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Ranks of Nets and of Webs
G. Eric Moorhouse, University of Wyoming

Abstract. Let p be an odd prime, and let N be a 4-net of order
p. In many cases we obtain bounds on the p-rank of N (i.e. the rank
of its incidence matrix over Fp), and structural properties of N that
are deducible from its p-rank. The main tool in this investigation is
the use of exponential sums over Fp . Implications for the study of
finite projective planes are described. Finally we highlight the analogy
between our conjectured bounds for the p-rank of a net of prime order,
and the known bounds for the rank of a web.

1. Introduction

Our interest in nets arises from the following two open problems in finite geometry:

(Q1) Must every finite (affine or projective) plane have prime-power order?
(Q2) Must every plane of prime order be Desarguesian?

The best progress to date on (Q2) is:

1.1 Theorem. Every transitive affine plane of prime order is Desarguesian.

This result is a corollary of

1.2 Theorem. Let p be prime. Then every planar polynomial over Fp is quadratic.

Recall that a polynomial f(X) ∈ Fp[X] is called planar if for every nonzero k ∈ Fp,
the polynomial f(X+k)−f(X) induces a permutation of Fp . Theorem 1.2 was proven
independently by Gluck [3], Rónyai and Szőnyi [14], and Hiramine [5]. Gluck’s proof of this
result made use of exponential sums, which arise naturally when applying characters of the
elementary abelian collineation group of the plane. It is our hope that similar arguments
may lead to an extension of Theorem 1.2 without the assumption of any collineation group,
thereby providing an answer to (Q2). We show that exponential sums arise naturally in
the study of nets, when characters are applied to the additive group of a certain code
obtained from the net (the dual of the row space of the point-line incidence matrix of the
net). By Theorem 1.5 below, we may assume that this group is large, and so we may
reasonably hope that it provides a satisfactory substitute for a collineation group. It is in
fact reasonable to hope that this method may provide some answers to (Q1), inasmuch as
we have shown [9] that codes of nets provide a natural tool for addressing both questions.
In this paper, however, we fix an odd prime p and consider only nets of order p.

In Section 3 we formally define a k-net N of order p. Less formally [9], N is an
incidence system consisting of p2 points and pk lines in which every line has p points; two
lines are called parallel if they are either equal or disjoint; and parallelism of lines is an
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equivalence relation on the set of lines, with k parallel classes. Each parallel class is a
partition of the point set into p lines, and any two non-parallel lines meet in a unique
point. Every k-net N of order p gives rise to (k−1)-subnets of order p; in fact, k such
subnets, each obtained by omitting one of the parallel classes of lines of N . The p-rank of
N is the Fp-rank of its p2 × kp incidence matrix. We have conjectured

1.3 Conjecture [9]. Let N be a k-net of order p, and let N ′ be any of its (k−1)-subnets.

Then rankp(N ) − rankp(N ′) ≥ p − k + 1.

By taking the sum of a finite arithmetic series, the preceding conjecture implies

1.4 Conjecture. Let N be a k-net of order p. Then pk − rankp(N ) ≤ 1
2(k − 1)(k − 2).

Note that the quantity pk − rankp(N ) is simply the nullity of the pk × p2 incidence
matrix of the net N . The significance of the conjectured upper bound 1

2 (k − 1)(k − 2) is
that this is also an upper bound for the arithmetic genus of an algebraic curve of degree
k. This connection becomes evident in Section 4 where we indicate the theorem (in the
case of infinite webs) which provides the analogue of Conjecture 1.4 (for the finite case).
However, the finite case differs from the infinite case in several important respects, for
example: In every known case where the upper bound of Conjecture 1.4 holds, then net
is Desarguesian, i.e. a subnet of a Desarguesian affine plane (see Section 3); in the case of
infinite webs, many examples are known. Furthermore the analogue of Conjecture 1.3 fails
for infinite webs, as we shall see in Section 4. Thus while it is possible that the infinite
case may provide some further inspiration for the finite case, we see that the finite case is
‘tighter’. We also showed

