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Abstract

In this study we show the existence of subplanes of order 3 in
Hughes planes of order q2, where q is a prime power and q ≡ 5 (mod 6).
We further show that there exist finite partial linear spaces which
cannot embed in any Hughes plane.

1 Introduction

L. Puccio and M. J. de Resmini [5] showed that subplanes of order 3 exist
in the Hughes plane of order 25. (We refer always to the ordinary Hughes
planes; equivalently, all our nearfields are regular.) Computations of the
second author [2] show that among the known projective planes of order 25
(including 99 planes up to isomorphism/duality), exactly four have sub-
planes of order 3. These four planes are the ordinary Hughes plane and
three closely related planes. Recently, Caliskan and Magliveras [1] showed
that there are exactly 2 orbits on subplanes of order 3 in the Hughes plane
of order 121. In this study we show that every Hughes plane of order q2,
where q is a prime power and q ≡ 5 (mod 6), has subplanes of order 3.
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We begin with the construction of the Hughes plane H(q2) of order q2, q
an odd prime power, as given by Rosati [6] and Zappa [9]. Throughout this
paper, K denotes a finite field of order q2, and F its subfield of order q, where
q is an odd prime power. For any θ ∈ K with θ /∈ F, we have K = F[θ] and
{1, θ} is a basis for K over F. We will always choose θ such that θ2 = d ∈ F,
where d is a nonsquare in F. We now define the regular nearfield N of order
q2, where N has the same elements as K and the same addition. However,
multiplication in N is defined as follows: a◦b = ab if a is a square in K, and
a◦ b = abq otherwise. Let V = {(x, y, z) | x, y, z ∈ N} be the 3-dimensional
left vector space over N . Define the set of points (set of lines) of H(q2) to
be the set of all equivalence classes of elements of V r {(0, 0, 0)}, under the
equivalence (x, y, z) ∼ (k ◦ x, k ◦ y, k ◦ z) ([a, b, c] ∼ [k ◦ a, k ◦ b, k ◦ c]) for
k ∈ N∗. We may take {1, θ} as a basis for N as a vector space over F. The
incidence relation for H(q2) is defined as follows : Point (x, y, z) is incident
with line [a, b, c], where a = a1 + a2θ, b = b1 + b2θ, and c = c1 + c2θ, if and
only if xa1 + yb1 + zc1 + (xa2 + yb2 + zc2) ◦ θ = 0. It is well known that
different choices of θ give isomorphic planes of order q2.

In order to implement nearfield multiplication in N , the following is
useful for readily identifying squares in K.

Lemma 1.1 Consider a quadratic extension K = F[θ] ⊃ F where F is a
field of odd order q, and θ2 = d ∈ F. A typical element x = a + bθ (where
a, b ∈ F) is a square in K, iff its norm xq+1 = a2 − db2 is a square in F.

Proof: We may assume x 6= 0. The element x ∈ K is a square in K iff
x(q2

−1)/2 = 1 iff (xq+1)(q−1)/2 = 1, iff the element xq+1 ∈ F is a square
in F. Note that xq+1 = xqx = (a − bθ)(a + bθ) = a2 − db2. 2

It has long been recognized by M. J. de Resmini and others that Hughes
planes have subplanes of order 2; for completeness we include a proof of
this fact in Section 2. On the other hand, this is not totally surprising
since for a quadrilateral to generate a subplane of order 2 only requires a
single algebraic condition to hold. In order for a quadrilateral to generate
a subplane of order 3, several inequivalent conditions must hold. We show
the existence of subplanes of order 3 in the Hughes plane H(q2) in Section 3
in case q ≡ 5 (mod 12), and in Section 4 in case q ≡ 11 (mod 12).

2 Subplanes of order 2

We require the following technical lemma.



Lemma 2.1 Let F be a finite field of odd order q, and let d ∈ F be a
nonsquare.

(a) If q ≡ 1 (mod 4) then there exists a nonzero element b ∈ F such that
b4 + db2 + d2 is a nonsquare in F.

(b) If q ≡ 3 (mod 4) then there exist (q + 1)/2 nonzero values of b ∈ F

such that b2 + 1 is a nonsquare in F.

Proof: (a) The equation x2 + dxz + d2z2 = dy2 defines a nondegenerate
conic in the classical projective plane coordinatized by F, with homogeneous
coordinates (x, y, z). Since d is a nonsquare in F, all q + 1 points of this
conic must have xz 6= 0 and so all points of the conic have the form (x, y, 1)
with x 6= 0. No more than two such points share the same x-coordinate,
so the points (x, y, 1) of the conic have at least (q + 1)/2 distinct nonzero
x-coordinates. Since F contains only (q − 1)/2 nonsquares, the conic must
contain a point of the form (b2, y, 1) with b 6= 0.

