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1. Introduction

Two-graphs were first introduced by G. Higman, as natural objects for the action of certain

sporadic simple groups. They have since been studied extensively by Seidel, Taylor and

others, in relation to equiangular lines, strongly regular graphs, and other notions; see

[Se1], [Se2], [SeT]. The analogous oriented two-graphs (which we call skew two-graphs)

were introduced by Cameron [Cam], and there is some literature on the equivalent notion

of switching classes of tournaments.

Our exposition focuses on the use of two-graphs and skew two-graphs as isomorphism

invariants of translation planes, and caps, ovoids and spreads of polar spaces in odd charac-

teristic. The earliest precedent for using two-graphs to study ovoids and caps is apparently

due to Shult [Sh]. The degree sequences of these two-graphs and skew two-graphs yield the

invariants known as fingerprints, introduced by J. H. Conway (see Charnes [Ch1], [Ch2]).

Two desirable properties of an isomorphism invariant are that it be

(i) easy or fast to compute, and

(ii) complete, i.e. able to distinguish between any two inequivalent examples.

Our two-graphs and skew two-graphs, and their fingerprints, are easily computed in poly-

nomial time. It is not known whether two translation planes of order n ≡ 1 mod 4 with

the same two-graph or fingerprint must be equivalent (isomorphic or polar), although for

n ≤ 49 this is true (see Charnes [Ch2], Mathon and Royle [MR], and Section 5). For trans-

lation planes of order 27, however, the skew two-graph and fingerprint invariants are not

complete (see Dempwolff [D] and Section 5). The question of completeness of two-graph
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and fingerprint invariants for ovoids in O+
2r(q) (for q odd) is open for r ≥ 3, although false

for r = 2 (Theorem 7.3).

Studies of two-graphs have traditionally emphasised the special class of regular two-

graphs. However, most of our two-graphs and skew two-graphs will not be regular. This

is fortunate when using two-graphs and skew two-graphs as isomorphism invariants of

translation planes or ovoids, since the more varied their degree sequences are, the more

successful they will be in distinguishing non-isomorphic objects.

There are several indications that these invariants are natural. They may be con-

structed both combinatorially (using even vs. odd permutations) and algebraically (using

squares vs. nonsquares). Certain infinite families of regular two-graphs and skew two-

graphs, including those of Paley, unitary and Ree types, are naturally constructed from

ovoids (cf. [Se1]). We also show that two-graphs of caps provide a natural approach to ques-

tions in certain geometric settings, including BLT-sets and families of doubly intersecting

circles in certain classical circle geometries.

In even characteristic, the two-graph and fingerprint of a translation plane or ovoid

is trivial, and so cannot distinguish between any inequivalent examples of the same size.

It remains an open problem to find invariants of translation planes and orthogonal ovoids

in even characteristic, which are as fast to compute as two-graphs or fingerprints, while

being as effective in distinguishing isomorphism types as in odd characteristic.

2. Graphs and Two-Graphs

We summarise here only those definitions and properties of two-graphs required in later

sections. For a broader introduction to two-graphs, see [Se1].

Let X be a set of cardinality v ≥ 3. A two-graph on X is a pair (∆, X) (or simply ∆, if

no confusion is likely) where ∆ ⊆
(
X
3

)
(the set of all 3-subsets of X) such that every 4-subset

of X contains an even number (i.e. 0, 2 or 4) of triples from ∆. The trivial two-graphs

are the empty two-graph Ø and the complete two-graph
(
X
3

)
. For any two-graph ∆, its

complement ∆ :=
(
X
3

)
................∆ is also a two-graph. Often we shall be more concerned with the

unordered pair ∆̃ := {∆, ∆}, which amounts to a partition of
(
X
3

)
into two special subsets.

The degree of a 2-subset {x, y} ⊂ X is the number of triples {x, y, z} ∈ ∆ containing

{x, y}. We say ∆ is regular if every 2-subset of X has the same degree; equivalently, when

∆ is a 2-(v, 3, λ) design for some λ.

Let Γ be an ordinary graph with vertex set X . For each subset X1 ⊆ X , a graph

Γ(X1) with vertex set X is obtained from Γ by replacing all edges (respectively, nonedges)
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between X1 and X ................ X1 with nonedges (resp., edges). Two graphs Γ, Γ′ with vertex set

X are switching-equivalent if Γ′ = Γ(X1) for some X1 ⊆ X ; clearly this is an equivalence

relation. The Seidel adjacency matrix of Γ, with respect to an ordering x1, x2, . . . , xv of

X , is the v × v matrix A whose (i, j)-entry is 0 if i = j; −1 if xi is adjacent to xj , and 1

otherwise. The graph Γ′ is switching-equivalent to Γ iff the Seidel adjacency matrix of Γ′

equals DAD for some ±1-diagonal matrix D. Given Γ, define ∆(Γ) to be the collection

of all 3-subsets of X which induce an odd number (i.e. 1 or 3) of edges of Γ. Then ∆(Γ)

is a two-graph, called the two-graph of Γ. Also ∆(Γ′) = ∆(Γ) iff Γ′ and Γ are switching-

equivalent. Clearly ∆(Γ) = ∆(Γ), where Γ is the complementary graph of Γ.

The degree sequence of ∆ is the sequence (n0, n1, . . . , nv−2) where nλ is the number

of 2-subsets {x, y} ⊂ X of degree λ in ∆. Thus
∑

nλ = v(v− 1)/2, and ∆ has degree

sequence (nv−2, nv−1, . . . , n0). Now let |AA�| denote the matrix obtained by replacing

each entry of AA� by its absolute value. Then the multiset of entries of |AA�| is seen to

be
02nr−122nr−2+2nr42nr−3+2nr+1 · · · (2r− 2)2n0+2n2r−2(2r− 1)2r if v = 2r, or

12nr−1+2nr32nr−2+2nr+152nr−3+2nr+2 · · · (2r− 1)2n0+2n2r−1(2r)2r+1 if v = 2r +1.

This denotes the fact that 0 occurs 2nr−1 times in |AA�| for v = 2r, etc. This multiset

clearly depends only on the unordered pair ∆̃ = {∆, ∆}. We call this multiset the fin-

gerprint of ∆ (or of ∆), following Conway, who introduced such invariants for projective

planes (see Section 5). We suppress the writing of entries whose frequency is zero; thus

for example if ∆ is regular of degree k, its fingerprint is |2k− 2r +2|2r(2r−1)(2r− 1)2r if

v = 2r, or |2k− 2r + 1|2r(2r+1)(2r)2r+1 if v = 2r +1.

3. Tournaments and Skew Two-Graphs

As before, X is a set of cardinality v ≥ 3. Let Sym(X) be the group of all permutations of

X , and let T (X) be the set of all 3-cycles in Sym(X), so that |T (X)| = v(v− 1)(v− 2)/3.

