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On the Construction of Finite Projective Planes
from Homology Semibiplanes

G. ERIC MOOORHOUSE*

From a projective plane Π with involutory homology τ one constructs an incidence system
Π/τ having as points and blocks the 〈τ〉-orbits of length 2 on the points and lines of Π, and
with incidence inherited from Π. Such incidence systems satisfy certain properties which,
when taken as axioms, define the class of homology semibiplanes. We describe how one
determines, in principle, whether a given homology semibiplane Σ is realizable as Π/τ for
some Π and τ , and moreover how many nonequivalent pairs (Π, τ) yield Σ. In case Π′ is
Desarguesian of prime order we show that Π′ is characterized by its homology semibiplane,
i.e. Π/τ ∼= Π′/τ ′ implies Π ∼= Π′.

1. INTRODUCTION

A semibiplane (see Hughes [5] or [6]) is an incidence system Σ = (P,L) consisting of a

set P of points, and a set L consisting of certain subsets of P called blocks, such that

(i) any two distinct points of Σ lie in either 0 or 2 common blocks of Σ;

(ii) any two distinct blocks of Σ meet in either 0 or 2 points of Σ;

(iii) Σ is connected (in the graph-theoretic sense); and

(iv) every block of Σ contains at least 3 points.

For a semibiplane Σ, it is easily shown that there exist integers v, k such that |P| = |L| = v,

each block contains exactly k points, and each point lies on exactly k blocks.

Two blocks of Σ are parallel if they are either equal or disjoint. Each block is parallel

to exactly t blocks, where t = v − 1
2k(k − 1). If parallelism is an equivalence relation on

the blocks, then the dual relation on the points (i.e. P ∼ Q for points P, Q if either P = Q

or no block contains both P and Q) is also an equivalence relation. A semibiplane with

these two equivalence relations is called divisible and satisfies the property:

|P∼| = |L||| = t = v − 1
2k(k − 1) for all P ∈ P, L ∈ L

where P∼ is the equivalence class of P under ∼, and L|| is the parallel class of L.
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For basic terminology concerning projective planes, the reader may refer to [1]. If Π

is a projective plane of order n admitting an involutory homology τ (so that n is odd),

we construct a semibiplane Σ = (P,L) as follows: P (resp., L) is the set of 〈τ〉-orbits of
length 2 on the points (resp., lines) of Π. Incidence in Σ is inherited from Π, viz. {P, P τ}
is incident with the block {L,Lτ} if and only if P ∈ L ∪ Lτ , where P �= P τ are points

and L �= Lτ are lines of Π. It follows that Σ is a divisible semibiplane with parameters

v = 1
2(n

2 − 1), k = n, t = 1
2 (n− 1), and we write Σ = Π/τ .

This motivates the following definition: a homology semibiplane is a divisible

semibiplane in which the parameters satisfy t = 1
2
(k− 1) (i.e. k is odd and v = 1

2
(k2− 1)).

We call k the order of Σ. Given such a homology semibiplane Σ, it is natural to ask: is

Σ ∼= Π/τ for some projective plane Π with an involutory homology τ? If so, is Π unique

up to isomorphism? Better yet, how many nonequivalent pairs (Π, τ) give rise to Σ? (We

say that (Π1, τ1) is equivalent to (Π2, τ2) if there exists an isomorphism ψ : Π1 → Π2

such that ψ ◦ τ1 = τ2 ◦ ψ; clearly in this case Π1/τ1 ∼= Π2/τ2.)

In §2 we prescribe a general procedure for answering these questions, in principle, for

a given Σ. This involves computing a certain subspace of the GF(2)-vector space whose

basis is the set of incident point-block pairs of Σ. In practice, applying this method to

several small semibiplanes, we have usually resorted to using a computer. However, using

our procedure, in §3 we prove the following:

1.1 Theorem. Suppose that Π/τ ∼= Π′/τ ′ for some pairs (Π, τ), (Π′, τ ′) each consisting

of a finite projective plane with involutory homology. If Π′ is Desarguesian of prime order,

then Π ∼= Π′.

(When Π′ is Desarguesian, note that Π ∼= Π′ ⇐⇒ (Π, τ) and (Π′, τ ′) are equivalent, since

the full collineation group of Π′ has a single conjugacy class of involutory homologies.)

In contrast to Theorem 1.1, it is possible for a homology semibiplane to ‘lift’ to distinct

(nonisomorphic) projective planes, as was shown by Janko and Trung [8]. If Π is a Hall

plane of order 9, then AutΠ contains two conjugacy classes of involutory homologies,

represented by τ1 and τ2, and Π/τ1 �∼= Π/τ2, although both Π/τ1 and Π/τ2 are self-dual.
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It follows that the dual Π′ of Π admits an involutory homology τ ′ such that Π′/τ ′ ∼= Π/τ1,

and yet Π′ �∼= Π. We wish to thank Professor Janko for alerting us to this example.

We are not aware of the existence of homology semibiplanes which do not arise from

some projective plane. However, Janko and Trung [7] have constructed elation semibiplanes

(defined analogously for t = k/2) which do not arise from projective planes.