1.5 Theorem [9]. If Conjecture 1.3 holds then every plane of prime order is Desarguesian.

The validity Conjecture 1.3 for k = 3 (the smallest nontrivial case) was established
in [9] using loop theory. Here we offer two new proofs of this result (Theorem 3.3), the first
using exponential sums, and the second (Section 6) using finite field arguments only. Now
in addition to a two-line proof, we have two longer proofs; but these alternative approaches
lead to further progress against Conjecture 1.3. In particular the method of exponential
sums leads to a proof (in Section 3) of the following Theorem 1.6. A Desarguesian 3-net
is called simply a cyclic 3-net since it is the unique 3-net of order p corresponding to the
cyclic Latin square of order p.

1.6 Theorem. Let N be a 4-net of order p.

(i) The number of cyclic 3-subnets of N is 0, 1, 3 or 4.

(ii) N has four cyclic 3-subnets iff N is Desarguesian.

(iii) Suppose N has at least one cyclic 3-subnet. Then N has rank at least 4p−3, and

equality holds iff N is Desarguesian.
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We remark that (i) and (ii) are best possible in the sense that there exist (necessarily
non-Desarguesian) 4-nets of prime order p having 0, 1 or 3 cyclic subnets. Examples of
these for p = 7 are found at [12]. Further partial results in the direction of Conjecture 1.3
are found in [10], [11].

2. Exponential Sums

Let F = Fp where p is an odd prime, and let ζ ∈ C be a primitive p-th root of unity. We
have a well-defined map

e : F → Z[ζ ], a �→ ζa

satisfying e(a + b) = e(a)e(b) for all a, b ∈ F . Each function f : F → F gives rise to an
exponential sum

Sf =
∑
i∈F

e(f(i)) ∈ Z[ζ ].

In the following we call a function f : F → F linear (respectively, quadratic) if it is
represented by a polynomial in F [X] of degree 1 (resp. 2).

2.1 Lemma. Let f : F → F and suppose |Sf | =
√

p. Then there exists a quadratic

polynomial g(X) ∈ F [X] such that the sequence (f(0), f(1), . . . , f(p−1)) is a permutation

of (g(0), g(1), . . . , g(p−1)). In particular, the fibre size |f−1(a)| equals⎧⎨
⎩

0, for exactly (p−1)/2 choices of a ∈ F ;
1, for exactly 1 choice of a ∈ F ; and
2, for exactly (p−1)/2 choices of a ∈ F .

If moreover f(0) = 0 then f(X) = aπ(X)2+bπ(X) for some a, b ∈ F and some permutation

π : F → F satisfying π(0) = 0.

Proof. See Gluck [3]. To obtain the last assertion we assume that f(0) = 0. By the
previous conclusion there exist constants a, b, c ∈ F and a permutation σ : F → F such
that f(X) = aσ(X)2 +bσ(X)+c. Setting π(X) = σ(X)−σ(0) gives the final conclusion.

2.2 Lemma. Let f : F → F and suppose |Sf(X)+cX | =
√

p for all c ∈ F . Then f is

quadratic.

Proof. Consider the point set in the projective plane over F defined by

O = {(x, f(x), 1) : x ∈ F} ∪ {(0, 1, 0)}.

Note that |O| = p + 1; we will show that no three points of O are collinear. Suppose that
three points of O lie on the line aX + bY + cZ = 0 where a, b, c ∈ F are not all zero. We
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cannot have b = 0, for then the line aX + cZ = 0 meets O in only two points including
(0, 1, 0). We may therefore assume b = 1 and that the line aX + Y + cZ = 0 meets O in
three distinct points (xi, f(xi), 1) for i = 1, 2, 3. This means that f(X)+aX attains the
value −c ∈ F at least three times. However, |Sf(X)+aX | =

√
p, and by Lemma 2.1 we

obtain a contradiction.

For every function f : F → F we denote

Af = {a ∈ F : Sf(X)+aX �= 0}.