A skew (oriented) two-graph on X (cf. [Cam]) is a subset ∇ ⊂ T (X) such that

(i) for any τ ∈ T (X), exactly one of τ, τ−1 belongs to ∇; and

(ii) for any 4-subset {x, y, z, w} ⊆ X , ∇ contains an even number (i.e. 0, 2 or 4) of the

3-cycles (x y z), (x w y), (x z w), (y w z).

(The latter is a conjugacy class of Alt {x, y, z, w}.) The complement of ∇, ∇ := T (X) ................

∇ = {τ−1 : τ ∈ ∇} is also a skew two-graph. We denote the unordered pair ∇̃ := {∇,∇}.
Unlike the situation for two-graphs, by virtue of property (i) above, there is no ‘trivial’

skew two-graph. The degree of an ordered pair (x, y) (where x, y are distinct elements of
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X) is the number or z ∈ X such that (x y z) ∈ ∇. We say that ∇ is regular if every pair

(x, y) has the same degree (necessarily (v− 2)/2).

A tournament on X is an orientation of the complete graph with vertex set X . If

T is a tournament and X1 ⊆ X , a tournament T (X1) is obtained from T by reversing

the orientation of all edges between X1 and X ................ X1. We say two tournaments T, T ′ are

switching-equivalent if T ′ = T (X1) for some X1 ⊆ X . This is an equivalence relation. The

(0,±1)-adjacency matrix of T with respect to an ordering x1, . . . , xv of X , is the v × v

matrix A whose (i, j)-entry is 0 if i = j; −1 if (xi, xj) ∈ T ; and 1 otherwise. We shall

also call A a (0,±1)-tournament matrix; the usual tournament matrix for T is the (0, 1)-

matrix 1
2 (J−I−A). A tournament T ′ is switching-equivalent to T iff the (0,±1)-adjacency

matrix of T ′ equals DAD for some ±1-diagonal matrix D. Define ∇(T ) to be the set of

all 3-cycles (x y z) such that T contains an odd number (i.e. 1 or 3) of the directed edges

(x, y), (y, z), (z, x). Then ∇(T ) is a skew two-graph, called the skew two-graph of T . Also

∇(T ′) = ∇(T ) iff T, T ′ are switching-equivalent. Clearly, ∇(T ) = ∇(T ) where T is the

tournament obtained by reversing the orientation of every edge of T . It is easy to see

that ∇(T ) is regular iff A is a skew-symmetric conference matrix, iff A + I is a (skew)

Hadamard matrix (see [GS], [DGS], [Se1]). In particular, if ∇ is a regular skew two-graph

on v ≥ 3 vertices, then v ≡ 0 mod 4.

If nλ is the number of ordered pairs (x, y) (where x �= y in X) of degree λ in ∇, then

the degree sequence (n0, n1, . . . , nv−2) is palindromic (i.e. nλ = nv−2−λ) and coincides with

the degree sequence of ∇. Note that
∑

nλ = v(v− 1). The multiset of entries of |AA�| is

0nr−122nr−242nr−3 · · · (2r− 2)2n0(2r− 1)2r if v = 2r, or

12nr−132nr−252nr−3 · · · (2r− 1)2n0(2r)2r+1 if v = 2r + 1.

This is an isomorphism invariant of ∇̃ = {∇,∇}, and is called the fingerprint of ∇̃ (or

of ∇).

4. Ovoids and Caps of Polar Spaces.

We refer to Taylor [Ta1] for notation and basic properties of classical groups. For ovoids

and spreads of polar spaces, see [Th1], [HT]; however, we differ in that we name polar

spaces after the associated groups. Let P be a classical polar space of rank r in PG(V ) =

PG(s, F ). Then one of the following occurs:
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(i) P is of orthogonal type O+
2r(F ), O2r+1(F ) or O−

2r+2(F ) (s = 2r− 1, 2r, 2r +1 respec-

tively). In this case P is the collection of all subspaces of PG(V ) which are totally sin-

gular with respect to a particular nondegenerate quadratic form Q on V = F s+1, F =

GF (q). The associated symmetric bilinear form is f(x, y) = Q(x + y)−Q(x)−Q(y).

(ii) P is of unitary type U(s +1, F ), i.e. P is the collection of all totally isotropic subspaces

of V with respect to a nondegenerate Hermitian form f on V = F s+1, F = GF (q2),

r = 	 s+1
2 
.

(iii) P is of symplectic type Sp(2r, F ), s = 2r− 1. Then P is the collection of all totally

isotropic subspaces of V with respect to a nondegenerate alternating bilinear form f

on V = F 2r, F = GF (q).

In the unitary and symplectic cases, a similarity of f is a map g ∈ GL(V ) such that

f(xg, yg) = λf(x, y) for some fixed nonzero λ ∈ F ; if moreover λ = 1, then g is an

isometry of f (called a linear isometry in [Ta1]). In the orthogonal case, similarities and

isometries of Q are defined similarly.

Elements of P have projective dimension 0, 1, . . . , m, . . . , r− 1 and are called points,

lines, . . . , m-flats, . . . , generators. Let O be a k-cap or cap of P, i.e. a collection O of

k points, no two of which are perpendicular (collinear in P). We call O an ovoid if every

generator of P contains a (necessarily unique) point of O. We shall use two equivalence

relations for ovoids, namely similarity and isometry. The proof of the following result is

straightforward, and is omitted.

4.1 Theorem. Let O be a cap in P.

(i) If P is of orthogonal or unitary type, or of symplectic type with q �≡ 3 mod 4, then

the collection of all 3-subsets {〈u〉, 〈v〉, 〈w〉} of O such that f(u, v)f(v, w)f(w, u) is

a nonsquare in F , defines a two-graph (∆(O),O). If q is even, this two-graph is

trivial. If O′ is similar (resp., isometric) to O, then ∆(O′) ∼= ∆(O) or ∆(O) (resp.,

∆(O′) ∼= ∆(O)).

(ii) If P is of symplectic type with q ≡ 3 mod 4, then the collection of all 3-cycles

(〈u〉 〈v〉 〈w〉) such that f(u, v)f(v, w)f(w, u) is a nonsquare in F , defines a skew two-

graph (∇(O),O). If O′ is similar (resp., isometric) to O, then ∇(O′) ∼= ∇(O) or

∇(O) (resp., ∇(O′) ∼= ∇(O)).

Here it is meaningless to write ∆(O′) = ∆(O) since in general these have different point

sets. However, by virtue of the above isomorphisms, we speak of ∆(O) and ∆̃(O) =
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{∆(O), ∆(O)} (or ∇(O) and ∇̃(O) = {∇(O),∇(O)}) as invariants under the groups

of isometries and similarities, respectively. Observe that similar ovoids have the same

fingerprint. Fingerprints were used to distinguish several O+
8 (q) ovoids in [Mo].