2. THE GENERAL CASE: CONSTRUCTION OF THE PLANE Π FROM Σ

Let Σ = (P,L) be a given homology semibiplane of order k. Then P (and likewise L) has
k + 1 equivalence classes, each of size t = 1

2 (k − 1). Clearly the points of a given block

L ∈ L belong to distinct point classes, and each block in L|| meets the same k point classes.

Therefore L|| determines a point class P∼ such that

P \⋃{M :M ∈ L||} = P∼.

This gives a bijection Γ from the set L/|| of parallel classes of blocks, to the set P/∼ of

point classes, namely

Γ(L||) = P \⋃{M :M ∈ L||}.

We wish to construct a projective plane Π of order k admitting an involutory homology

τ such that Σ ∼= Π/τ . Moreover we wish to determine all possibilities for (Π, τ) to within

equivalence, which yield Σ.

We first suppose that Σ ∼= Π/τ and proceed to determine (Π, τ) by reversing the

process described in §1. Let F = GF(2). Then we may suppose that Π has points and

lines given by the sets of symbols

{O} ∪ {L|| : L ∈ L} ∪ (P × F ), {∞} ∪ {P∼ : P ∈ P} ∪ (L × F ),

respectively, each of size 1 + (k + 1) + 1
2
(k2 − 1)× 2 = k2 + k + 1, such that

(i) τ has centre O and axis ∞; τ acts on P × F and L × F via (P, i) �→ (P, i+1),

(L, j) �→ (L, j+1), and τ fixes the remaining points and lines of Π;

(ii) O is incident with each member (line) of {P∼ : P ∈ P} and with no other line of Π;
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(iii) for L ∈ L, the point L|| is incident with ∞, Γ(L||), and all (M, i) ∈ L × F such that

M ∈ L||, and with no other line of Π;

(iv) the point (P, i) ∈ P × F is incident with P∼, with exactly one of {(L, 0), (L, 1)} for
each L ∈ L which meets P in Σ, and with no other line of Π.

In particular (P, 0) lies on (L, i) if and only if (P, 1) lies on (L, i+1). Let F ⊂ P × L be

the set of flags (i.e. incident point-block pairs) of Σ. Then incidence in Π is completely

determined by the function α : F → F such that (P, 0) meets (L, α(P, L)), and we may

write (Π, τ) = Σα. It remains to determine necessary conditions (and these will also be

sufficient) such that Π is a projective plane.

Suppose that P,Q, L,M form a digon in Σ (i.e. P �= Q are points, L �= M are blocks

with L ∩M = {P,Q}). By considering Figure 1 for all possible values i, j, �,m ∈ F , we

see that α(P, L) + α(P,M) + α(Q,L) + α(Q,M) = 1.

FIGURE 1. Lifting a
digon of Σ to Π
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Now let V be the vector space of all functions F → F , so that dimFV = |F| =
1
2
k(k2 − 1). The standard basis for V is given by {χ

P,L
: (P, L) ∈ F} where

χ
P,L

(Q,M) =
{
1 if (Q,M) = (P, L),
0 otherwise.

Equip V with the nondegenerate symmetric bilinear form

(β, γ) =
∑

(P,L)∈F
β(P, L)γ(P, L), for β, γ ∈ V.

We have shown that
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(1) (α, δ) = 1 for all δ ∈ D, where D =
{
χ
P,L

+ χ
P,M

+ χ
Q,L

+ χ
Q,M

:

P,Q, L,M form a digon in Σ
}
.

Writing U⊥ = {β ∈ V : (β, γ) = 0 for all γ ∈ U} for any subset U ⊆ V , (1) is clearly

equivalent to

(1′) α ∈ C⊥ \ δ⊥
0
, where C = 〈δ+ δ′ : δ, δ′ ∈ D〉 and δ

0
is any given element of

D.

Hereinafter we arbitrarily fix a choice of δ
0
∈ D. A routine check shows that the above

steps are reversible, and we have the following.

2.1 Proposition. Given a homology semibiplane Σ, the set of pairs (Π, τ) consisting

of a projective plane Π and involutory homology τ such that Σ ∼= Π/τ , is given (up to

equivalence) by the set of all Σα (defined as above) such that α ∈ C⊥ \ δ⊥
0

. In particular

such a pair (Π, τ) exists if and only if δ0 /∈ C.

Note that distinct functionals α ∈ C⊥ \ δ⊥
0

may yield isomorphic Σα’s. Indeed, if

(α, δ) = 1 for all δ ∈ D and α′ = α+
∑{

χ
P,L

: P ∈ L
}
for a given L ∈ L, then we easily

compute (α′, δ) = 1 for all δ ∈ D. Since (1) and (1′) are equivalent, this means that both

α, α′ ∈ C⊥ \ δ⊥
0
. However Σα = (Π, τ) is equivalent to Σα′

= (Π′, τ ′). To see this, note

that the symbols for points and lines of Π in the above construction may also be used

for Π′, although Π, Π′ have different incidences as determined by α, α′ respectively. Now

the map ψ which interchanges (L, 0) ↔ (L, 1) and fixes all other point and line symbols,

determines an isomorphism ψ : Π→ Π′ such that ψ ◦ τ = τ ′ ◦ ψ, as required.
For any σ ∈ AutΣ and β ∈ V , define βσ ∈ V by βσ(P, L) = β(P σ−1

, Lσ−1
). The

resulting action of AutΣ on V leaves C⊥ \ δ⊥
0
invariant, as is easily checked by appealing

to (1). For all σ ∈ AutΣ, we see that Σα = (Π, τ) is equivalent to Σασ

= (Πσ, τσ).

