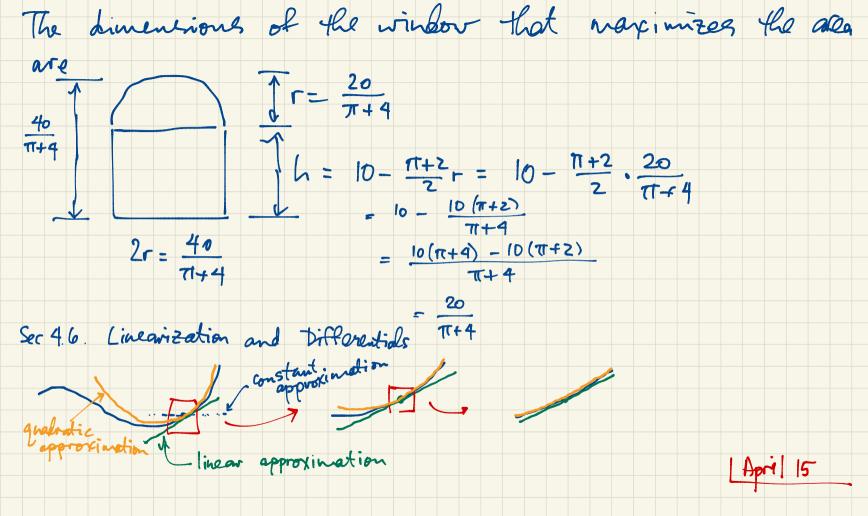
Math 2200-01 (Calculus I) Spring 2020


Book 3

P.285 #19. of all boxes with a square base and a volume 8 m3, which one has the arrayment volume $V = \chi^2 h = 8 = 7 h = \frac{8}{\chi^2}$ $h = \frac{8}{\chi^2} + \frac{4\chi h}{\chi} = 2\chi^2 + 4\chi \frac{8}{\chi^2} = 2\chi^2 + \frac{32}{\chi}, \pi > 0$ $\frac{1}{\chi}$ χ χ χ The domain is (0,00), an interval. $\frac{dA}{dx} = 4x - \frac{32}{x^2} = \frac{4}{x^2} \left(x^3 - 8 \right)$ The critical point is at x=2. (Recall: critical points are where the derivative is For 0 < x < 2, $\frac{dA}{dx} < 0$ so A(x) is deressing where $\frac{dA}{dx} = 0$.) A A(x) is deressing where $\frac{dA}{dx} = 0$.) A A(x) is deressing where $\frac{dA}{dx} = 0$.) For x=2, dA = 0. For x > 2, $\frac{dA}{dx} > 0$ so A(x) is increasing. So the minimum surface area $A(2) = 12 \text{ m}^2$ occurs for R box of size $2\text{m} \times 2\text{m} \times 2\text{m}$.

Sec 4.4. p. 278 # 21. $f(x) = (x-6)(x+6)^2$	$= (x^{2}-36)(x+6) = x^{3}+6x^{2}-36x-216$
	$-36 = 3(x^{2}+4x-12) = 3(x+6)(x-2)$
$\begin{array}{c} p''(x) = (px + 12) = \\ -6 -2 + 2 \\ -6 -2 \\ -7 \\ -6 -2 \\ -7 \\ -6 -2 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\$	6(*+2)
$\frac{-6}{4} - \frac{2}{2} - \frac{6}{6} + \frac{1}{12} = \frac{-6}{4} + \frac{1}{12} + \frac{1}{12} = \frac{-6}{4} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{-6}{4} + \frac{1}{12} + $	y = f(x)
f++00++++	
f 0 + + + + + + + + + + + + + + + +	
$f(-2) = (-8)(4)^2 = -128$	-2 ° 2 6 (in $f(x) = 00$
$f(2) = (-4)(8^2) = -256$ (-2,-128	$\frac{1}{3}$
	$\frac{-2}{3} = \frac{2}{6} = \frac{1}{100} = \frac{1}{700}$ $\frac{1}{100} = \frac{1}{700}$ $\frac{1}{100} = \frac{1}{100}$
I is increasing on (-00, -20) and on (2,00)	ρ (ρ γ
becreasing on (-6,2), concare down on (-00,-2) concare upon (-2,0).	a local araximm point (-6, 0), no absolute extrema or asymptotes.