As a first example, we construct the Paley two-graphs ∆q and the Paley skew two-

graphs ∇q from the Sp(2, q) ovoids. Let q be an odd prime power, and let f be a nonde-

generate alternating bilinear form on V = F 2. The unique ovoid O consists of all points of

the projective line PG(1, q). The isometry group G = Sp(V, f) = Sp(2, q) ∼= SL(2, q) acts

2-transitively on O, and has two orbits on ordered triples (〈u〉, 〈v〉, 〈w〉) of distinct points

in O; these orbits are distinguished according to whether or not f(u, v)f(v, w)f(w, u) is a

square in F . If q ≡ 1 mod 4, then ∆(O) = ∆q := {{〈u〉, 〈v〉, 〈w〉} : f(u, v)f(v, w)f(w, u) is

a square in F} is a regular two-graph of degree (q− 1)/2, admitting G/Z(G) ∼= PSL(2, q).

The two-graph isomorphism ∆q
∼= ∆q is obtained using a similarity. If q ≡ 3 mod 4, then

∇(O) = ∇q := {(〈u〉 〈v〉 〈w〉) : f(u, v)f(v, w)f(w, u) is a square in F} is a regular skew

two-graph of degree (q− 1)/2. Again, G/Z(G) ∼= PSL(2, q) acts 2-transitively on ∇q, and

∇q
∼= ∇q by a similarity.

The 2-transitive two-graphs have been classified by Taylor [Ta2]. It is easy to see that

the only 2-transitive skew two-graphs are those of Paley type:

4.2 Theorem. If (∇, X) is a 2-transitive skew two-graph, then X may be identified with

PG(1, q) for some q ≡ 3 mod 4, in such a way that ∇ = ∇q (of Paley type).

Proof. Let G = Aut(∇), and let g ∈ G be an involution. If g fixes a point x ∈ X ,

then g interchanges two elements (x y z), (x z y) ∈ T (X), only one of which belongs to

∇, a contradiction. Hence g fixes no point of X . By Bender [Be], there are only two

cases to consider. In the first case, G ≥ PSL(2, q), |X | = q + 1 where q ≡ 3 mod 4

and the conclusion follows from the remarks above. In the second case, G ≥ AGL(1, q),

|X | = q = 2e. Since AGL(1, 4) and PSL(2, 3) have equivalent actions on 4 points, we may

assume that q ≥ 8, and a contradiction ensues just as in the case of two-graphs; see the

proof of Theorem 1 of Taylor [Ta2].

The 2-transitive ovoids have been classified by Kleidman [Kl]. Clearly, their associated

two-graphs and skew two-graphs are 2-transitive and hence regular, although possibly

trivial. In Table 1 we list all 2-transitive ovoids in odd characteristic and having at least

three points, and we indicate which of the corresponding two-graphs are trivial.
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Ovoid Restrictions Nontrivial ∆ or ∇? Description

Sp(2, q) q ≡ 1 mod 4 nontrivial ∆ Paley ∆q

Sp(2, q) q ≡ 3 mod 4 nontrivial ∇ Paley ∇q

O3(q) q odd trivial ∆ Theorem 7.2
U(3, q) q odd nontrivial ∆ unitary two-graph
O+

4 (q) q odd trivial ∆ 1 + 	 e
2

 simil. classes

O−
4 (q) q odd nontrivial ∆ Paley ∆q2

O5(q), O+
6 (q) q odd nontrivial ∆ induced from O−

4 (q)
U(4, q) q odd nontrivial ∆ induced from U(3, q)
O7(3) q = 3 nontrivial ∆ Sp(6, 2)
O7(q) q = 3e nontrivial ∆ PSU(3, q)
O7(q) q = 3e, e odd nontrivial ∆ 2G2(q)
O+

8 (q) q = 3e nontrivial ∆ induced from O7(q)
O+

8 (q) q ≡ 2 mod 3 nontrivial ∆ PSU(3, q)

TABLE 1

Our construction of the unitary two-graph from the U(3, q) ovoid follows [Se1]. The non-

triviality of ∆(O) for the last four entries, follows from Theorem 7.4; hence by [Ta2], these

are the usual unitary and Ree two-graphs. All remaining cases are covered by remarks

above and Theorems 7.2 and 7.3.

Suppose I(O) is an invariant of caps O which is computed by testing just k-subsets

of O, and that the invariant I is nontrivial (able to distinguish at least two inequivalent

caps of the same size). In the orthogonal case, Theorem 4.3 shows that k ≥ 3, and that if

k = 3, then I(O) is a function of ∆(O) and the characteristic is odd. [Note: It is usually

possible to define a nontrivial invariant graph Γ(O); for example, fix t ≥ 0 and let Γ(O) be

the set of pairs {〈u〉, 〈v〉} in O such that |π∩O| = t for some plane π of PG(V ) containing

〈u, v〉. However, the latter definition evidently requires testing subsets of O of size ≥ 4.]

For symplectic polar spaces, however, there are nontrivial triple-based invariants in even

characteristic, computed by testing for collinear triples (cf. Theorem 4.4).

4.3 Theorem. Let P be an orthogonal polar space in PG(V ) = PG(s, F ), s≥ 2, with

associated quadratic form Q on V . Then the number of orbits of PΩ(V, Q) on ordered

3-caps in P is

(i) 1, if q is even and s is odd;
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(ii) 2, if q is odd and P �= O+(4, q) (the orbit containing (〈u〉, 〈v〉, 〈w〉) being determined

by whether f(u, v)f(v, w)f(w, u) is a square or a nonsquare in F ); or

(iii) 4, if q is odd and P = O+(4, q) (as described below).

The number of orbits under PO(V, Q) is 1, 2, 2 respectively.

(Here O(V, Q) is the full linear isometry group, and Ω(V, Q) is the subgroup defined

in [Ta1]. We suppose q and s are not both even; otherwise P would be a symplectic

polar space, which is treated by Theorem 4.4 below.)

Proof. Let (〈u〉, 〈v〉, 〈w〉), (〈u′〉, 〈v′〉, 〈w′〉) be two ordered 3-caps in P. Note that 〈u, v, w〉
and 〈u′, v′, w′〉 are nondegenerate planes in PG(V ). If sgn(f(u, v)f(v, w)f(w, u)) �= sgn(

f(u′, v′)f(v′, w′)f(w′, u′)), then clearly the two ordered 3-caps lie in distinct orbits of

PO(V, Q).

If q is odd, suppose that f(u, v)f(v, w)f(w, u)/(f(u′, v′)f(v′, w′)f(w′, u′)) = α2 for

some α ∈ F ; if q is even, then such an α exists automatically. Define a linear transformation

g : 〈u, v, w〉 → 〈u′, v′, w′〉 by
ug = αf(v, w)−1f(v′, w′)u′,

vg = αf(w, u)−1f(w′, u′)v′,

wg = αf(u, v)−1f(u′, v′)w′.