This follows as above, again using shared symbols for points and lines of both Π,Πσ,

by observing that the map ψσ which acts on point symbols as O �→ O, L|| �→ (Lσ−1
)||,

(P, i) �→ (P σ−1
, i) and likewise on line symbols, determines an isomorphism ψσ : Π → Πσ

such that ψσ ◦ τ = τσ ◦ ψσ.
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For P ∈ P, L ∈ L we write χ
P
=

∑{
χ
P,M

:M contains P
}
, χ

L
=

∑{
χ
Q,L

: Q ∈ L
}
.

For α, α′ ∈ V we say that α′ is equivalent to α if α′ = ασ +
∑

P∈P0
χ
P
+

∑
L∈L0

χ
L
for

some σ ∈ AutΣ, P0 ⊆ P, L0 ⊆ L. We have shown the following.

2.2 Proposition. Suppose that α, α′ ∈ V are equivalent. Then α′ ∈ C⊥ \ δ⊥
0

if and only

if α ∈ C⊥ \ δ⊥
0

.

In addition we have shown the ‘⇒’ half of the following, and the converse follows with

some further thought.

2.3 Proposition. Suppose that α, α′ ∈ C⊥ \ δ⊥
0

. Then α′ is equivalent to α if and only if

Σα′
is equivalent to Σα.

It therefore suffices to consider representatives of the distinct equivalence classes in

C⊥ \ δ⊥
0
. Choose L0 ∈ L arbitrarily, and choose P0 in the corresponding point class

(i.e. P∼
0 = Γ(L||

0
)). Let F0 be the set of flags (P, L) such that P ∼ P0 or L ‖ L0; i.e.

F0 = F ∩ (
(P × L||

0) ∪ (P∼
0 × L)

)
. Let C0 = 〈χ

P,L
: (P, L) ∈ F0〉. We may ‘standardize’

our choice of α ∈ C⊥ \ δ⊥
0
as follows.

2.4 Proposition. Every equivalence class in C⊥\δ⊥
0

contains a representative in 〈C, C0〉⊥\
δ⊥
0

, i.e. a representative α ∈ C⊥ \ δ⊥
0

which vanishes on F0.

Proof. Suppose that α ∈ C⊥ \ δ⊥
0

satisfies α(Q,M) = 1 for some flag (Q,M) such that

M ‖ L0. Since P
∼
0 × L||

0 contains no flags, we have Q �∼ P0. Then α′ = α + χ
Q
satisfies

α′(Q,M) = 0 and α′ agrees with α on all flags (P, L) ∈ F0 \ {(Q,M)}. By iterating this

step we reduce to the case α vanishes on flags in P × L||
0 . Dually we may suppose that α

vanishes on flags in P∼
0 × L.

Note that 2.4 does not make full use of the standardization possible through 2.3.

Indeed C⊥ \ δ⊥
0

may contain equivalent functionals α �= α′ both vanishing on F0. Nev-

ertheless, in special cases (cf. §3) we find 〈C, C0〉⊥ computable and sufficiently small that

equivalences therein may be feasibly checked.
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3. THE DESARGUESIAN CASE: PROOF OF THEOREM 1.1

Before proving Theorem 1.1 we require two preliminary results.

3.1 Lemma. Let q > 3 be an odd prime power. If s, t are integers such that 0 < s, t < q−1
then there exists r ∈ GF(q) \ {−1, 0, 1} such that

rs �= 1 and
(r + 1
r − 1

)t
�= 1.

Proof. Let H = GF(q) \ {−1, 0, 1}, S = {x2 : x ∈ GF(q)×}, and define R : H → H by

R(x) = (x+ 1)/(x− 1).

Case (i). Suppose that s = t = 1
2
(q − 1), and we require that r, R(r) are both nonsquares

for some r ∈ H. If q ≡ 1 mod 4, then |H ∩ S| = 1
2
(q − 5), |H \ S| = 1

2
(q − 1) and since

R : H → H is bijective we may choose r ∈ (H \S)∩R−1(H \S). Suppose now that q ≡ 3

mod 4, so that |H \ S| = 1
2 (q− 3) > 0. Let r1 ∈ H \S, so that r−1

1 ∈ H \ S. Since −1 /∈ S

we have either R(r1) ∈ H \ S or R(r−1
1 ) = −R(r1) ∈ H \ S, and we may choose r = r1 or

r−1
1 accordingly.

Case (ii). Suppose that s, t do not both equal 1
2
(q−1). If we define Hs = {x ∈ H : xs = 1}

then |Hs| ≤ (q − 1, s) − 1 since 1 /∈ H, and similarly |Ht| ≤ (q − 1, t) − 1. Since R is

bijective and

|H| − |Hs| − |Ht| ≥ (q − 3)− (q − 1, s)− (q − 1, t) + 2

≥ (q − 3)− 1
2
(q − 1)− 1

3
(q − 1) + 2 > 0,

we may choose r ∈ H \ (
Hs ∪R−1(Ht)

)
.