Sec 4.5 p. 287 #41. Lot r be the radius of the semicircular window pane The perimeter is P= Tr+2r+2h = 20 (r $k = 10 - \frac{T+2}{2}r$ $(\pi + 2)r + 2h = 20$ $2h = 20 - \pi r - 2r$ 41. A window consists of rectangular pane of glass surmounted by a semicircular pane of glass (see figure). If the perimeter of the $\frac{dA}{dr} = 20 - (\pi + 4)v$ window is 20 feet, determine the dimensions of the window that 2r maximize the area of the window. The critical point is at $r = \frac{20}{\pi + 4}$. When $0 < r < \frac{20}{\pi + 4}$, $\frac{dA}{dr} > 0$ so A is increasing. A= = + 2rh $=\frac{\pi}{2}r^{2}+2r(10-\frac{\pi+2}{2}r)$ $= 20r + \left(\frac{\pi}{2} - (\pi+2)\right)r^{2}$ = 20r - $\frac{\pi+4}{2}r^{2}$ When 20 2 r e 40 , dA < 0 so A is decreasing. $A = (20 - \frac{71+4}{2}r)r$ $Fequires r to be in [0, \frac{40}{17+4}], we need only chuck A at endpoints and the critical point.$ 40 71+4 20 17+4

For x close to a, $f(x) \approx L(x) = f(a)(x-a) + f(a) = \prod x + \prod$ approximately linearization f(a)equal to of f at (a, f(a))Example: Use the linearization of Jx at (25,5) to approximate J26. $f'(x) = \frac{1}{2\sqrt{x}}, \quad f'(z5) = \frac{1}{2\sqrt{25}} = \frac{1}{10}$ The linearization of \sqrt{x} at (25, 5) is 25 26 L(x) = f(65)(x-25) + f(65) $=\frac{1}{10}(x-25)+5$ If $x \approx 25$ then $\sqrt{x} \approx \frac{1}{10} (x-25) + 5$. Eq. $\sqrt{26} \approx \frac{1}{10}(26-25)+5 = 5.1$ Check: $\sqrt{26} \approx 5.099019514$ correct to 3 significant digits. Conder approximation: J26 2 5. (correct to one significant digit) Constant approximation Jx 2 5

5 dg J y = tx If we move from (25,5) to x, f(x) on the graph, our actual = dx function $f(x) = \sqrt{x}$ channel. an exact amount $\Delta q = f(x) - f(25).$ 25 X $\Delta L(x) = L(x) - L(25) = f'(25) = \frac{dy}{dx}$ $\Delta x = \frac{f(x) - f(25)}{x - 25}$ $\Delta x = \frac{dy}{dx}$ (x, f(r))Until now we have written by as an indivisible symbol. Now we are interpreting dx and dy as changes in x and g. They are changes on the targent line (just like Ax and Ay are corresponding changes on the actual curve of f). dx and dy are differentials. We'll interpret 126 x 5.1 in this new language:

 $f'(25) = \frac{1}{10} = \frac{dy}{dx} = 5$ $dy = \frac{1}{10} dx = \frac{1}{10} x / = 0.1$ JAy. $dx = \Delta x = 26 - 25 = 1$ As we more from x = 25 to x = 26, the corresponding change in g is 25 26 $\Delta y \approx dg = 0.1$. So √26 ≈ 5.1 This is a quick and easy interpretation for differentials. We will be using differentials throughout Calcalus. If y= sinx link dy out by If y = sinx, fink dy and by. tute grals Safex) dx $\frac{dy}{dx} = \cos x \quad \text{so} \quad dy = (\cos x) \, dx$ x ___ v ___ y by - dy dy da - dy dr so ∆y ≈ dy = cosx dx