Then g is an isometry from 〈u, v, w〉 to 〈u′, v′, w′〉. By Witt’s Theorem, g extends to an

isometry g ∈ O(V, Q). Moreover, 〈ug〉 = 〈u′〉, 〈vg〉 = 〈v′〉 and 〈wg〉 = 〈w′〉. If s = 2

then PO(V, Q) = PΩ(V, Q) ∼= PSL(2, q) and we are done. If s ≥ 4 then there exists

σ ∈ O(V, Q) fixing 〈u′, v′, w′〉 pointwise, such that gσ ∈ Ω(V, Q). Hence we may assume

that s = 3. Suppose P = O−(4, q). If g /∈ Ω(V, Q), we may replace g by gρ ∈ Ω(V, Q)

where ρ is a transvection or reflection fixing 〈u′, v′, w′〉 pointwise, according as q is even or

odd.

This leaves only the case P = O+(4, q). If q is even and g /∈ Ω(V, Q), replace g by

gτ ∈ Ω(V, Q) where τ is a transvection fixing 〈u′, v′, w′〉 pointwise. Hence we may assume

q is odd. We may identify V = V1 ⊗ V2 where Vi
∼= F 2, such that the points 〈v1 ⊗ v2〉

of P are those points of PG(V ) represented by the pure tensors v = v1⊗ v2 ∈ V . The

symmetric bilinear form satisfies f(u1⊗u2, v1⊗ v2) = f1(u1, v1)f2(u2, v2) where fi is a

nondegenerate alternating form on Vi. Note that P ∼= P1 × P2 where Pi is the Sp(2, q)-

polar space (Vi, fi), and PΩ(V, Q) ∼= PSp(2, q) × PSp(2, q) ≤ Aut(P), where the i-th

factor PSp(2, q) ∼= PSL(2, q) acts on the q +1 points of Pi in the usual way. There-

fore two ordered 3-caps (〈u〉, 〈v〉, 〈w〉) and (〈u′〉, 〈v′〉, 〈w′〉) are in the same PΩ(V, Q)-orbit
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iff sgn(fi(ui, vi)fi(vi, wi)fi(wi, ui)) = sgn(fi(u′
i, v

′
i)fi(v′

i, w
′
i)fi(w′

i, u
′
i)) for i = 1, 2. There

exists ρ ∈ O(V, Q)................Ω(V, Q) such that (v1⊗ v2)ρ = v2⊗ v1, which fuses the four PΩ(V, Q)-

orbits in pairs, giving two PO(V, Q)-orbits.

4.4 Theorem. Consider a symplectic polar space P of type Sp(2r, q) embedded in PG(V )

= PG(2r− 1, F ), with associated alternating bilinear form f on V . Then the number of

orbits of PSp(V, f) on ordered 3-caps in P is

(i) 1, if q is even and r = 1;

(ii) 2, if q is odd and r = 1 (the orbit containing (〈u〉, 〈v〉, 〈w〉) being determined by

whether f(u, v)f(v, w)f(w, u) is a square or a nonsquare in F );

(iii) 2, if q is even and r ≥ 2 (the collinear and noncollinear 3-caps); or

(iv) 4, if q is odd and r ≥ 2 (collinear with f(u, v)f(v, w)f(w, u) a square or a nonsquare,

and noncollinear with f(u, v)f(v, w)f(w, u) a square or a nonsquare).

Proof. It is clear that the number of orbits is at least 1, 2, 2 or 4 respectively. If r = 1 then

PSp(V, f) ∼= PSL(2, q) is 3-transitive for q even, but has two orbits on ordered triples for

q odd.

Hence assume r ≥ 2. For collinear triples, PSp(V, f) induces PSL(2, q) on every

hyperbolic line, and the result follows as before. So let (〈u〉, 〈v〉, 〈w〉) and (〈u′〉, 〈v′〉, 〈w′〉)
be two ordered 3-caps in P, such that 〈u, v, w〉 and 〈u′, v′, w′〉 are planes in PG(V ). If q is

odd, assume that f(u, v)f(v, w)f(w, u)/(f(u′, v′)f(v′, w′)f(w′, u′)) = α2 for some α ∈ F ;

if q is even, then such an α exists automatically. Then we construct g ∈ Sp(V, f) such that

〈ug〉 = 〈u′〉, 〈vg〉 = 〈v′〉 and 〈wg〉 = 〈w′〉, just as in the proof of Theorem 4.3.

By contrast, for unitary polar spaces, the number of orbits of PSU(V, f) on ordered

3-caps is an unbounded function of V .

5. Invariants of Projective Planes

The following invariants of finite projective planes, due to J. H. Conway, are described in

[Ch1], [Ch2].

Let Π be a projective plane of order n, and let (C, �) be an antiflag (nonincident point-

line pair) in Π. Label the points on � as E1, E2, . . . , En+1; then the lines through C are
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mi := CEi, i = 1, 2, . . . , n +1. Label the points on mi as Ci,1=C, Ci,2, . . . , Ci,n+1=Ei.

Dually, label the lines through Ei as �i,1=�, �i,2, . . . , �i,n+1=mi.
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•
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•

•

•
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•

�

Cj2

Cj3
Cjn. . . . . .

m1 m2
mi

mj

mn+1

�i,σij(2)

�i,σij(3)

�i,σij(n)

C

E1 E2
Ei

Ej

En+1

.... ......

Now let i �= j. Each point Cj,k lies on a unique line �i,σij(k) through Ei, for some per-

mutation σij ∈ Sn+1. Define the sign matrix A to be the (n +1) × (n +1) matrix whose

(i, j)-entry is sgn(σij); also the (i, i)-entry of A is 0. A change of labels has the effect of

replacing A by an equivalent sign matrix A′ = DPAP�D′ for some permutation matrix P

and ±1-diagonal matrices D, D′. Therefore the matrix AA� (computed in characteristic

zero) depends on the triple (Π, C, �) only to within conjugation by a ±1-monomial matrix

(i.e. a product DP as above). The fingerprint of (Π, C, �) is the multiset of all entries in

|AA�|, in the notation of Section 2. Here the term ‘fingerprint’ is applied in a more general

setting than in Sections 2 and 3, since A need not be equivalent to either a symmetric or

skew-symmetric matrix (we have shown this for certain antiflags in the Hughes plane of

order 9). Clearly, the fingerprint is an isomorphism invariant of the triple (Π, C, �). (A

variation of the above, using square matrices of size n2 + n + 1, gives an invariant of Π

itself; see [Ch2].)

