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Ranks of Nets
G. Eric Moorhouse, University of Wyoming

Abstract. Let N be a k-net of prime order p. We find bounds on
the p-rank of (the point-line incidence matrix of) N for k ∈ {3, 4}, and
observe connections between the p-rank and certain structural properties
of N . Implications for the study of finite projective planes are described.

1. Loops and 3-Nets of Prime Order

Let (L, ∗) be a loop of prime order p. The 3-net N = N (L) coordinatized by L is the
point-line incidence system having p2 points L2 = L × L, and 3p lines given by

{a} × L for a ∈ L (the lines “x = a”);

L × {b} for b ∈ L (the lines “y = b”); and

{(x, y) ∈ L2 : x ∗ y = c} for c ∈ L (the lines “x ∗ y = c”).

The point-line incidence matrix of N is the p2×3p matrix with rows and columns indexed
by points and lines of N respectively; and having entries 0 and 1 corresponding to non-
incident and incident point-line pairs respectively. We have

1.1 Main Theorem [5]. The p-rank of the incidence matrix of N equals 3p−3 if L is

associative, and 3p−2 otherwise.

Our original proof [5], still the simplest proof available, uses loop theory. (Here for
simplicity we consider only loops and nets of prime order, although more arbitrary finite
orders were considered in [5].) We reproduce this proof below; and we indicate three
alternative proofs of the same result. Our (currently unrealized) goal is a generalization of
Theorem 1.1 to k-nets for k = 3, 4, . . . , p+1; possibly using techniques from nonassociative
algebra, or possibly by generalizing some of the other techniques described in this paper.
The desired generalization of this result is

1.2 Conjecture [5]. Let N be any k-net of prime order p, and let N ′ be any (k−1)-subnet

of N obtained by deleting one of the k parallel classes of lines of N ; here k ∈ {2, 3, . . . , p+1}.
Then the p-rank of the incidence matrix of N exceeds that of N ′ by at least p−k+1.

The significance of Conjecture 1.2 lies in the fact [5] that this would imply that
every projective plane of prime order is Desarguesian, thereby settling one of the most
celebrated currently open problems in finite geometry. Extensions of this method to other
finite orders would yield restrictions on the possible orders of finite projective planes,
beyond the restrictions available through the Bruck-Ryser Theorem [2]. We believe that
these finite geometric questions are worthy of the attention of researchers in nonassociative
algebra. Indeed, Belousov [1] attributes the origins of quasigroup theory to the study of
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finite projective planes. (I am grateful to V.V. Goldberg for bringing this reference to my
attention during our Mile High Conference.)

In Section 2, we describe the p-rank of a net in terms recognizable to researchers of
webs. This leads to a reformulation of our main result Theorem 1.1 in equivalent terms
as Theorem 2.3. In Sections 3, 4, 5 and 6 we provide proofs of this main result using loop
theory, group theory, finite field theory, and number theory (specifically, exponential sums)
respectively. Each of these approaches suggests different possibilities for generalization to
k-nets. Finally in Section 7 we describe some recent progress towards Conjecture 1.2 in
the case of 4-nets.

2. Nets and Planes of Prime Order

Consider a field F = Fp of prime order p, and let k ≥ 2. For every J ⊆ {1, 2, . . . , k} we
consider the projection F k → F |J| defined by

(a1, a2, . . . , ak) �→ (aj : j ∈ J).

We simply write πi = π{i}, πij = π{i,j}, and we denote J ′ = {1, 2, . . . , k} ................ J so that in
particular

πi′(a1, a2, . . . , ak) = (a1 , a2, . . . , ai−1, ai+1, . . . , ak).