For a linear transformation ϕ, let null(ϕ) denote the dimension of its kernel.

3.2 Lemma. Let ϕ be a nilpotent endomorphism of a finite dimensional vector space V ,

and suppose that for some chain of subspaces 0 = V
0
≤ V

1
≤ V

2
≤ · · · ≤ V

N
= V we have

ϕ(Vi) ⊆ Vi−2 for i = 2, 3, . . . , N . Then

null(ϕ) ≤
N∑
i=1

null(ϕ
i
)
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where ϕ
i
∈ Hom(Vi/Vi−1, Vi−2/Vi−3) is induced by ϕ. (For convenience we have let

V−1
= V−2

= 0.)

Proof. Choose a system of commuting projections π
i
: V → Vi. Composing πi with the

canonical map Vi → Vi/Vi−1 gives ρi : V → Vi/Vi−1, and we have an isomorphism

ρ : V
∼=−→

N⊕
i=1

Vi/Vi−1, ρ(v) = ρ1(v)⊕ · · · ⊕ ρ
N
(v).

Then ρ ◦ ϕ = ϕ ◦ ρ where

ϕ ∈ End
( N⊕

i=1

Vi/Vi−1

)
, ϕ(v

1
⊕ · · · ⊕ v

N
) = ϕ

3
(v

3
)⊕ ϕ

4
(v

4
)⊕ · · · ⊕ ϕ

N
(v

N
)⊕ 0⊕ 0.

Now null(ϕ) ≤ null(ρ ◦ ϕ) = null(ϕ ◦ ρ) = null(ϕ) =
∑N

i=1 null(ϕi
) since ρ is surjective.

We now proceed to prove Theorem 1.1 for a Desarguesian plane Π′ of order p, where p

is an odd prime. Our notation follows that of §2. Since any plane of order 3 is Desarguesian,
we may assume that p > 3. Let K = GF(p), so that Π′ has points {(x, y, z) �= (0, 0, 0) :

x, y, z ∈ K} and lines {(a, b, c)T �= (0, 0, 0)T : a, b, c ∈ K} in the usual homogeneous

coördinates (i.e. (λx, λy, λz) = (x, y, z) for λ �= 0, and similarly for lines) where T denotes

transpose and (x, y, z) ∈ (a, b, c)T ⇐⇒ (x, y, z)(a, b, c)T = 0. Let τ ′ be the homology

represented by diag(−1, 1, 1); this has centre O = (1, 0, 0) and axis ∞ = (1, 0, 0)T . We

denote a typical point of Σ = Π′/τ ′ by (x, y, z) = {(x, y, z), (−x, y, z)} where x �= 0,

(y, z) �= (0, 0), and a typical line of Σ by (a, b, c)T= {(a, b, c)T , (−a, b, c)T} where a �= 0,

(b, c) �= (0, 0), and where x �→ x is the canonical map K× → K× = K×/〈−1〉, K× =

K\{0}. Suppose that α ∈ C⊥\δ⊥
0
. By 2.4 we may assume that α vanishes on F0 = F∩

(
(P×

L||
0
)∪ (P∼

0
×L)) where L||

0
= {( 1, 0, c)T : c ∈ K×} and P∼

0
= Γ(L||

0
) = {( 1, y, 0) : y ∈ K×}.

For a, x, y ∈ K we have

(2) α
(
(x, y, 1), (a, 1, ax−y)T)

+ α
(
(x, y, 1), (a, 1,−ax−y)T)

= 1

whenever ax �= 0.
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This follows from (1) for the digon formed by (x, y, 1), ( 1, a, 0), (a, 1, ax−y)T, (a, 1,−ax−y)T,
using the assumption that α vanishes on F0. Also

(3) α
(
(x, y, 1), (a, 1, ax−y)T)

+ α
(
(x, y−2ax, 1), (a, 1, ax−y)T)

= 1

whenever ax �= 0.

This follows from (1) for the digon formed by (x, y, 1), (x, y−2ax, 1), ( 1, 0, x)T, (a, 1, ax−y)T,
using the assumption that α vanishes on F0. Adding (2) and (3) gives α

(
(x, y, 1), (a, 1,

−ax−y)T)
= α

(
(x, y−2ax, 1),(a, 1, ax−y)T)

whenever ax �= 0. Since 2 �= 0, by induction

we have α
(
(x, y, 1),(a, 1,−ax−y)T)

= α
(
(x, y−2nax, 1), (a, 1, (2n−1)ax−y)T)

whenever

ax �= 0 and n is an integer. Since |K| = p is prime we have α
(
(x, y, 1), (a, 1,−ax−y)T)

=

α
(
(x, y−c, 1), (a, 1, c−ax−y)T)

whenever ax �= 0 and c ∈ K. We define a new function

gα : K××K× → F = GF(2) by gα(x, y) = α
(
(x, y, 1), ( y/x, 1, 0)T

)
whenever xy �= 0. By

what we have just seen,

(4) α
(
(x, y, 1), ( (y+c)/x, 1, c)T

)
= gα(x, y+c) whenever x(y+c) �= 0.

