WIVERSITY
DEPARTMENT
Math 2200-Spring 2020
Department of Mathematics
Sec 42.
21. (a) Yes, the conditions of the Usean Value Theorem are satisfied: if is estimated
and differentiable since if is a polynomial.
(b)
$$\frac{f(2)-f(1)}{2-(-1)} = \frac{3-6}{3} = -1$$
; $f(x) = -2x$.
Solve $f(c) = 2c = -1$ to dotain $c = \frac{1}{2}$, the unique point in the interval
 $(-1,2)$ othere $f'(c)$ equals the average role of change of f on $[-1,2]$.
22. (a) Yes, the conditions of the Usean Value Theorem are satisfied: if is estimated
 $(-1,2)$ othere $f'(c)$ equals the average role of change of f on $[-1,2]$.
22. (a) Yes, the conditions of the Usean Value Theorem are satisfied: if is estimated
 $(-1,2)$ othere $f'(c)$ equals the average role of $f(x) = 3x^2 + 4x$. To field privals
where $f'(c) = 3c^2 + 4c = -1$, $f'(x) = 3x^2 + 4x$. To field privals
where $f'(c) = 3c^2 - 4c = -1$, $g(t)e D = 3c^2 - 4e + 1 = (3c - 1)(c - 1)$.
The roots of this equation are $\frac{1}{2}$ and 1 ; however, we
require $D < c < 1$. So the only solution is $c = \frac{1}{2}$.
23. (a) No; the conditions required leg, the Mean Value Theorem are
not subisfied. Alfbrough f is exitations, it is not differentiable
at 0.
25. (a) No; this function is nother continuous and differentiable
at 0.
25. (a) No; the approximation function is both continuous and
differentiable.
(b) $\frac{f(1) - f(0)}{1 - 0} = \frac{e - 1}{1 - e} = -1$, $f'(x) = e^x$. We must find c
such that $e^x = e - 1$. The unique solution is
 $c = \ln(e^{-1}) \le 0.541$, a point in the spen interval $(p, 1)$.

.