A k-net of order p is a subset N ⊆ F k such that for all i �= j in {1, 2, . . . , k}, the map
N πij−→ F 2 is bijective. The members of N are called points, and the lines of N are the
fibres

N ∩ π
−1

i (a) = {v ∈ N : πi(v) = a}
for i ∈ {1, 2, . . . , k}, a ∈ F . For every J ⊆ {1, 2, . . . , k} of cardinality at least 2, clearly
πJ (N ) is a |J |-net of order p; we call this a |J |-subnet of N . In particular for each i ∈
{1, 2, . . . , k}, we have that πi′(N ) is a (k−1)-subnet of N , obtained by simply deleting from
N the i-th parallel class of lines. An isomorphism of nets φ : N → N ′ is a map of the form
(a1, a2, . . . , ak) �→ (α1(aσ(1)), α2(aσ(2)), . . . , αk(aσ(k))) for some α1, α2, . . . , αk ∈ Sym(F )
and σ ∈ Sk; this simply says that the corresponding point-line incidence structures are
isomorphic.

An affine plane of order p is simply a (p+1)-net of order p. The Desarguesian affine
plane is the (p+1)-net

D = {(a, b, a+b, a+2b, . . . , a+(p−1)b) : a, b ∈ F}.

A Desarguesian net is any subnet of D. A Desarguesian 3-net is known simply as a cyclic
3-net. Every cyclic 3-net of order p is isomorphic to {(a, b, a+b) : a, b ∈ F}.
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Denote by V = V(N ) the vector space consisting of all k-tuples (f1 , f2, . . . , fk) of
functions F → F such that

f1(a1) + f2(a2) + · · · + fk(ak) = 0

for all (a1, a2, . . . , ak) ∈ N . Also denote by V0 = V0(N ) ≤ V the subspace consisting of
all (f1, f2, . . . , fk) ∈ V satisfying the additional condition f1(0) = f2(0) = · · · = fk(0) = 0.
The map V → F k, (f1 , f2, . . . , fk) �→ (f1(0), f2(0), . . . , fk(0)) induces an isomorphism from
V/V0 to a (k−1)-dimensional subspace of F k; thus dim(V) = dim(V0) + k − 1, and so we
may focus our attention on V0 rather than on V itself. Since V may be interpreted as the
right null space of the point-line incidence matrix A of N , this gives

2.1 Proposition. The p-rank of the incidence matrix A of N is given by

rankp A = pk − dimV = (p−1)k + 1 − dimV0.

Rephrasing our conjectured bounds for the rank of A in terms of the nullity gives

2.2 Conjecture. (i) dimπ1(V) ≤ k−1.

(ii) dim(V0) ≤ 1
2 (k−1)(k−2), and equality holds iff N is Desarguesian.

Statement (i) is equivalent to Conjecture 1.2, and the first assertion of (ii) is implied by (i).
If either (i) or (ii) holds then every plane of prime order is Desarguesian. As indication
that V0 is more natural to consider than the row or column space of A itself, we observe
that in the case of webs, the corresponding incidence map has infinite rank, whereas the
null space V is finite-dimensional. Indeed the bound dim(V0) ≤ 1

2 (k−1)(k−2) holds for
k-webs, with equality attainable in the case of algebraic webs; see [3,4]. We rephrase the
Main Theorem as

2.3 Theorem. Let N be a 3-net of order p. Then dim(V0) ≤ 1. Moreover, equality

holds iff N is cyclic, in which case V0 is spanned by a triple (f, g, h) in which the maps

f, g, h : F → F are permutations.

3. First Proof of Main Theorem (Using Loop Theory)
Let N ⊂ F 3 be a 3-net of prime order p, in the notation of Section 2, and suppose
(f, g, h) ∈ V0(N ) is nonzero. To within an isomorphism of nets, we have

N = {(x, y, x ∗ y) : x, y ∈ F}
where (x, y) �→ x ∗ y ∈ F is a loop operation on F with identity 0. By definition we have

f(0) = g(0) = h(0) = 0;

f(x) + g(y) + h(x ∗ y) = 0 for all x, y ∈ F.

This implies that f(x) = g(x) = −h(x) for all x ∈ F and that f is a nonzero homomorphism
from the loop (F, ∗) to the cyclic group (F,+) of order p. These two loops are therefore
isomorphic, so N is cyclic. Moreover every such homomorphism has the form cf for some
c ∈ F , so V0(N ) is 1-dimensional. The result follows.