The fingerprint of (Π, C, �) is most useful when Π has a canonical choice of antiflag

(C, �), so that the fingerprint depends only on Π. For example, if Π is a translation plane,

we define the fingerprint of Π to be the fingerprint of (Π, O, �∞) where �∞ is the line at

infinity, and O is any affine point. Since any finite non-Desarguesian translation plane

has a unique translation line �∞ and the affine points are equivalent under the translation

group, it follows that isomorphic translation planes have the same fingerprint. Moreover,

we will show (Theorem 5.2) that in the case Π is a translation plane, the sign matrix A is

equivalent to a symmetric or skew-symmetric matrix; this gives a complementary pair of

two-graphs ∆̃(Π) or of skew two-graphs ∇̃(Π) whose fingerprint is that of Π. (This fails

for more general triples (Π, C, �), as mentioned above.) We require:
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5.1 Lemma. Let M ∈ GL(r, F ), r≥ 1, F =GF (q). Let σ and ρ be the permutations

induced by M on the vectors, and on the one-dimensional subspaces of V , respectively.

Then sgn(σ) = sgn(det M) and sgn(ρ) = (sgn(det M))r−1.

Proof. Assume that (r, q) �= (2, 2), so that SL(r, F ) is the derived subgroup of G :=

GL(r, F ). (The case GL(2, 2) is trivial.) Clearly the result follows for M ∈ SL(r, F ). Now

choose Mqr−1 ∈ G which acts regularly on the nonzero vectors in F r. Then det(Mqr−1)

is a generator of the multiplicative group of F ................ {0}, so sgn(det(Mqr−1)) = ±1 where

the upper (lower) sign is chosen for q even (odd). Also in this case, σ is a (qr − 1)-cycle

and ρ is a (qr−1 + · · · + q +1)-cycle, so that sgn(σ) = ±1 and sgn(ρ) = (±1)r−1. Since

G = 〈SL(r, F ), Mqr−1〉, the result follows.

Let {M1, M2, . . . , Mqr} be a spread set for a translation plane Π of order qr with

kernel containing GF (q) (see [L]). Thus Mi is an r× r matrix over GF (q) and Mi −Mj is

nonsingular whenever i �= j. Now Π has V ⊕ V as its set of affine points, where V = F r,

and its affine lines are the subsets {(x, xMi + b) : x ∈ V } for b∈V , i = 1, 2, . . . , qr (the

lines “y = xMi + b”), and {(a, y) : y ∈ V } for a ∈ V (the lines “x = a”). Define

sgn : F → {−1, 0, 1} by

sgn(a) =

⎧⎨
⎩

0, a = 0;
1, a is a nonzero square in F ;
−1, otherwise.

(Note that sgn(a) ∈ {0, 1} if q is even.) Let Â be the qr × qr matrix whose (i, j)-entry is

sgn(det(Mj − Mi)).

5.2 Theorem. Let A be the sign matrix of (Π, O, �∞).

(i) If qr �≡ 3 mod 4, then A is equivalent to the symmetric matrix
[

Â
1

1�

0

]
, which is the

Seidel adjacency matrix of a graph Γ. Moreover, the pair ∆̃(Π) := {∆(Γ), ∆(Γ)}
depends only on the isomorphism class of Π. If q is even, the pair ∆̃(Π) is trivial.

(ii) If qr ≡ 3 mod 4, then A is equivalent to the skew-symmetric matrix
[

Â
−1

1�

0

]
, which

is the (0,±1)-adjacency matrix of a tournament T . Moreover, the pair ∇̃(Π) :=

{∇(T ),∇(T )} depends only on the isomorphism class of Π.

Proof. Let v1 =0, v2, v3, . . . , vn be the n = qr vectors in V . We label the lines of Π in

accordance with our earlier labelling, as follows, where 1 ≤ i, j ≤ n. The lines of Π

are � = �∞, �ij (the line “y = xMi + vj”; this includes mi = �i1, the line “y = xMi”),
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and �n+1,j (the line “x = vj”). The points of Π are C =O =(0, 0), Ej = mj ∩ �∞,

Cij =(vj , vjMi), and Cn+1,j =(0, vj) (so that Ci1 = Cn+1,1 = O). From the defini-

tions, we see that vσij(k) = vk(Mj − Mi) for i �= j, and σi,n+1(k) = σn+1,j(k) = k. By

Lemma 5.1, sgn(σij) = sgn(det(Mj − Mi)) for i �= j, and sgn(σi,n+1) = sgn(σn+1,j) = 1.

This gives
[

Â
1

1�

0

]
for the sign matrix, where Â is as above. If qr �≡ 3 mod 4, then

det(Mj − Mi) = (−1)r det(Mi − Mj) where (−1)r is a square in F , so that Â is sym-

metric and conclusion (i) follows from previous discussion. If qr ≡ 3 mod 4, then

det(Mj − Mi) = −det(Mi − Mj) where −1 ∈ F is a nonsquare, so that Â is skew-

symmetric. Multiplying the last row of
[

Â
1

1�

0

]
by −1 gives a sign matrix equivalent to A,

and conclusion (ii) follows.

Given a translation plane Π with spread set {Mi}, then the transposed matrices

{M�
i } form a spread set for a translation plane Π∗, called the polar translation plane of Π.

Viewing Π as a spread of PG(2r− 1, q), then Π∗ is the image of Π under a polarity of

PG(2r− 1, q). If Π∗ ∼= Π, we say Π is self-polar; otherwise, {Π, Π∗} is a polar pair. By

Theorem 5.2, Π and Π∗ yield the same ∆̃ or the same ∇̃, according as q �≡ 3 or q ≡ 3

mod 4. It is not known whether two translation planes of order q ≡ 1 mod 4 with the

same fingerprint must be either isomorphic or polar, although for q ≤ 49 this is the case.

However, there do exist nonisomorphic (and non-polar) translation planes of order 27 with

isomorphic skew two-graphs. We proceed to describe the cases q ≤ 49.

There are precisely two translation planes of order 9, namely AG(2, 9) and Hall(9).

We have ∆̃(AG(2, 9)) = {∆Pet, ∆Pet} where ∆Pet
∼= ∆Pet corresponds to the switching

class of the Petersen graph, is regular of degree 4, and has fingerprint 090910. However,

∆̃(Hall(9)) = {∆Hall, ∆Hall}, where ∆Hall has (n2=40, n8=5) and corresponds to the

switching class of the graph |•• |•• |•• |•• |•• , with fingerprint 280810910.

There are exactly 21 isomorphism types of translation planes of order 25, including

one polar pair and 19 self-polar planes; see Czerwinski and Oakden [CO], [Cz]. From this

list, Charnes [Ch2] has determined that two translation planes of order 25 with the same

fingerprint are necessarily either isomorphic or polar. A similar conclusion holds for the

translation planes of order 49, of which there are 1347 isomorphism types, including 374

polar pairs and 599 self-polar classes; see Mathon and Royle [MR].