(b) The equation x2 + y2 + z2 = 0 defines a nondegenerate conic in the
classical projective plane coordinatized by F. Since −1 is a nonsquare
in F, all q + 1 points of the conic have the form (x, 1, z) in homogeneous
coordinates with xz 6= 0. No more than two such points (x, 1,±z) share
the same x-coordinate, yielding (q+1)/2 values of x for which x2 +1 equals
a nonsquare −z2 . 2

Theorem 2.2 Every Hughes plane has a subplane of order 2.

Proof: Let d be a nonsquare in F, so that K = F[θ] where θ ∈ K satisfies
θ2 = d. We consider two cases.

Suppose first that q ≡ 1 mod 4. In this case −1 is a square in F, and
θ is a nonsquare in K since its norm θqθ = (−θ)θ = −d is a nonsquare
in F. Choose b ∈ F such that b4 + db2 + d2 is a nonsquare in F as in
Lemma 2.1(a). Write c = (b/d)+(1/b) ∈ F, so that 1±cθ is a nonsquare in
K by Lemma 1.1. The seven points p0, p1, . . . , p6 of the Hughes plane with
coordinates

(1, 0, 0), (0, 1, 0), (1,−d/b, θ), (1, θ, b), (1/b,−(b/d)θ, 1), (1, b+θ, 0), (1, b, θ)

and the seven lines `0, `1, . . . , `6 with coordinates

[0, θ,−b], [0, 0, 1], [θ, 0,−1], [0,−b, θ], [−b, 0, 1], [−b−θ, 1, 1+cθ], [−b−θ, 1, 1]

satisfy pi ∈ `j iff j − i ∈ {0, 1, 3} mod 7. This gives a subplane of order 2
in the Hughes plane of order q2.



Now suppose that q ≡ 3 mod 4. In this case we may take d = −1, a
nonsquare in F, and θ is a square in K since its norm θq+1 = −d = 1 is
a square in F. By Lemma 2.1(b), there exists b ∈ F such that b2 + 1 is a
nonsquare in F. By Lemma 1.1, the elements 1±bθ and b±θ are nonsquares
in K. The seven points of the Hughes plane

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, θ, 0), (0, 1, 1− bθ), (1, θ, b + θ), (1, 0, b + θ)

and the seven lines

[0, 0, 1], [1, 0, 0], [1, θ, 0], [−b−θ,−1+bθ, 1], [0,−1+bθ, 1], [−b−θ, 0, 1], [0, 1, 0]

give a subplane of order 2, where as before we have pi ∈ `j iff j−i ∈ {0, 1, 3}
mod 7. 2

3 Case: q ≡ 5 (mod 12)

Let q ≡ 5 (mod 12). We may take d = −3, a nonsquare in F, and K = F[θ]
where θ2 = −3. There is an element i ∈ F satisfying i2 = −1, since
q ≡ 1 (mod 4). Also ω = (−1 + iθ)/2 ∈ K is a primitive cube root
of unity, and the other is ω2 = (−1 − iθ)/2. Furthermore, ζ = iω =
(−i + iθ)/2 ∈ K is a primitive 12-th root of unity. We compute that
ζ2 = (1 + θ)/2, ζ4 = ω = (−1 + θ)/2, and ζ5 = iω2 = (−i − iθ)/2.
Moreover, ζ +ζ7 = ζ2 +ζ8 = ζ4 +ζ10 = ζ5 +ζ11 = 0, since ζ6 = −1. Hence,
ζ7 = (i − iθ)/2, ζ8 = (−1 − θ)/2, ζ10 = (1 − θ)/2, and ζ11 = (i + iθ)/2.
The following Lemma follows easily from Lemma 1.1.

Lemma 3.1 1 ± θ are squares and θ, 3 ± θ not squares in K.