Let A = F
[
K× ×K×] ∼= F

[
K× ] ⊗ F

[
K×]

be the group algebra, with basis
{
d
a
⊗ e

b
:

a ∈ K×, b ∈ K×}
and multiplication defined by (d

a
⊗ e

b
)(d

c
⊗ e

d
) = d

ac
⊗ e

bd
. Thus

dimFA =
∣∣K× ×K×∣∣ = 1

2(p− 1)2 and we may view A as the vector space of all functions

K× ×K× → F via the action

(
d
a
⊗ e

b

)
(x, y) =

{
1, x = a and y = b,
0, otherwise.

Since (4) gives α(P, L) for every flag (P, L) ∈ F \ F0, we see that gα uniquely determines

α, and α �→ gα defines an injective F -homomorphism 〈C, C0〉⊥ → A.

Suppose that α ∈ 〈C, C0〉⊥, and that β = α + χ(1,b,0) +
∑{

χ
L
: L contains ( 1, b, 0)

}
and γ = α+ χ(1,0,c)T +

∑{
χ
P
: P ∈ ( 1, 0, c)T

}
for some b, c ∈ K×. Then β, γ ∈ C⊥ since

they are both equivalent to α, and furthermore β, γ ∈ C⊥0 . We easily obtain

g
β
= gα +

∑
a∈K×

d
a
⊗ e

ab
, gγ = gα +

∑
a∈K×

d
c
⊗ e

a
.

Since the map α �→ gα is injective we have the following.
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(5) If α, α′ ∈ 〈C, C0〉⊥ and gα′ ≡ gα mod E , then α′ is equivalent to α, where

E =
〈 ∑
a∈K×

d
a
⊗ e

ab
,

∑
a∈K×

d
c
⊗ e

a
: b, c ∈ K×

〉
< A.

Note that
〈 ∑
a∈K×

d
a
⊗ e

ab
: b ∈ K×

〉
and

〈 ∑
a∈K×

d
c
⊗ e

a
: c ∈ K×

〉
both have dimension

1
2 (p− 1), and that their intersection is

〈 ∑
a∈K×

∑
b∈K×

d
a
⊗ e

b

〉
of dimension 1. Therefore

(6) dim E = p− 2.

From (2) and (3) we obtain

(7) gα(x, y) + gα(x,−y) = 1 whenever xy �= 0.

Now

(8) gα(x, y) + gα(x, y/R) + gα( x/r, y/r) + gα( x/r, y/rR) = 0

whenever (r+1)(r−1)rxy �= 0, where R = R(r) = (r+1)/(r−1).

To see this, apply (1) to the digon formed by (x/r, 0, 1), (x, y(1−r−1), 1), ( y/x, 1, y/r)T,

( y/Rx, 1,−y/rR)T, then express in terms of gα using (4), and use the fact from (7)

that gα( x/r, y/rR) + gα( x/r,−y/rR) = 1. Now g(x, y) + g( x/r, y/r) + g(x, y/R) +

g( x/r, y/rR) = (φrg)(x, y) where φr ∈ EndF (A) is defined by

φrg =
(
1 + d

r
⊗ e

r

)(
1 + d

1
⊗ e

R

)
g for all g ∈ A, r ∈ K× \ {−1, 1},

where R = R(r) = (r+1)/(r−1).

Here 1 = d
1
⊗ e

1
is the identity of A. Hence we may rewrite (8) in the form

(8′) gα ∈
⋂
r∈H

kerφr, H = K× \ {−1, 1}.

We claim that

(9)
⋂
r∈H

kerφr = E +
〈 ∑

a∈K×

∑
b∈S

d
a
⊗ e

b

〉
, where S = {x2 : x ∈ K×}.



Homology Semibiplanes 

Clearly
⋂

r∈H kerφr ⊇ E +
〈 ∑

a∈K×

∑
b∈S

d
a
⊗ e

b

〉
. Before proving (9) we show how it yields

the desired conclusion. Combining (5) with the results of §2 we see that (Π, τ) ∼= Σα for

some α ∈ 〈C, C0〉⊥ \ δ⊥0 such that gα ∈
〈 ∑

a∈K×

∑
b∈S

d
a
⊗ e

b

〉
. But the latter subspace of A

is one-dimensional and gα �= 0 since α �= 0 and the map α �→ gα is an F -monomorphism.

Therefore gα =
∑

a∈K×

∑
b∈S

d
a
⊗ e

b
, which determines α, so we are done. Indeed, by (4) we

have

α
(
(x, y, z), (a, b, c)T

)
=

{
1, bz �= 0,

y

z
+
c

b
∈ S,

0, otherwise

for every flag
(
(x, y, z), (a, b, c)T) ∈ F (i.e. by + cz = ±ax �= 0).

We now prove (9). Since
∑

a∈K×

∑
b∈S

d
a
⊗ e

b
/∈ E , in view of (6) it suffices to prove that

(9′) dim
F

⋂
r∈H

kerφr ≤ p− 1.