2.3 Lemma. Suppose |Af | ≤ 1
2(p+1). Then |Af | = 1 and f is either constant or linear.

Proof. There exist distinct x, y ∈ F such that f(x)+ax = f(y)+ay, if and only if −a ∈ Af .
Thus the subset −Af = {−a : a ∈ Af} ⊆ F coincides with the set of all slopes to the graph
of f in AG2(F ), i.e. the set of difference quotients (f(y) − f(x))/(y − x) for all pairs (x, y)
of distinct elements of F . The result follows by a theorem of Rédei [13] (see also [1], [8]).

2.4 Lemma. Let f : F → F such that f(0) = 0 and f(1) = 1, and suppose that

|SX2+cf(X)| =
√

p for all c ∈ F . Then f is a permutation satisfying f(t) = ±t for all

t ∈ F .

Proof. Consider the projective plane PG2(F ) with homogeneous coordinates (X,Y,Z) for
points, in which we consider those points with Z �= 0 as the ‘affine points’. Every line
other than the ‘line at infinity’ Z = 0 is either a ‘vertical line’ X = aZ for some a ∈ F , or
a ‘non-vertical line’ Y = aX + bZ for some a, b ∈ F .

Consider the point set O = O1 ∪ {(0, 1, 0)} in PG2(F ) where

O1 = {(f(t), t2 , 1) : t ∈ F}.

We will show that O is an oval. Clearly the line Z = 0 meets O only in (0, 1, 0).
Fix a ∈ F and consider those affine lines passing through (1,−a, 0), these being the

nonvertical lines of slope a, i.e. lines of the form Y = aX + cZ for some c ∈ F . Such
a line meets O precisely in those points (f(t), t2 , 1) ∈ O1 such that t2 − af(t) = c. By
Lemma 2.1 (and since |SX2−af(X)| =

√
p), among such lines there is exactly one tangent

to O and (p−1)/2 secants to O. Since every point of the form (1,−a, 0) (for a ∈ F ) lies on
a unique affine tangent to O, but no two points of O1 lie on the same tangent, it follows
that every point P ∈ O1 lies on a unique tangent line �P to O. Since every non-vertical
line through P meets O in at most two points, this means that of the p+1 lines through
P , one is tangent and the other p are secants. In particular the vertical line through P
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meets O only in P and (0, 1, 0). This means that f : F → F is bijective and that O is
an oval as claimed. By Segre’s Theorem, O is a conic. Since O passes through (0, 1, 0),
(0, 0, 1) and (1, 1, 1) and has both lines Y = 0 and Z = 0 as tangents, the conic O must
be given by the equation X2 = Y Z and the result follows.

Note that for any f : F → F , the value |Sf |2 = SfSf ∈ Z[ζ ] is an algebraic integer,
and so in fact |Sf | is an algebraic integer.

2.5 Lemma. Let f : F → F . Suppose there exists a real constant κ > 0 such that for all

c ∈ F we have |Sf(X)+cX | ∈ {0, κ}. Then either

(a) f is quadratic and |Sf(X)+cX | =
√

p for all c ∈ F , or

(b) f is constant or linear, i.e. f(X) = a1X+a0 for some a0, a1 ∈ F , and

|Sf(X)+cX | =
{

0, if c �= −a1;
p, if c = a1.

Proof. For each c ∈ F , define αc ∈ C by

αc =
{

κ
−1

Sf(X)+cX if Sf(X)+cX �= 0;
1, if Sf(X)+cX = 0.

Note that |αc| = 1 for all c ∈ F . Consider the complex p × p matrix defined by

M =
[
αiζ

ij+f(j)
]
i,j∈F

.

We easily check that MM∗ = pI where I is the p × p identity matrix, so that the matrix
p−1/2M is unitary, and every eigenvalue of M has magnitude

√
p. Let ε = (1, 1, . . . , 1)T ∈

Cp; then the hypothesis means that Mε is a vector having k entries equal to κ and the
remaining p−k entries zero, where k is the number of c ∈ F such that |Sf(X)+cX | = κ.
Now

kκ2 = ||Mε||2 = p||ε||2 = p2.

