Math 2200—Spring 2020

Department of Mathematics

Solections to Practice Problems 1					
Sec 2.1					
#8. Ch [2,2.01],	$\frac{\Delta s}{\Delta t} = \frac{55.958}{2.01}$	<u>4 - 56</u> =	-4.16		
$O_{\rm N}$ [2,2.001], $\frac{\Delta s}{\Delta t} = \frac{55.995984 - 56}{2.001 - 2} = -4.016$					
$\mathbb{O}_{n}[2,2.001], \frac{\Delta s}{\Delta t} = \frac{55.999959984 - 56}{2.001 - 2} = -4.0016.$					
These values appear to be converging to a limiting. value of 4. This lade as to conjecture that at fime.					
t=2. the instantaneous relacity is 2.					
# 12. The slope of the second line from $(2,f(2))$ to $(x,f(x))$ is $\frac{\Delta f(x)}{\Delta x} = \frac{f(x) - f(2)}{x-2}.$					
(a) We takentete the following values:					
я].5	1.9	1.99	1.999	1.9979	
$\begin{array}{c c} x & 1.5 \\ \hline -\frac{f(x)-f(z)}{x-2} & 8.0 \end{array}$	1.6	o.IG	0.016	0.0016	1
(b) We conjecture that these values have a limit of D as					
x upportunities ~.					
(c) The answer in (b) confirms our prediction based on					
the graph: the green secant live approaches the					
red tangent line as x->2; and this tangent have					
the graph: the gran secant live approaches the red tangent live as x -> 2; and this tangent line is horizontal so its slope is ECro.					

H. (a) $\frac{s(s) - s(0)}{s - 0} = 15.3$ (b) $\frac{s(z) - s(0)}{z - 0} = 20.2$ (c) $\frac{s(1) - s(0)}{1 - 0} = 25.1$ (d) $\frac{s(h) - s(0)}{h - 0} = -4.9h + 30$ Remark: From (b) we see that the instantaneous velocity at time (D) is lim (-4.9h + 30) = 30. h-ro

#20. Please make sure your calculator is set in <u>radians</u> mode (reviewed in Sec 1.4). Values in the second column are 1.9099, 0.14988, 0.0149999, 0.001500, 0.0001500. We conjecture, based on these values, that the instantaneous velocity at t=0 is 0.