We write p − 1 = 2n+1m where m,n are integers, m odd, n ≥ 0. Let E = F (θ) be an

extension of F in which θ is a primitive m-th root of 1. Extend A to the E-algebra

B = E
[
K× ]⊗EE

[
K×]

=
{∑

a,b

λ
a,b

d
a
⊗ e

b
: λ

a,b
∈ E for all a ∈ K×, b ∈ K×

} ∼= A⊗FE.

Clearly (9′) is equivalent to

(9′′) dim
E

⋂
r∈H

kerΦr ≤ p− 1,

where Φr ∈ End
E
(B) uniquely extends φr ∈ End

F
(A), and dim

E
indicates dimension

over E. It therefore suffices to prove (9′′).

Now K× = 〈µν〉 = 〈µ〉 × 〈ν〉 where µ, ν has order m, 2n+1 respectively. Furthermore

E[K×] = E[eµν ] =
{ p−2∑

i=0

λ
i
eiµν : λi ∈ E for all i

} ∼= E[eµ]⊗EE[eν ],
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where the latter isomorphism of E-algebras is determined by eµν �→ eµ ⊗ eν . (Hereinafter

⊗ means ⊗E , and all vector spaces and homomorphisms are over the field E.) Similarly

we have E
[
K× ]

= E[d
µν
] = E[d

µ
]⊗ E[d

ν
].

(10) For any odd integer s, the map x �→ (1+esν)x defines an E-endomorphism

of E[eν ] whose kernel is the one-dimensional ideal of E[eν ] generated by∑
a∈〈ν〉

ea.

To verify (10), note that esν = e
νs . Since 〈νs〉 = 〈ν〉 for s odd, we may suppose that s = 1.

If x =
∑

a∈〈ν〉
λaea satisfies (1 + eν)x = 0 then comparing coefficients gives the result. The

same argument obtains

(11) for any odd integer s, the map x �→ (1+ ds
ν
⊗ esν)x is an E-endomorphism

of E[d
ν
] ⊗ E[eν ] whose kernel is the ideal of E[dν] ⊗ E[eν ] generated by∑

a∈〈ν〉
d
a
⊗ ea , having dimension 2n.

The map x �→ eµx is an E-endomorphism of E[eµ] with characteristic polynomial

Xm + 1 =
∏m−1

j=0 (X + θj), as may be computed from the action on the basis {ejµ : 0 ≤
j < m} of E[eµ]. Therefore we may choose a new basis {vj : 0 ≤ j < m} such that

eµvj = θjvj for all j.

The map x �→ eνx is an E-endomorphism of E[eν ] with characteristic polynomial

X2n+1
+1 = (X +1)2

n+1
, as may be computed from the action on the basis {e ν : 0 ≤ � <

2n+1}. By (10) the map x �→ (1+ eν)x has nullity equal to 1, and so the Jordan canonical

form of x �→ eνx has a single block for the eigenvalue 1, and we may choose a new basis

{z
 
: 0 ≤ � < 2n+1} of E[eν ] such that

(1 + eν)z =
{ 0, � = 0,
z
 −1

, 1 ≤ � < 2n+1.

For any integer s,

(12) esνz =
(
1 + (1 + eν)

)s
z
 
= z

 
+ sz

 
+

(
s

2

)
z
 −2

+
(
s

3

)
z
 −3

+ · · · ,
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where the binomial coefficients are interpreted modulo 2, and the general term
(
s
h

)
z
 −h

is

zero for h > min{s, �}. Similarly E[d
µ
], E[d

ν
] have respective bases {ui : 0 ≤ i < m} ,

{w
k
: 0 ≤ k < 2n} such that

d
µ
ui = θiui, 0 ≤ i < m, (1 + d

ν
)w

k
=

{ 0, k = 0,
w

k−1
, 1 ≤ k < 2n.

Since the tensor product is associative and commutative (to within E-algebra isomorphism)

we may rewrite

B = E[d
µ
]⊗ E[eµ]⊗ E[d

ν
]⊗ E[eν ] =

m−1⊕
i=0

m−1⊕
j=0

ui ⊗ vj ⊗E[d
ν
]⊗ E[eν ],

where each summand is invariant under Φr ∈ EndE(B) defined by

Φr(x) = (1 + d
s

µ
⊗ esµ ⊗ d

s

ν
⊗ esν)(1 + d

1
⊗ etµ ⊗ d

1
⊗ etν)x for all x ∈ B,

where r = (µν)s ∈ H, R = R(r) = (r+1)/(r−1) = (µν)t.

(Here 1 = d
1
⊗ e

1
⊗ d

1
⊗ e

1
is the identity of B.) Thus

(13) dim
⋂
r∈H

kerΦr =
m−1∑
i=0

m−1∑
j=0

dim
⋂
r∈H

kerΦr

∣∣
ui ⊗ vj ⊗ E[d

ν
]⊗ E[eν ].