In particular, k ≥ 1 and so κ = |Sf(X)+cX | for some c ∈ F . Now p2/k = κ2 ∈ Z[ζ ] is an
algebraic integer, so k = 1 or p.

If k = p then |Sf(X)+cX | = κ =
√

p for all c ∈ F , so f(X) is quadratic by Lemma 2.2.
Hence assume k = 1, so that |Sf(X)−a1X | = κ = p for some a1 ∈ F , which implies that
f(X)−a1X = a0 ∈ F is constant.
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2.6 Lemma. Let f, g : F → F be linearly independent functions satisfying f(0) = g(0) =
0, and suppose that |Saf+bg| ∈ {0,

√
p, p} for all a, b ∈ F . Then there exists a permutation

σ : F → F such that f and g are linear combinations of σ(X) and σ(X)2.

Proof. We first assume that f : F → F is a permutation. In this case we may assume that
f(X) = X; otherwise substitute f

−1(X) for X in both f(X) and g(X). Now |SaX+g(X)| ∈
{0,

√
p, p} for all a ∈ F , and the value p cannot arise since g(0) = 0 and g(X) is not a

scalar multiple of X. Now Lemma 2.5 gives g(X) = a2X
2 + a1X for some a1, a2 ∈ F and

we are done.
We may henceforth assume that no linear combination of f and g is a permutation;

thus |Saf+bg| ∈ {√p, p} for all a, b ∈ F , and in fact |Saf+bg| =
√

p unless a = b = 0.
Since |Sf | =

√
p, Lemma 2.1 gives f(X) = a2π(X)2 + a1π(X) for some permutation

π : F → F satisfying π(0) = 0. There is no loss of generality in assuming π(X) = X

and a2 = 1, so that f(X) = X2 + a1X and |SX2+a1X+bg(X)| =
√

p for all b ∈ F . Writing
h(X) = g

(
X − a1

2

)
, we have |SX2+bh(X)| =

√
p for all b ∈ F and so h : F → F is bijective

by Lemma 2.4; but then g is bijective, a contradiction.

3. Nets

Denote F = Fp where p is an odd prime, and let k ≥ 2. For every J ⊆ {1, 2, . . . , k} we
consider the projection F k → F |J| defined by

(a1, a2, . . . , ak) �→ (aj : j ∈ J).

We simply write πi = π{i}, πij = π{i,j}, and we denote J ′ = {1, 2, . . . , k} ................ J so that in
particular

πi′(a1, a2, . . . , ak) = (a1 , a2, . . . , ai−1, ai+1, . . . , ak).

We consider only nets of order p. A k-net of order p is a subset N ⊆ F k such that
for all i �= j in {1, 2, . . . , k}, the map N πij−→ F 2 is bijective. The members of N are called
points, and the lines of N are the fibres

N ∩ π
−1

i (a) = {v ∈ N : πi(v) = a}

for i ∈ {1, 2, . . . , k}, a ∈ F . For every J ⊆ {1, 2, . . . , k} of cardinality at least 2, clearly
πJ (N ) is a |J |-net of order p; we call this a |J |-subnet of N . In particular for each i ∈
{1, 2, . . . , k}, we have that πi′(N ) is a (k−1)-subnet of N , obtained by simply deleting from
N the i-th parallel class of lines. An isomorphism of nets φ : N → N ′ is a map of the form
(a1, a2, . . . , ak) �→ (α1(aσ(1)), α2(aσ(2)), . . . , αk(aσ(k))) for some α1, α2, . . . , αk ∈ Sym(F )
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and σ ∈ Sk; this simply says that the corresponding point-line incidence structures are

isomorphic.

An affine plane of order p is simply a (p + 1)-net of order p. The Desarguesian affine

plane is the (p + 1)-net

D = {(a, b, a+b, a+2b, . . . , a+(p−1)b) : a, b ∈ F}.

