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Abstract. From a projective plane Π with a homology τ of order 2, one obtains an incidence system
having as points and blocks the 〈τ〉-orbits of length 2 on the points and lines of Π, and with incidence
inherited from Π. The resulting structure, denoted by Π/τ , is an example of a homology semibiplane.

We have shown that a Desarguesian projective plane of odd prime order is uniquely reconstructible from
its homology semibiplane (although such a reconstruction is not in general unique for other planes). This is
one step towards classifying projective planes of prime order which admit a collineation of order 2.

More generally we reduce the problem of ‘lifting’ semibiplanes to projective planes, to an equivalent (but
better codified) problem in linear algebra. Conceivably this technique may produce new projective planes
from the semibiplanes of known planes.
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1. Homology Semibiplanes. A semibiplane is an incidence system Σ = (P,B)
consisting of a set P of points, and a set B consisting of certain subsets of P called blocks,
such that

(i) any two distinct points lie in either 0 or 2 common blocks;
(ii) any two distinct blocks meet in either 0 or 2 points;
(iii) Σ is connected; and
(iv) every block contains at least 3 points.

(See Hughes [5].) It is easy to show that given any semibiplane Σ = (P,B), there exist
integers v, k such that |P| = |B| = v, each block contains exactly k points, and each point
belongs to exactly k blocks.

EXAMPLE 1.1. Take vertices of the regular icosahedron as points, and the regular
pentagons among its edge circuits as blocks. This forms a semibiplane with v = 12, k = 5.

Two blocks L,L′ ∈ B are parallel if L = L′ or L ∩ L′ = Ø. Each block is parallel to
exactly t = v −

(
k
2

)
blocks. If parallelism is an equivalence relation on the blocks, then

the dual relation on the points (P ∼ P ′ ⇐⇒ P = P ′ or P, P ′ are unjoined) is also
an equivalence relation. In this case the semibiplane Σ is said to be divisible, and each
class (of points or of blocks) has size t = v −

(
k
2

)
. (Observe that Example 1.1 is divisible
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with t = 2. Antipodal vertices are unjoined points; pentagons lying in parallel planes are
parallel blocks.)

Suppose now that Π is a projective plane of order n, admitting an involutory ho-
mology τ (so that n is odd). That is, τ is a collineation of order 2, fixing pointwise some
line of Π and an additional point of Π. (Our terminology concerning projective planes
is standard and follows [6].) As in [5], we may construct a divisible semibiplane with
v = 1

2(n2 − 1), k = n, t = 1
2(n − 1) as follows: ‘points’ and ‘blocks’ are the 〈τ〉-orbits of

length 2 on the points and lines of Π, and incidence is inherited from Π. We denote the
resulting semibiplane by Π/τ . This motivates the definition: a homology semibiplane
is a divisible semibiplane with t = 1

2
(k − 1) (i.e. k is odd, v = 1

2
(k2 − 1)). Its order is k.

This suggests the following

PROBLEM 1.2. Given a homology semibiplane Σ, is Σ ∼= Π/τ for some Π,τ? Moreover,
how many nonequivalent pairs (Π, τ) yield Σ in this way?

(We say that the pairs (Π1, τ1), (Π2, τ2) are equivalent if there exists an isomorphism
ψ : Π1 → Π2 such that ψ ◦ τ1 = τ2 ◦ ψ; clearly in this case Π1/τ1 ∼= Π2/τ2.) In [11] we
prove

THEOREM 1.3. If Π/τ ∼= Π′/τ ′ where Π′ is Desarguesian of odd prime order, then

Π ∼= Π′.

Under the broader hypothesis ‘. . .odd prime power order’, we failed to obtain the same
conclusion (the ‘linear algebra’ becomes much more involved in this case); see remarks in
Section 2 concerning the case n = 9.

We indicate in Section 2 how these methods apply to the problem of classifying pro-
jective planes with involutory homologies. Section 3 describes the key idea in the proof
of 1.3, namely the reduction of Problem 1.2 to a linear algebra problem. In Section 4 we
remark on the situation for involutory collineations other than homologies. And Section 5
places our Problem 1.2 in the context of a more general ‘lifting’ problem.

2. Classifying planes with involutory homologies. We point out that Problem
1.2 is a subproblem of

PROBLEM 2.1. Given an odd integer n, how many (isomorphism classes of) projective
planes of order n exist, admitting an involutory homology?