The situation for translation planes of order 3 modulo 4 seems to be quite different.

Dempwolff [D] has shown that there are exactly 7 isomorphism classes of translation planes

of order 27, each of which is self-polar. Three of these (Desarguesian (I), a generalised
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twisted field plane (II), and a flag transitive plane (IV)) have the same fingerprint, while

the remaining four fingerprints are distinct. Using the graph isomorphism package nauty

[Mc], we have found that the planes (I), (II) and (IV) in fact have isomorphic skew two-

graphs; this is the Paley skew two-graph ∇27. Dempwolff’s classification [D] uses a new

isomorphism invariant, his Kennvector, which is a complete invariant for translation planes

of order 27, but is more expensive to compute than the fingerprint.

5.3 Theorem. Let O be an ovoid in O+
6 (q), and let Π be the translation plane constructed

from O by the Klein correspondence, as in [Ka1]. Then ∆̃(O) ∼= ∆̃(Π).

Proof. We may assume that Q(x) = x0x5 + x1x4 + x2x3 and O = {〈v∞〉} ∪ {〈vi〉 : i =

0, 1, . . . , q2−1} where v∞ = (000001) and vi = (1, ai, bi, ci,−di, aidi−bici). Then the ma-

trices Mi =
[

ai

ci

bi

di

]
form a spread set for Π, and f(vi, vj) = det(Mi − Mj), f(vi, v∞) = 1.

The result follows from Theorem 5.2.

Note that the polarity Mi �→ M�
i of translation planes is induced by the isometry

x �→ (x0, x1, x3, x2, x4, x5) in PO+
6 (q)................PΩ+

6 (q).

6. Spreads and m-Systems of Polar Spaces.

Let P be a polar space of rank r, as in Section 4. The following generalisation of ovoids

and spreads is due to Shult and Thas [ShT]. A partial m-system of P is a collection

M = {π1, . . . , πk} of m-flats of P such that π⊥
i ∩ πj = Ø for all i �= j.

6.1 Theorem [ShT]. For any partial m-system M in P,

|M| ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qr−1 + 1, P = O+
2r(q);

qr + 1, P = O2r+1(q) or Sp(2r, q);
qr+1 + 1, P = O−

2r+2(q);
q2r−1 + 1, P = U(2r, q2);
q2r+1 + 1, P = U(2r +1, q2).

If |M| attains the upper bound of Theorem 6.1, M is called an m-system. A 0-system is

the same as an ovoid ; a partial 0-system is a cap; and an (r− 1)-system is a spread of P,

i.e. a collection of generators which partition the point set of P.

Let π, π′ be two m-flats of P, where 0≤m≤ r− 1, and let {v1, . . . , vm+1}, {v′
1, . . . ,

v′
m+1} be bases of the corresponding subspaces of V . Define
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sgn(π, π′) := sgn
[
det

(
f(vi, v

′
j) : 1≤ i, j ≤m+1

)]
.

Note that sgn(π, π′) ∈ {−1, 0, 1} is well-defined, and sgn(π, π′) �= 0 iff π⊥ ∩ π′ = Ø. We

have the following easy generalisation of Theorem 4.1:

6.2 Theorem. Let M be an m-system or partial m-system in P.

(i) Suppose P is of orthogonal or unitary type, or of symplectic type with qm+1 �≡ 3

mod 4. Then the collection of all 3-subsets {π, π′, π′′} of M such that sgn(π, π′)sgn(

π′, π′′)sgn(π′′, π) = −1, defines a two-graph (∆(M),M). If q is even, this two-graph

is empty.

(ii) Suppose P is of symplectic type with qm+1 ≡ 3 mod 4. Then the collection of all

3-cycles (π π′ π′′) ∈ T (M) such that sgn(π, π′)sgn(π′, π′′)sgn(π′′, π) = −1, defines a

skew two-graph (∇(M),M).

The associated two-graph or skew two-graph is invariant under isometries. The associated

pair ∆̃ = {∆, ∆} or ∇̃ = {∇,∇}, and the fingerprint, are invariant under similarities.

Alternative definitions of the above two-graphs and skew two-graphs are possible, in

the combinatorial spirit of Conway’s description for planes (Section 5); we present just one

as an example. Let P be an Sp(4, q) polar space (generalised quadrangle). For each line of

P, choose an ordering of its q + 1 points. Let �, �′ be two disjoint lines of P, whose points

have been numbered (say) Pi, P
′
i , i = 1, 2, . . . , q +1. Each point P ′

i ∈ �′ is collinear in P
(i.e. perpendicular) to a unique point Pσ�,�′ (i)

∈ �, where σ�,�′ ∈ Sq+1. Now suppose M
is a partial spread of P, i.e. a collection of mutually disjoint lines, |M|≤ q2 + 1. Clearly,

the collection of all 3-subsets {�, �′, �′′} of M such that sgn(σ�,�′σ�′,�′′σ�′′,�) = −1 defines

a two-graph ∆Comb(M), independent of the above choice of ordering of points.

6.3 Theorem. To within complementation, the two-graphs ∆Comb(M), ∆(M) and ∆(O)

coincide, where O is a cap of O5(q) identified with M by a duality. In particular, all these

two-graphs have the same fingerprint.

Proof. We may suppose q is odd. Consider triples {�, �′, �′′} consisting of three mutually

disjoint lines of P. Let Sε be the collection of such triples for which sgn(�, �′)sgn(�′, �′′)sgn(

�′′, �) = ε, and let Sε
Comb be the collection of such triples for which sgn(σ�,�′σ�′,�′′σ�′′,�) = ε.

Clearly each of the collections S+, S−, S+
Comb, S−

Comb is invariant under PSp(4, q), and

by explicit calculation, each of these collections is nonempty. Therefore both partitions
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S+ ∪ S− and S+
Comb ∪ S−

Comb must correspond, under duality, to the partition of 3-caps

of O5(q) given by Theorem 4.3(ii). The result follows.

Further theorems showing equivalence of combinatorial and algebraic constructions of

two-graph invariants, and showing their invariance under under dualities and trialities, are

possible.