Using (12) and an analogous expression for ds
ν
w

k
, we compute

Φr(ui ⊗ vj ⊗ w
k
⊗ z

 
) ≡ (

1 + θ(i+j)s
)(
1 + θjt

)
ui ⊗ vj ⊗ w

k
⊗ z

 

mod ui ⊗ vj ⊗ 〈wk+1
, w

k+2
, . . . , w

2n−1
〉 ⊗ 〈z

 +1
, z

 +2
, . . . , z

2n+1−1
〉

and so the matrix representing Φr

∣∣
ui ⊗ vj ⊗ E[d

ν
]⊗ E[eν] is triangular with respect to the

lexicographically ordered basis {ui ⊗ vj ⊗ w
k
⊗ z

 
: 0 ≤ k < 2n, 0 ≤ � < 2n+1}. Therefore

the only nonzero terms in (13) arise when the diagonal coefficient
(
1+θ(i+j)s

)(
1+θjt

)
= 0

for all r ∈ H, i.e. when (i+j)s ≡ 0 or jt ≡ 0 mod m for all r ∈ H, i.e. when r2n+1(i+j) = 1

or R2n+1j = 1 for all r ∈ H. By Lemma 3.1, this is equivalent to i+ j ≡ 0 or j ≡ 0 mod

m. Therefore



Homology Semibiplanes 

(13′) dim
⋂
r∈H

kerΦr =
m−1∑
i=0

dim
⋂
r∈H

kerΦr

∣∣
ui ⊗ v0 ⊗ E[d

ν
]⊗ E[eν ]

+
m−1∑
j=1

dim
⋂
r∈H

kerΦr

∣∣
um−j ⊗ vj ⊗ E[d

ν
]⊗E[eν ] .

We show first that

(14) dim
⋂
r∈H

kerΦr

∣∣
um−j ⊗ vj ⊗ E[d

ν
]⊗ E[eν ] ≤ 2n whenever 1 ≤ j < m.

For if 1 ≤ j < m, x ∈ E[d
ν
]⊗ E[eν ] then we compute

Φr(um−j ⊗ vj ⊗ x) = um−j ⊗ vj ⊗
(
(1 + θjtd

1
⊗ etµ)(1 + d

s

ν
⊗ esν)x

)
where r = (µν)s, R = R(r) = (µν)t. By Lemma 3.1 we may choose r ∈ H such that

r2nm �= 1 and R2n+1j �= 1, i.e. s is odd and θjt �= 1. Suppose that Φr(um−j⊗vj⊗x) = 0. We

claim that (1+ds
ν
⊗esν)x = 0, which in view of (11) would yield (14). But if (1+ds

ν
⊗esν)x �= 0,

we may write

(1 + d
s

ν
⊗ esν)x =

2n−1∑
k=0

2n+1−1∑
 =0

λ
k, 

w
k
⊗ z

 
, λ

k, 
∈ E,

and we may suppose for some k′, �′ that λk′, ′ �= 0, λk′, = 0 whenever � > �′. Then

the coefficient of um−j ⊗ vj ⊗ w
k′ ⊗ z

 ′ in Φr(um−j ⊗ vj ⊗ x) is (1 + θjt)λk′, ′ �= 0, a

contradiction, and so (14) follows. Next we show that

(15) dim
⋂
r∈H

kerΦr

∣∣
ui ⊗ v0 ⊗ E[d

ν
]⊗ E[eν ] ≤ 2n whenever 1 ≤ i < m.

For if 1 ≤ i < m, x ∈ E[d
ν
]⊗E[eν ] then

Φr(ui ⊗ v0 ⊗ x) = ui ⊗ v0 ⊗
(
(1 + θ−isd

s

ν
⊗ esν)(1 + d

1
⊗ etµ)x

)
where r = (µν)s, R = R(r) = (µν)t. By Lemma 3.1 we may choose r such that r2n+1i �= 1

and R2nm �= 1, i.e. θis �= 1 and t is odd. Suppose that Φr(ui ⊗ v0 ⊗ x) = 0. We claim that

(1 + d
1
⊗ etµ)x = 0, which in view of (10) would yield x ∈ E[d

ν
] ⊗∑

a∈〈ν〉 ea, a space of

dimension 2n, from which (15) would follow. However if (1+d
1
⊗ etµ)x �= 0 then we obtain

a contradiction as in the proof of (14) above, and so (15) holds. Finally we show that
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(16) dim
⋂
r∈H

kerΦr

∣∣
u0 ⊗ v0 ⊗E[d

ν
]⊗E[eν ] ≤ 2n+1.

For if x ∈ E[d
ν
]⊗ E[eν ] then

φr(u0 ⊗ v0 ⊗ x) = u0 ⊗ v0 ⊗
(
(1 + d

s

ν
⊗ esν)(1 + d

1
⊗ etµ)x

)
,

where r = (µν)s, R = R(r) = (µν)t. By Lemma 3.1 we may choose r ∈ H such that

r2nm �= 1 and R2nm �= 1, i.e. s ≡ t ≡ 1 mod 2. Fixing such an r, it suffices to show that

null(ϕ) ≤ 2n+1 where ϕx = (1 + ds
ν
⊗ esν)(1 + d

1
⊗ etµ)x, ϕ ∈ End

E

(
E[d

ν
] ⊗ E[eν ]

)
. For

0 ≤ h < 3·2n define Uh to be the subspace of E[dν ]⊗E[eν ] spanned by {wk
⊗z

 
: k+� < h}.