To solve 2.1 for a particular value of n, one proceeds in two steps:
(i) First find all homology semibiplanes of order n (up to isomorphism). Then
(ii) ‘lift’ each such semibiplane, in as many (essentially different) ways as possible, to

obtain projective planes (this is Problem 1.2).
For instance Matulić-Bedenić [10] shows the uniqueness of a projective plane of order
11 admitting an involutory homology, by first proving the uniqueness of the homology



semibiplane Σ of order 11, then showing that Σ lifts uniquely. Note that Theorem 1.3
generalizes step (ii) of this argument. To attempt to prove that all projective planes of
prime order admitting an involutory collineation are Desarguesian, amounts to generalizing
step (i); however this is evidently too difficult for current methods.

Also interesting is the case n = 9 treated in [7], where Janko and van Trung show that
(i) there are precisely three homology semibiplanes of order 9, and
(ii) they lift as follows:

Σ1−→Desarguesian plane PG(2,9)

Σ2−→Hughes plane of order 9
Σ3

↗
↘

Hall plane of order 9

dual Hall plane of order 9

(In particular the only planes of order 9 admitting involutory homologies are the four
known planes of order 9.) The example of Σ1 above suggests that Theorem 1.3 might
possibly extend to any Desarguesian plane Π′, although not to an arbitrary plane Π′ (in
view of the case Σ3 above).

FIGURE 3.1.
Incidence matrix
of Π′ = PG(2, 5)
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3. ‘Linearizing’ the lifting problem. Let us see how Problem 1.2 reduces to a linear
problem. The general case is formally treated in [11], and here we illustrate the key idea
with particular reference to the case of Π′ = PG(2, 5), the unique (Desarguesian) projective
plane of order 5. The incidence matrix of Π′, as shown in Figure 3.1, makes evident the
action of an involutory homology τ ′ which fixes the seven points (resp., lines) corresponding



to the first seven rows (resp., columns) of the matrix, and permuting the remaining points
(resp., lines) in pairs corresponding to adjacent rows (resp., columns). From the bottom-
right 24 × 24 submatrix thereof we obtain the incidence matrix of the resulting homology
semibiplane Σ′ = Π′/τ ′, shown as Figure 3.2. It turns out that Σ′ is isomorphic to
Example 1.1, this being in fact the unique homology semibiplane of order 5. (Aside. Using
the construction of Σ′ from Π′ we see that Aut Σ′ ⊇ CAutΠ′(τ ′)/〈τ ′〉 ∼= GL(2, 5)/Z2 where
Z2 ⊂ Z(GL(2, 5)) is of order 2; cf. [5]. It may in fact be shown that Aut Σ′ ∼= GL(2, 5)/Z2.
Meanwhile from the earlier construction it is evident that Aut Σ′ contains the isometry
group of the icosahedron, namely A5×Z2, which is a subgroup of index 2 in GL(2, 5)/Z2.)

FIGURE 3.2. Incidence matrix
of the homology semibiplane Σ′
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Consider now the reverse problem of trying to lift Σ′ to a projective plane Π of order
5. To obtain (a 24× 24 submatrix of) an incidence matrix for Π, each ‘1’ in the incidence
matrix of Σ′ (see Fig. 3.2) must be replaced by either

(
1 0
0 1

)
or

(
0 1
1 0

)
. Furthermore it is clear

that the four 1’s corresponding to any digon (P,Q;L,M) of Σ′ must be replaced by three(
1 0
0 1

)
’s and one

(
0 1
1 0

)
, or by one

(
1 0
0 1

)
and three

(
0 1
1 0

)
’s. (We call (P,Q;L,M) a digon of Σ′

if P �= Q are points of Σ′, joined by the blocks L �= M .)
Now let F ⊂ P × B be the set of flags of Σ′, i.e. the set of pairs (P, L) such that P is

a point contained in the block L. Let F = GF(2), the field of order 2. The above remarks
show firstly that any plane Π obtained from Σ′ is determined by a corresponding function
α : F → F , namely α(P, L) = 0 or 1 according as the (P, L)-entry of the incidence matrix
of Σ′ is replaced by

(
1 0
0 1

)
or

(
0 1
1 0

)
; and secondly that

α(P, L) + α(P,M) + α(Q,L) + α(Q,M) = 1

for any digon (P,Q;L,M) of Σ′.
Let V be the vector space of all functions F → F , with standard basis {χP,L : (P, L) ∈

F}, where

χP,L(Q,M) =
{

1, if (Q,M) = (P, L);
0, otherwise.

Note that dimV = |F| = 60 (or in general 1
2k(k2 − 1)). Define a bilinear form on V by

(β, γ) =
∑

(P,L)∈F
β(P, L)γ(P, L), for β, γ ∈ V.



Then we require that (α, δ) = 1 for all δ ∈ D, where

D = {χP,L + χP,M + χQ,L + χQ,M : (P,Q;L,M) is a digon in Σ′}.
In particular

α ∈ 〈δ + δ′ : δ, δ′ ∈ D〉⊥.