7. Caps whose Two-Graphs are Trivial

It is often of interest to consider consider caps O in polar spaces for which |O| is maximal

subject to ∆(O) being trivial. For example, let q be odd, and let O be a collection of

singular points in O5(q) such that 〈u, v, w〉⊥ is an elliptic (i.e. anisotropic) line for all

distinct 〈u〉, 〈v〉, 〈w〉 in O. Then |O| ≤ q +1, and if equality holds, O is called a BLT-set

(see Bader, Lunardon and Thas [BLT], Kantor [Ka3]). A flock of a quadratic cone in

PG(3, q) is equivalent to a pair (O, 〈u〉) consisting of a BLT-set O and a distinguished

point 〈u〉 ∈ O. We observe that BLT-sets may be considered as maximal caps with trivial

two-graphs:

7.1 Theorem. Let Q be a nondegenerate quadratic form on V = F 5 with discriminant δ,

where F = GF (q), q odd. Suppose O is a cap in the polar space P = P(V, Q) of type

O5(q). Then

(i) if ∆(O) is complete and −2δ is a square in F , then |O| ≤ q +1;

(ii) if ∆(O) is empty and −2δ is a nonsquare in F , then |O| ≤ q +1.

Moreover, O is a BLT-set in P iff equality holds in (i) or in (ii).

Proof. It suffices to show that if 〈u〉, 〈v〉, 〈w〉 are three singular points, then 〈u, v, w〉⊥ is an

elliptic line iff −2δf(u, v)f(v, w)f(w, u) is a nonsquare in F , where f(x, y) = Q(x + y) −
Q(x) − Q(y). To see this, suppose that u, v, w are linearly independent, and let {x, y}
be a basis for 〈u, v, w〉⊥. Computing the discriminant of Q with respect to the basis

{u, v, w, x, y} of V , we see that a2δ = 2f(u, v)f(v, w)f(w, u)disc
(
Q|〈x,y〉

)
where a �= 0;

furthermore, the line 〈x, y〉 is elliptic iff −disc
(
Q|〈x,y〉

)
is a nonsquare in F . The result

follows.

Now suppose O is any cap contained in a hyperplane of O5(q), such that ∆(O) is

trivial. One may show that |O| ≤ q + 1 by Theorem 7.1; better yet, it is possible to
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characterise those cases for which equality occurs, using parallel results of Blokhuis [Bl]

and Carlitz [Car]. It may be seen that these results rephrase two theorems of Thas [Th2]

concerning flocks whose planes share a common point.

7.2 Theorem (cf. Thas [Th2]). Let O be a (q +1)-cap in O−
4 (q), where q is odd. Then

∆(O) is trivial if and only if O is a conic.

Proof. Suppose O is a conic. For any 3-subset {〈u〉, 〈v〉, 〈w〉} of O, we may compute the

discriminant of 〈O〉 as δ = 2f(u, v)f(v, w)f(w, u), so ∆(O) is either empty or complete,

according as 2δ is a square or a nonsquare.

To prove the converse, we may suppose that Q(x) = x0x1 − x2
2 + εx2

3 and O =

{〈(0, 1, 0, 0)〉} ∪ {〈(1, α2
i − εβ2

i , αi, βi)〉 : 1 ≤ i ≤ q} where ε ∈ F is a fixed nonsquare. If

∆(O) is trivial, then for all i �= j, the expression (αi −αj)2 − ε(βi −βj)2 is either always

a nonzero square, or always a nonsquare, in F . Consider a quadratic extension E = F (θ)

where θ2 = ε. For x, y ∈ F , the element x + θy is a square in E iff its norm, x2 − εy2,

is a square in F . Therefore the differences of the elements αi + θβi are always squares,

or always nonsquares in E. By [Bl], there exist a, b, c ∈ F , where (a, b) �= (0, 0), such

that aαi + bβi + c = 0 for all i. Then O consists of all singular points in the plane

cx0 + ax2 + bx3 = 0.

Next we classify those (q +1)-caps (i.e. ovoids) in O+
4 (q) with trivial two-graphs. Let

P be the hyperbolic quadric x0x3 − x1x2 = 0 in PG(3, q), q = pe odd. Then P has

(q +1)! ovoids, these being the transversals of a (q +1) × (q +1) grid. Every such ovoid

is isometric to one of the form O(π) = {〈v∞〉} ∪ {〈vt〉 : t ∈ F} where v∞ = (0, 0, 0, 1)

and vt = (1, t, tπ, ttπ) for some permutation π : F → F . In particular, for the identity

permutation ι : F → F , the ovoid O(ι) is a conic, i.e. a nondegenerate plane section of P.

More generally, Kleidman [Kl] has shown that the 2-transitive ovoids of P are precisely the

ovoids similar to O(σ) for some σ ∈ Aut(F ); furthermore, two 2-transitive ovoids O(σ′),

O(σ) are similar iff σ′ = σ±1. Thus P has precisely 	 e
2

+1 similarity classes of 2-transitive

ovoids.

We have f(v∞, vt) = 1 and f(vs, vt) = (s − t)(sπ − tπ) for all s, t ∈ F . Therefore

∆(O(π)) is trivial iff (s − t)(sπ − tπ) is a nonzero square for all s �= t in F . By [Car], this

occurs iff tπ = a2tσ + b for some σ ∈ Aut(F ), a, b ∈ F , a �= 0. We may assume that a =1
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and b =0, since the isometry (x0, x1, x2, x3) �→ (ax0, ax1, a−1(x2 − bx0), a−1(x3 − bx0))

maps O(π) to O(σ). We have shown the following:

7.3 Theorem (cf. Thas [Th2]). Let O be an ovoid in O+
4 (q), where q is odd. Then ∆(O)

is trivial iff O is 2-transitive, iff O is similar to O(σ) for some σ ∈ Aut(F ).

It is known (see [BLT]) that when O is a conic, the corresponding flocks are linear;

when O is one of the nonlinear examples of Theorem 7.3, the corresponding flocks arise

from a family of Kantor [Ka2].

For more general polar spaces, we will obtain the following weaker bound for caps

with trivial two-graphs.

7.4 Theorem. Let P be a polar space naturally embedded in PG(n, q), where q = pe is

odd. If O is a cap in P whose two-graph ∆(O) is trivial, then |O| ≤
(
n+(p−1)/2

n

)e
+ 1.

The latter bound is a consequence of the following. Let S be a set of s := (qn+1 −
1)/(q − 1) vectors in V = Fn+1, which represent the s distinct points of PG(n, F ), F =

GF (q), q = pe. Let M be the s× s matrix with entries mx,y := (x0y0 + · · ·+ xnyn)(q−1)/2

where x =(x0, . . . , xn), y =(y0, . . . , yn) ∈ S.

7.5 Lemma. The matrix M has rank
(
n+(p−1)/2

n

)e
over F .