We now define α, a set of 13 points, and β, a set of 13 lines, as follows :



p1 (0, 0, 1) `1 [0, 0, 1]
p2 (0, 1, 0) `2 [0, 1, 0]
p3 (0, 1, ζ) `3 [0, 1, ζ5]
p4 (0, 1, ζ7) `4 [0, 1, ζ11]
p5 (1, 0, 0) `5 [1, 0, 0]

α : p6 (1, 0, ζ2) β : `6 [1, 0, ζ4]
p7 (1, 0, ζ8) `7 [1, 0, ζ10]
p8 (1, ζ, 0) `8 [1, ζ5, 0]
p9 (1, ζ, ζ2) `9 [1, ζ5, ζ4]

p10 (1, ζ, ζ8) `10 [1, ζ5, ζ10]
p11 (1, ζ7, 0) `11 [1, ζ11, 0]
p12 (1, ζ7, ζ2) `12 [1, ζ11, ζ4]
p13 (1, ζ7, ζ8) `13 [1, ζ11, ζ10]

Theorem 3.2 Let q be a prime power, q ≡ 5 (mod 12). Then α is the set
of points, and β the set of lines, of a subplane of order 3 in the Hughes plane
H(q2). This subplane is invariant under the polarity (x, y, z) ↔ [xq, yq , zq]
of H(q2).

Proof: It is known that all elements of F are squares in K. We use the
Lemma 3.1 and the incidence relation described by Rosati [6] to determine
whether pi and `j are incident for each pair of a point pi, 1 ≤ i ≤ 13, in α
and a line `j , 1 ≤ j ≤ 13, in β. This gives rise to the following incidence
matrix M :

M =













































0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 1 0 0 0 1 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1 0 0 1

1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 1 0 0 1 0 1 0 0 0 0 1

0 0 0 1 0 0 1 1 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 1 0 1 0 1 0 0













































An easy computation shows that MMT = J13 +3I13, where J13 denotes
the 13×13 matrix in which every entry is a “1” and I13 the 13×13 identity
matrix.



By Rosati [7], the map (x, y, z) ↔ [xq, yq , zq] is a polarity of H(q2). One
easily checks that this map interchanges α and β. This completes the proof
of Theorem 3.2. 2

4 Case: q ≡ 11 (mod 12)

Let us now assume that q ≡ 11 (mod 12), so that both −1 and −3 are
nonsquares in F, and in particular 3 is a square in F.

Lemma 4.1 There exists c ∈ F such that c2 − c + 1 is a nonsquare in F.

Proof: By the Chevalley-Warning Theorem [8, p.5], there exist a, b, c ∈ F,
not all zero, such that c2 − bc + b2 + a2 = 0. Clearly b 6= 0, so (c/b)2 −
(c/b) + 1 = −(a/b)2, a nonsquare in F. 2

Fixing c ∈ F as in Lemma 4.1, we readily obtain the following from the
Lemma 1.1.

Lemma 4.2 The elements θ, 1±θ and 3±θ are squares in K. The elements
c − 2 ± cθ, c + 1 ± (c − 1)θ and 2c − 1 ± θ are nonsquares in K.

We shall use Lemma 4.2 along with the fact that c /∈ {0, 1}. Now we
define α′, a set of 13 points, and β′, a set of 13 lines, as follows :

p1 (1, ω, ω2) `1 [1, ω, ω2]
p2 (1, 0,−ω) `2 [0,−ω, 1]
p3 (−ω, 1, 0) `3 [1, 0,−ω]
p4 (0,−ω, 1) `4 [−ω, 1, 0]
p5 (1/(c − 1), ω, ω2) `5 [ω2, c/(1− c), ω]

α′ : p6 (−c, ω, ω2) β′ : `6 [ω2, c− 1, ω]
p7 ((1 − c)/c, ω, ω2) `7 [ω2,−1/c, ω]
p8 (ω2, (1 − c)/c, ω) `8 [ω, ω2, c/(1 − c)]
p9 (ω2, 1/(c − 1), ω) `9 [ω, ω2, c − 1]

p10 (ω2,−c, ω) `10 [ω, ω2,−1/c]
p11 (ω, ω2, 1/(c − 1)) `11 [c − 1, ω, ω2]
p12 (ω, ω2,−c) `12 [−1/c, ω, ω2]
p13 (ω, ω2, (1 − c)/c) `13 [c/(1− c), ω, ω2]

Theorem 4.3 Let q be a prime power, q ≡ 11 (mod 12). Then α′ is the
set of points, and β′ the set of lines, of a subplane of order 3 in the Hughes
plane H(q2).



Proof: By Lemma 4.1 and 4.2, our computation gives rise to the following
incidence matrix M ′, where M ′M ′T = J13 + 3I13. This proves Theorem
4.3. 2

M ′ =













































1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1

0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 1 0 0 0 0 1

0 0 1 0 0 0 1 0 1 0 1 0 0
0 0 0 1 1 0 0 0 1 0 0 0 1

0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0 0 0 1 0













































5 Further Substructures of Hughes Planes

No subplanes of order 3 have ever been found in Hughes planes of order
q2 for q ≡ 1 (mod 6); and computational evidence for small values of q
suggests that subplanes of order 3 do not occur in this case. It is also
an open problem whether there exists a Hughes plane with a subplane of
order 4. However, the following argument, first used in [3], shows that there
exist finite partial linear spaces which cannot embed in any Hughes plane.