A Desarguesian net is any subnet of D. A Desarguesian 3-net is known simply as a cyclic

3-net. Every cyclic 3-net of order p is isomorphic to {(a, b, a+b) : a, b ∈ F}.
Denote by V = V(N ) the vector space consisting of all k-tuples (f1 , f2, . . . , fk) of

functions F → F such that

f1(a1) + f2(a2) + · · · + fk(ak) = 0

for all (a1, a2, . . . , ak) ∈ N . Also denote by V0 = V0(N ) ≤ V the subspace consisting of

all (f1, f2, . . . , fk) ∈ V satisfying the additional condition f1(0) = f2(0) = · · · = fk(0) = 0.

The map V → F k, (f1 , f2, . . . , fk) �→ (f1(0), f2(0), . . . , fk(0)) induces an isomorphism from

V/V0 to a (k−1)-dimensional subspace of F k; thus dim(V) = dim(V0) − k + 1, and so we

may focus our attention on V0 rather than on V itself. Since V may be interpreted as the

right null space of the point-line incidence matrix A of N (a p2×pk matrix of 0’s and 1’s),

this gives

3.1 Theorem. The p-rank of N is given by

rankp N = rankp A = pk − dimV = (p−1)k + 1 − dimV0.

Rephrasing our conjectured bounds for the rank of A in terms of the nullity gives

3.2 Conjecture. (i) dimπ1(V) ≤ k−1.

(ii) dim(V0) ≤ 1
2 (k−1)(k−2), and equality holds iff N is Desarguesian.

Statement (i) is equivalent to Conjecture 1.3; and the first assertion of (ii) is implied by (i).

If either (i) or (ii) holds then every plane of prime order is Desarguesian. As indication

that V0 is more natural to consider than the row or column space of A itself, we observe

that in the case of webs (Section 4), the corresponding incidence map has infinite rank,

whereas the null space V is finite-dimensional; moreover the analogue of Conjecture 3.2(ii)

is a theorem (see Theorem 4.1). The case k = 3 was settled in [9] using loop theory, and

here we provide an alternative proof using exponential sums:
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3.3 Theorem. Let N be a 3-net of order p. Then dim(V0) ≤ 1. Moreover, equality

holds iff N is cyclic, in which case V0 is spanned by a triple (f, g, h) in which the maps

f, g, h : F → F are permutations.

Proof. Let (f, g, h) ∈ V0. Summing ζf(a)+g(b) = ζ−h(c) over all (a, b, c) ∈ N gives SfSg =
Sh, and similarly SgSh = Sf and ShSf = Sg. Thus

|Sf |2 = |Sg|2 = |Sh|2 = 1
pSfSgSh.

Now if |Sf | = |Sg| = |Sh| = p then f, g, h : F → F are constant functions, but then the
condition f(0) = g(0) = h(0) = 0 forces (f, g, h) = (0, 0, 0).

Otherwise we must have Sf = Sg = Sh = 0, so that f, g, h : F → F are permutations.
After permuting labels, we may assume that

f(X) = X, g(X) = X, h(X) = −X.

Now
0 = f(a) + g(b) + h(c) = a + b − c

for all (a, b, c) ∈ N , i.e.
N = {(a, b, a+b) : a, b ∈ F}

which is the cyclic 3-net of order p.

3.4 Lemma. Let N be a 4-net of order p. Then for every (f, g, h, u) ∈ V , either

(a) three or more of Sf , Sg, Sh, Su are zero; or

(b) |Sf | = |Sg| = |Sh| = |Su| > 0.

Proof. Let (f, g, h, u) ∈ V . Summing ζf(a)+g(b) = ζ−h(c)−u(d) over all (a, b, c, d) ∈ N gives
SfSg = ShSu , and similarly SfSh = SgSu and SfSu = SgSh. This yields

(|Sf |2 − |Sg|2)Sh = 0

and similarly for all permutations of f, g, h, u. The result follows.

3.5 Lemma. Let N be a 4-net of prime order p, and suppose (0,X,X,X) and (f, g, h, u)
are linearly independent members of V0. Then either

(i) |Sf | = |Sg| = |Sh| = |Su| =
√

p and the functions g, h, u are quadratic, or

(ii) Sf = 0 and at least two of g, h, u are scalar multiples of X.