This gives a chain of ϕ-invariant subspaces, namely

0 = U0 < U1 < · · · < U3·2n−1 = E[d
ν
]⊗ E[eν ].

Indeed for 2 ≤ k < 2n, 1 ≤ � < 2n+1, we compute

ϕ(w
k
⊗ z

 
) ∈ w

k
⊗ z

 −2
+ w

k−1
⊗ z

 −1
+ Uk+ −2,

ϕ(w
0
⊗ z

 
) ∈ w

0
⊗ z

 −2
+ U −2,

ϕ(w
k
⊗ z

1
) ∈ w

k−1
⊗ z

0
+ Uk−1,

ϕ(w
k
⊗ z

0
) = 0 = ϕ(w

0
⊗ z

1
) = ϕ(w

0
⊗ z

0
).

These relations follow from (12) together with a variant of (12) expressing ds
ν
wk, and using(

s
2

)
+

(
t
2

)
+

(
s+t
2

) ≡ 1 mod 2 whenever s ≡ t ≡ 1 mod 2. Thus ϕ(Uh) ⊆ Uh−2 and ϕ induces

ϕ
h
∈ Hom

E
(Uh/Uh−1,Uh−2/Uh−3) for h = 2, 3, . . . , 3·2n−1. By the above relations we

easily see that

nullϕ
h
=




1, h = 1,
2, 2 ≤ h ≤ 2n,
1, h = 2n+1,
0, 2n+2 ≤ h < 3·2n.

By Lemma 3.2 we have nullϕ ≤ 2n+1 and so (16) holds. Combining (13′), (14), (15), (16)

we have

dim
⋂
r∈H

kerΦr ≤
m−1∑
j=1

2n +
m−1∑
i=1

2n + 2n+1 = 2n+1m = p− 1,
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which proves (9′′), as required.

4. FURTHER REMARKS

The problem of classifying projective planes of a given order n admitting an involu-

tory homology, decomposes naturally into the following two steps: (a) classify all homology

semibiplanes of order n, and (b) ‘lift’ each such semibiplane to as many distinct projective

planes as possible. Matulić-Bedenić [9] showed the uniqueness of the homology semibiplane

of order 11, and of the corresponding projective plane with involutory homology. Thus

Theorem 1.1 gives a generalization of step (b) of [9]. Unfortunately step (a) is evidently

much more difficult than step (b) in general, and so we are still very far from classify-

ing projective planes of prime order admitting an involutory collineation. It is widely

conjectured that any projective plane of prime order is Desarguesian.

Hughes [3], [4] showed that the more general problem of determining all projective

planes of given order n which admit a given abstract group G as a collineation group, is

equivalent to determining all possible matrices A with entries in the group algebra QG

over the rational field, whose rows and columns satisfy certain ‘inner product’ relations.

(Strictly speaking, these relations also involve the choices of point and line stabilizers;

moreover, additional conditions must be imposed if G is to act faithfully.) These relations

on A yield relations on the integral matrix φ(A) obtained by applying to each entry the

ring homomorphism φ : QG→ Q,
(∑

agg
) �→∑

ag (see [3]). Given n and G, the problem

of finding all nonequivalent pairs (Π, ρ) such that Π is a projective plane of order n and

ρ : G → AutΠ is a faithful action, splits naturally into two steps: (a) determine all

possibilities for φ(A), and (b) for each such candidate for φ(A), determine all possibilities

for A. This scheme has been successfully followed by Shull [10], Whitesides [11], Ho [2]

and others. In the case G is a homology group of order 2, candidates for φ(A) correspond

to homology semibiplanes, and ‘lifting’ φ(A) to A corresponds to ‘lifting’ a homology

semibiplane to a projective plane. Namely, φ(A) is determined by a submatrix thereof

which is necessarily the incidence matrixM of a homology semibiplane Σ, and each nonzero
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entry of M corresponds to a unique flag in F . Therefore lifting φ(A) (or essentially M)

to A amounts to finding a suitable map α : F → G ∼= F (considering F = GF(2) as an

additive group). ‘Suitable’ here means that A satisfies the relations of Hughes, which are

equivalent to requiring that α satisfy (1) or (1′).

The proof in [8] for planes of order 9 suggests that Theorem 1.1 may be true more gen-

erally for any Desarguesian plane Π′ of odd order. We anticipate that our methods lead to

such a generalization, although thus far the linear algebra involved has defeated us. More-

over, it is expected that analogues of Theorem 1.1 may be found for elation semibiplanes

and Baer semibiplanes (see [5], [7]) using GF(2)-vector space techniques similar to those

of §2. Since any involutory collineation is either a perspectivity or a Baer collineation, step
(b) would seem to be tractable whenever |G| = 2. This invokes the more well-known dis-

tinguishing feature of involutory collineations: a very special fixed substructure. Yet there

is a more subtle way in which involutions are unique among collineations: no approach to

step (b) as simple as §2 is known for |G| > 2, even assuming that G is generated by a

perspectivity.
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