Proof. Suppose v =
(
vy : y ∈S

)
is in the right null space of M . Then for all x ∈ S,

0 =
∑
y∈S

mx,yvy =
∑
y∈S

(x0y0 + · · ·+ xnyn)(q−1)/2vy

=
∑
y∈S

∑
i0,...,in

(
(q − 1)/2

i0, i1, . . . , in

)
xi0

0 yi0
0 xi1

1 yi1
1 · · ·xin

n yin
n vy

=
∑

i0,...,in

(
(q − 1)/2

i0, i1, . . . , in

)[∑
y∈S

yi0
0 yi1

1 · · ·yin
n vy

]
xi0

0 xi1
1 · · ·xin

n

where
(

(q−1)/2
i0, i1, ..., in

)
:= ((q−1)/2)!

i0!i1!···in! and i0, i1, . . . , in are non-negative integers summing to

(q− 1)/2. By Lemma 2.3 of [BM], this implies that for all such (i0, i1, . . . , in), we have

0 =
(

(q − 1)/2
i0, i1, . . . , in

) ∑
y∈S

yi0
0 yi1

1 · · · yin
n vy .
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Consider the p-ary expansions ij =
∑e−1

k=0 ij,kpk where 0 ≤ ij,k < p, and q−1
2 =

∑e−1
k=0

p−1
2 pk.

Then by Lucas’ Theorem (cf. [BW]) we have

(
(q − 1)/2

i0, i1, . . . , in

)
≡

e−1∏
k=0

(
(p − 1)/2

i0,k, i1,k, · · · , in,k

)
mod p .

Thus p �
∣∣ (

(q−1)/2
i0, i1, ..., in

)
iff

∑e−1
k=0 ij,k = (p − 1)/2 for all j = 0, 1, . . . , n. The number of

(i0, i1, . . . , in) satisfying this condition is
(
n+(p−1)/2

n

)e
. We therefore have

(
n+(p−1)/2

n

)e

linear conditions

0 =
∑

p	 | ( (p−1)/2
i0, i1, ...,in

)
yi0
0 yi1

1 · · · yin
n vy .

The coefficient matrix in the latter linear system has full rank by Lemma 2.3 of [BM], so

the null space of M over F has dimension s −
(
n+(p−1)/2

n

)e
. Thus rankF M = s −

[
s −(

n+(p−1)/2
n

)e]
=

(
n+(p−1)/2

n

)e
.

Proof of Theorem 7.4. Let δ be the polarity of PG(V ) corresponding to P. Let v1, . . . , vk

be vectors in V = Fn+1 representing the points of O. We have vi = (vi0, . . . , vin). Choose

a linear equation
∑n

t=0 ui,tXt = 0 for the polar hyperplane vδ
i . Let A be the k × k matrix

with entries

aij =
( n∑
t=0

uitvjt

)(q−1)/2 =

⎧⎨
⎩

0, i = j;
1, i �= j and

∑
t uitvjt is a square;

−1, i �= j and
∑

t uitvjt is a nonsquare.

Then A is the Seidel adjacency matrix of a graph in the switching class corresponding

to ∆(O). Note that rankF A depends only on the switching class of A, and hence only

on ∆(O). If ∆(O) is trivial, we may assume that A = J − I, and so rankF A ≥ k− 1.

Furthermore, A is switching-equivalent to a submatrix of the matrix M defined above, and

so by Lemma 7.5, |O| = k ≤ 1 + rankF A ≤ 1 + rankF M = 1 +
(
n+(p−1)/2

n

)e
.

Note that Theorem 7.4 can be improved slightly in some cases, since rankF (J − I) = k

whenever k �≡ 1 mod p. For example, this gives |O| ≤
(
n+(p−1)/2

n

)e
whenever n ≤ (p− 1)/2.

8. Intersecting Circles in Laguerre Planes

Let M = (P, C) be a classical Laguerre plane of odd order q. Thus M is an incidence

system having point set P consisting of the q(q +1) points of a quadratic cone in PG(3, q)

18



distinct from the vertex, and set C of blocks (‘circles’) consisting of the conics which are

plane sections of the cone. A family of doubly intersecting circles in M is a subset C0 ⊂ C

such that |C ∩ C′| = 2 for any two distinct circles C, C′ ∈ C0. We ask how large such a

family C0 can be. Our ‘cheap’ upper and lower bounds are analogues of the corresponding

results for Miquelian inversive planes, due to Blokhuis and Bruen [BB].

8.1 Theorem. M has a family of (3q− 1)/2 doubly intersecting circles.

Proof. Let M be constructed from the cone X2
0 = X1X2 in PG(3, q), and let C0 consist

of the intersections of the cone with the planes X3 = 0, X3 = ωiX0, X3 = ωi(X1 −X0),

X3 = ωi(X2 −X0) for i = 0, 1, 2, . . . , (q− 3)/2 where 〈ω〉 = F ................{0}. It is straightforward

to check that C0 has the required properties.

Note that the following upper bound in fact holds for arbitrary (not necessarily clas-

sical) Laguerre planes (these are defined axiomatically in [KK]).

8.2 Theorem. |C0| ≤ 1
2 (q2 +1).

Proof. Fix a circle C ∈ C0. Counting the number of pairs (P, C′) such that P ∈ C′ ∩ C

and C �= C′ ∈ C0, we have 2(|C0| − 1) ≤ (q + 1)(q − 1), from which the result follows.

Computer searches suggest that the true upper bound for |C0| is much closer to

(3q− 1)/2 than (q2 +1)/2. For q = pe where p ≤ 7, we obtain a significantly improved

upper bound, using the results of Section 7.

8.3 Theorem. |C0| ≤
(

(p+7)/2
4

)e
where q = pe.

Proof. Let (V, Q) be an O5(q) space, and let 〈x0〉 be a singular point of (V, Q). The

singular points of the projective 3-space PG(x⊥
0 ) form a quadratic cone. Realise C0 as

the set of intersections of planes π1, π2, . . . , πm ⊂ x⊥
0 with this cone. Each π⊥

i is a hy-

perbolic line in V , containing exactly two singular points, 〈x0〉 and (say) 〈xi〉. Since

πi ∩ πj contains two singular points of x⊥
0 whenever i �= j, we see that 〈x0, xi, xj〉⊥

is a hyperbolic line, i.e. −2δf(x0, xi)f(xi, xj)f(xj, x0) is a nonzero square in F , where

δ = disc(Q) and f(x, y) is the bilinear form associated to Q (this follows from the proof

of Theorem 7.1). It follows that −2δf(xi, xj)f(xj, xk)f(xk, xi) is a nonzero square for any

3-subset {i, j, k} ⊆ {0, 1, 2, . . . , m}, so that {〈xi〉 : 0 ≤ i ≤ m} is a cap in O5(q) with trivial
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two-graph. By Theorem 7.4, we have m + 1 ≤
(

4+(p−1)/2
4

)e + 1 as required.

For p = 3, 5, 7, this gives (approximately) |C0| ≤ q1.465, q1.683, q1.827 respectively, an

improvement over the quadratic upper bound of Theorem 8.2. Unfortunately, however,

the new bound is useless for p ≥ 11; moreover, this approach apparently does not improve

upon the quadratic upper bounds for families of doubly intersecting circles in inversive

planes.
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