Proof. Suppose first that Sf �= 0. Then for all a ∈ F , Lemma 3.4 implies that either

Sg(X)+aX = Sh(X)+aX = Su(X)+aX = 0
or

|Sg(X)+aX | = |Sh(X)+aX | = |Su(X)+aX | = |Sf | > 0.
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By Lemma 2.5, and using the fact that g(0) = h(0) = u(0) = 0, we obtain either
conclusion (i) or g(X) = h(X) = u(X) = aX for some a ∈ F ; but in the latter
case we have (f, 0, 0, 0) = (f, g, h, u) − a(0,X,X,X) ∈ V0 which forces f = 0 and
(f, g, h, u) = a(0,X,X,X) for some a ∈ F , a contradiction.

Hence we may assume that Sf = 0, so that f is a permutation; without loss of gen-
erality, f(X) = X. By Lemma 3.4, the sets Ag , Ah and Au (defined as in Section 2) are
mutually disjoint; but after permuting the 2nd, 3rd and 4th coordinates of N if necessary,
we may assume that |Ag | ≤ |Ah| ≤ |Au|. This implies that |Ag | ≤ |Ah| ≤ p/3 ≤ 1

2 (p−1).
By Lemma 2.3 and the condition g(0) = h(0) = 0, we have g(X) = aX and h(X) = bX

for some a, b ∈ X, so conclusion (ii) follows.

3.6 Theorem. Suppose N has at least two cyclic 3-subnets. Then N has at least three

cyclic 3-subnets.

Proof. Without loss of generality, V0 contains (0,X,X,X) and (f, g, h, 0) where the func-
tions f, g, h : F → F are permutations. By Lemma 3.5, we may suppose that g(X) = aX

for some a ∈ F . Now

(f, 0, h(X)−aX,−aX) = (f, g, h, 0) − a(0,X,X,X) ∈ V0

so that N has a third cyclic 3-subnet.

3.7 Theorem. Suppose N has four cyclic 3-subnets. Then N is Desarguesian.

Proof. As in the proof of Theorem 3.6, we may assume that V0 contains (0,X,X,X),
(f(X), aX, h(X), 0) and (f(X), 0, h(X)−aX,−aX) where Sf = Sh = Sh(X)−aX = 0.
Without loss of generality, f(X) = X. There also exists (r(X), s(X), 0, v(X)) ∈ V0 where
the functions r, s, v : F → F are bijective. By Lemma 3.5, either s(X) = bX or v(X) = bX

for some b ∈ F . We may assume that s(X) = bX, for otherwise we may interchange
coordinates 2 and 4 of N , replacing also (a, h(X)) by (−a, h(X)−aX). Now

(r(X), 0,−bX, v(X)−bX) = (r(X), bX, 0, v(X)) − b(0,X,X,X) ∈ V0

so this is a scalar multiple of (X, 0, h(X)−aX,−aX), and without loss of generality

(r(X), 0,−bX, v(X)−bX) = (X, 0, h(X)−aX,−aX).

This forces
N = {(bx+ay,−x−y, x, y) : x, y ∈ F}
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where a �= b and the result follows.

3.8 Theorem. Suppose N has at least one cyclic 3-subnet. Then dim(V0) ≤ 3, and

equality holds iff N is Desarguesian.

Proof. We may suppose that π1′N is cyclic and that (0,X,X,X) ∈ V0; also that dim(π1V0)
≥ 2. By Lemma 3.5 we have |Sf | ∈ {0,

√
p, p} for all f ∈ π1V0, so by Lemma 2.6 we may

assume π1(V0) contains X and X2. By Lemma 3.5 we may assume that (X, aX, bX, r(X)),
(X2, g(X), h(X), u(X)) ∈ V0 for some a, b ∈ F , where g, h, u : F → F are quadratic. In
particular

