Quiz 1—Friday, January 31

The number of live bacteria N = N(t) in a small colony at time t (in hours) is recorded at hourly intervals, from 1pm to 5pm. The population was recorded in the following table:

t	1	2	3	4	5
N(t)	104	191	284	387	506

Determine $\frac{\Delta N}{\Delta t}$, i.e. the average rate of change of the bacteria population per unit time,

(a) during the time interval [1,2];

$$\frac{191 - 104}{2-1} = 87 \text{ bacteria/hour}$$

(b) during the time interval [2,3];

$$\frac{284 - 191}{3 - 2} = 93$$
 bacteria / how

(c) during the time interval [2,4];

(d) during the time interval [2,5].

Based on these values, *estimate* the instantaneous rate of increase in the bacteria population at 2pm.

lien
$$\frac{\Delta N}{\Delta t}$$
 books to be 90 bacteria/hour