This is now a linear condition on α, which provides the basic key to limiting the possibilities
for Π. Note however that distinct α’s may yield isomorphic planes Π. In [11] we consider
how to suppress these redundant solutions for α in the general case of Problem 1.2, as well
as prove Theorem 1.3 in case Π′ is Desarguesian of odd prime order.

4. Elation and Baer semibiplanes. An elation semibiplane is a divisible semibi-
plane with t = k/2 (i.e. k is even, v = k2/2). Examples with k = n may be constructed
(cf. [5]) from projective planes of even order n with involutory elations; however other
constructions are known. Indeed Jungnickel [9] (and implicitly Drake [2]) construct ela-
tion semibiplanes with k = 2q, q an odd prime power, using generalized Hadamard matrix
constructions [8] (for q an odd prime the latter matrix constructions are due to Butson [1]).
This family of elation semibiplanes was independently constructed by Wild [12]. By [3],
none of the semibiplanes in this family ‘lift’ to projective planes with involutory elations.
We wish to thank Dieter Jungnickel for bringing these examples to our attention. This
presents a contrast with the situation for homology semibiplanes, where all constructions
known to us arise from projective planes with involutory homologies.

As with homology semibiplanes, the problem of lifting elation semibiplanes (also ‘Baer’
semibiplanes; cf. [5]) reduces to a problem in linear algebra by the same method of Sec-
tion 3.

5. Classifying planes with given groups. Our interest in lifting semibiplanes stems
from a consideration of the more general

PROBLEM 5.1. Given an abstract finite group G and integer n > 1, classify (up to
equivalence) all projective planes of order n which admit G as a collineation group.

Each solution to this problem may be expressed in the form of a matrix A, a sort of
generalized incidence matrix with entries in the group algebra QG over the rational field
Q, as proposed by Hughes [3], [4], who showed that such matrices satisfy certain relations.
If P1, P2, . . . , Pw and L1, L2, . . . , Lw are representatives of the distinct point and line orbits
of G, then by definition the (i, j)-entry of A is

∑{g ∈ G : P g
i ∈ Lj}.

Another w × w matrix A (with integer entries) is defined as the homomorphic image
of A under the homomorphism QG → Q,

∑
agg �→ ∑

ag; i.e. the (i, j)-entry of A is
|{g ∈ G : P g

i ∈ Lj}|.



To illustrate we return to the example of Section 3 in which G = 〈τ ′〉, τ ′ an involutory
homology of Π′ = PG(2, 5). In this case the matrix A is given by Figure 5.2, in which
γ = 1 + τ ′ ∈ QG. To obtain A from A simply replace each τ ′ entry by 1, and each γ entry
by 2. The relations of [3], [4] amount to

AD−1AT = ATD−1A = 5D + γJ, AD−1AT = ATD−1A = 5D + 2J,

where D =
(
γI7 0
0 I12

)
, D =

(
2I7 0
0 I12

)
, Ir = identity matrix of order r, and J is the

19 × 19 matrix whose every entry is 1.

FIGURE 5.2. Generalized incidence
matrix A for the action of an involutory
homology τ ′ on Π′ = PG(2,5)

γ γ γ γ γ γ
γ γ γ γ
γ γ γ γ
γ γ γ γ
γ γ γ γ
γ γ γ γ
γ γ γ γ
γ 1 1 1 1 1
γ 1 1 1 1 1
γ 1 1 1 τ ′ τ ′
γ 1 1 τ ′ 1 τ ′
γ 1 τ ′ 1 1 τ ′
γ 1 τ ′ 1 τ ′ 1
γ 1 τ ′ τ ′ 1 1
γ 1 1 τ ′ 1 τ ′
γ 1 1 τ ′ τ ′ 1
γ 1 τ ′ 1 τ ′ 1
γ 1 1 1 τ ′ τ ′
γ 1 1 τ ′ 1 τ ′

To solve 5.1 in general,

(i) first determine all possibilities for A, using the necessary relations for A (as in [3],
[4]) and various arguments based on the structure of G. Then

(ii) ‘lift’ each such A to as many A’s as possible.

Step (ii) is very difficult in general, although for |G| = 2 we have seen that step (ii) reduces
to a linear problem, which is much more tractable. Returning to our example, the lifting
of A to A is accomplished by our function α. Namely, the bottom-right 12× 12 submatrix
of A is identical to Figure 3.2. An entry ‘1’ thereof, say in the (P, L)-position where (P, L)
is a flag of Σ′, lifts to an entry ‘1’ or ‘τ ′’ of A according as α(P, L) = 0 or 1 (cf. Figure
3.1).
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