(X, 0, (b−a)X, r(X)−aX), (X, (a−b)X, 0, r(X)−bX) ∈ V0

and so the 3-subnets π2′N and π3′N are cyclic. Since

(X2, g(X), h(X), u(X)) + (X, aX, bX, r(X)) ∈ V0 ,

we see by Lemma 3.5 that u(X)+r(X) is quadratic, whence r(X) itself has degree ≤ 2.
This means that r(X) = cu(X) + dX for some c, d ∈ F , and so

(cX2−X, cg(X)+(d−a)X, ch(X)+(d−b)X, 0) ∈ V0

so that the 3-subnet π4′N is also cyclic. The result follows by Theorem 3.7.

4. Webs
We consider here not the most general notion of a web (see e.g. [2]) but rather what
may be described as 2-dimensional k-webs over C. Let W ⊆ C2 be a connected open
neighbourhood of 0, and consider a k-tuple of holomorphic functions

ui : W → C, i = 1, 2, . . . , k

such that at every point w ∈ W, any two of the gradients u′
1(w), u′

2(w), . . . , u′
k(w) ∈ C2

are linearly independent over C. We regard W as the point set of an incidence structure
whose ‘lines’ are the level curves u

−1

i (a) ⊂ W for every a ∈ ui(W). (The condition on
the derivatives u′

i(w) ensures that these curves intersect transversely; and assuming W is
sufficiently small, every point w ∈ W is uniquely determined by any two of its ‘coordi-
nates’ u1(w), u2(w), . . . , uk(w).) We may assume that ui(0) = 0 for all i. The resulting
structure (W, u1, u2, . . . , uk), denoted simply W, is called a k-web. Just as in the finite
case (Section 3) we define the complex vector space V = V(W) as the set of all k-tuples
(f1, f2, . . . , fk) of holomorphic functions such that

f1(u1(w)) + f2(u2(w)) + · · · + fk(uk(w)) = 0

for all w ∈ W. Also consider the subspace V0 = V0(W) consisting of those k-tuples
of functions satisfying the additional condition that fi(0) = 0 for all i. As before, the
quotient space V/V0 has dimension k−1. The rank of the web W is by definition the
C-dimension of V0. We have
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Next consider the case 1
2(p − 1) ≤ t ≤ p−2. Multiplying both sides of (6.2) by

g(j)2t+3−p and setting r = p−1 yields

σh,p−1g(j)2t+3−p =
p−1∑
s=0

(
p−1
s

)
σf,p−1−sg(j)s+2t+3−p

=
p−t−2∑

s=0

(
p−1
s

)
σf,p−1−sg(j)s+2t+3−p.

Note that 2t+3−p ≥ 2, so all exponents are non-negative. Now observe that 2t+3−p < t

and sum over j ∈ F to obtain

0 = σg,p−1σg,2t+3−p =
p−t−2∑

s=0

(
p−1
s

)
σf,p−1−sσg,s+2t+3−p =

(
p−1

p−t−2

)
σf,t+1σg,t+1.

Since the latter binomial coefficient is not divisible by p, we obtain σf,t+1σg,t+1 = 0. This
yields σf,t+1 = σg,t+1 = σh,t+1 = 0 as before.

Applying (6.2) for r = p−1 gives σh,p−1 = σf,p−1 ; and similarly, σh,p−1 = σg,p−1 .
By assumption, (f, g, h) ∈ V0 is nonzero; therefore by Proposition 6.1 we have σf,p−1 =
σg,p−1 = σh,p−1 = −1 and each of the maps f, g, h is a permutation of F . We may assume
that f(k) = g(k) = −h(k) = k for all k ∈ F ; otherwise relabel the lines in each parallel
class so that this is the case. Since f(i) + g(j) + h(k) = 0 for all (i, j, k) ∈ N , we obtain
N = {(i, j, i+j) : i, j ∈ F} and so the 3-net N is cyclic.

This completes our proof of Theorem 3.3 by the method of moments. While this
method presumably also leads to a proof of Theorem 1.1 without using exponential sums,
this approach seems much more technical and not particularly advantageous.
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