First, some terminology: Let L be a finite partial linear space (a point-
line incidence structure, in which every line has at least two points, and
any two distinct points lie on at most one line of L). As before, we denote
by H(q2) a Hughes plane of order q2. We say that f : L → H(q2) is
an embedding if f injectively maps points of L to points of H(q2), and f
injectively maps lines of L to lines of H(q2), such that f(P ) lies on f(`) (in
H(q2)) if and only if the point P lies on the line ` (in L). (Replacing “if
and only if” by “if” in the latter definition, does not change the essential
difficulty of the embedding problem, or the validity of Theorem 5.1 below;
see [3, Lemma 1].) In this language, our main result (above) is that the
projective plane of order 3 embeds in H(q2) whenever q ≡ 5 (mod 6).

Theorem 5.1 There exists a finite partial linear space which does not em-
bed in any Hughes plane.

Proof: Let L0 be a finite partial linear space which does not embed in any



Desarguesian plane of odd order. (We may take L0 to be a projective plane
of order 2, or a configuration violating Desargues’ Theorem.) Let Γ0 be the
incidence graph of L0, i.e. the graph whose vertices correspond to points
and lines of L0; and whose edges correspond to incident point-line pairs
of L0. Thus Γ0 is a bipartite graph with no 4-cycle. By [4, Theorem 6.3]
(see also [3, Lemma 2]), there exists a bipartite graph Γ having no 4-cycle,
such that for every 2-coloring of the edges of Γ, there exists a subgraph
isomorphic to Γ0, all of whose edges have the same color. We may regard
Γ as the point-line incidence graph of a partial linear space L.

Suppose that q is an odd prime power and that f : L → H(q2) is an
embedding. For each point Pi and line `j of L, denote f(Pi) = (xi, yi, zi)
and f(`j ) = [aj, bj, cj]. (We have chosen arbitrary but fixed nonzero vec-
tors in N3 representing f(Pi) and f(`j ). The ambiguity in the choice of
coordinates may be resolved by first using nonzero elements of the nearfield
N to scale all vectors so their first nonzero coordinate is 1.) Now write

(aj, bj, cj) = (aj1 + aj2θ, bj1 + bj2θ, cj1 + cj2θ), (ajk, bjk, cjk) ∈ F
3

for all j, k, where {1, θ} is a fixed basis for K over F.

Assuming Pi ∈ `j , we color the incident point-line pair (Pi, `j) red or
blue according as aj2xi + bj2yi + cj2zi ∈ K is a square or a nonsquare.

Case 1: Γ has a subgraph isomorphic to Γ0, all of whose edges are red. In
this case the map

Pi 7→ (xi, yi, zi), `j 7→ (aj , bj, cj)

restricts to an embedding of Γ0 in a Desarguesian plane of order q2, since

ajxi + bjyi + cjzi = (aj1xi + bj1yi + cj1zi) + (aj2xi + bj2yi + cj2zi) ◦ θ = 0

for every red incident point-line pair Pi ∈ `j. This contradicts the choice
of Γ0.

Case 2: Γ has a subgraph isomorphic to Γ0, all of whose edges are blue. In
this case the map

Pi 7→ (xi, yi, zi), `j 7→ (aq
j , b

q
j , c

q
j)

restricts to an embedding of Γ0 in a Desarguesian plane of order q2, since

aq
jxi + bq

jyi + cq
jzi = (aj1xi + bj1yi + cj1zi) + (aj2xi + bj2yi + cj2zi) ◦ θ = 0

for every blue incident point-line pair Pi ∈ `j . Again, this contradicts the
choice of Γ0. 2



The proof of Theorem 5.1 reveals a straightforward strategy for trying to
embed a given finite partial linear space L (such as a finite projective plane)
in a Hughes plane H(q2): Choose an appropriate 2-coloring of the incident
point-line pairs of L (i.e. the edges of its incidence graph Γ), such that both
of the resulting monochromatic subgraphs of Γ correspond to partial linear
spaces embeddable in a Desarguesian plane of order q2. Unfortunately there
are exponentially many 2-colorings of the edges of Γ to consider; and even
for a projective plane of order 4, with 105 incident point-line pairs, this
seems a daunting task. On the other hand, it is easy to 2-color these 105
incident point-line pairs without rendering any monochromatic subplane of
order 2; so the argument of Theorem 5.1 seems ineffective in ruling out
subplanes of order 4 in Hughes planes.
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