The same argument actually yields the stronger result
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3.1 Theorem [5]. Let L be a loop of order n = prm where gcd(p,m) = 1. Then the p-

rank of the incidence matrix of the 3-net N (L) equals 3p− 2− e where e ∈ {0, 1, 2, . . . , r}.
We have |L/K| = pe where K ⊆ L is the largest normal subloop such that the quotient

loop L/K is an elementary abelian p-group.

4. Second Proof of Main Theorem (Using Permutation Groups)

An alternative proof of Theorem 3.1 is obtained by considering the left multiplication
group of L. More generally, let Ω be a set of size |Ω| = n = prm where gcd(p,m) = 1, and
let G be a group permuting Ω transitively. Let H ≤ G be the stabilizer of a point which
we denote 1 ∈ Ω. For each k ≥ 0, denote by Ck the vector space over F consisting of all
functions Ωk+1 → F . Then G acts on Ck via

fg(x0 , x1, . . . , xk) = f(xg
0 , xg

1 , . . . , x
g
k)

for g ∈ G, f ∈ Ck, xi ∈ Ω. Consider the F -linear map ∂ = ∂k : Ck → Ck+1 defined by

(∂f)(x0 , x1, . . . , xk+1) =
k+1∑
i=0

(−1)k+1−if(x0, x1, . . . , xi−1, xi+1, . . . , xk+1)

for f ∈ Ck, xi ∈ Ω. Note that ∂ is G-equivariant: ∂(fg) = (∂f)g . The image B1 = ∂C0 ≤
C1 consists of all functions ∂φ(x0, x1) = φ(x0) − φ(x1) for some φ : Ω → F . Consider the
subspace of G-invariants given by

(B1)G = {f ∈ B1 : fg = f for all g ∈ G}.

In the following, Hom(G/K,F ) denotes the vector space over F consisting of homomor-
phisms from the multiplicative group G/K to the additive group of F .

4.1 Lemma. (B1)G ∼= Hom(G/K,F ) where K is the smallest normal subgroup of G

containing H such that G/K is an elementary abelian p-group. In particular, dim (B1)G =
e ∈ {0, 1, 2, . . . , r} where |G/K| = pe.

Proof. For each φ : G/K → F , define φ̂ : Ω → F by φ̂(1g) = φ(Kg) for g ∈ G. Note that
φ̂ ∈ C0 is well-defined since K contains H. We claim that the map

θ : Hom(G/K,F ) → (B1)G, φ �→ ∂φ̂

is an isomorphism of vector spaces over F . Certainly if φ ∈ Hom(G/K,F ) then

∂φ̂(1ug, 1vg) = φ(Kug) − φ(Kvg) = φ(Ku) + φ(Kg) − φ(Kv) − φ(Kg)

= φ(Ku) − φ(Kv) = ∂φ̂(1u, 1v)
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for all u, v, g ∈ G. Since G is transitive on Ω, this implies that ∂φ̂ ∈ (B1)G. If ∂φ̂ = 0 then
φ(Kg) = φ(K) = 0 for all g ∈ G, i.e. φ = 0 so θ is injective. Finally, given f ∈ (B1)G,
define φ(Kg) = f(1g , 1). Since f ∈ (B1)G we have

0 = ∂f(1gh , 1h, 1) = f(1h, 1) − f(1gh, 1) + f(1gh , 1h)

= f(1h, 1) − f(1gh , 1) + f(1g , 1)

= φ(Kh) − φ(Kgh) + φ(Kg)

for all g, h ∈ G so that φ ∈ Hom(G/K,F ) satisfying ∂φ̂ = f and θ is surjective.

Now suppose (L, ∗) is a loop of order n = prm where gcd(p,m) = 1. Let 1 ∈ L be
the identity, and let G be the left multiplication group of L; i.e. G ≤ Sym(L) is generated
by the permutations x �→ a ∗ x, a ∈ L. We show that the map (f, g, h) �→ ∂f gives an
isomorphism V0(N )

∼=−→ (B1)G. For (f, g, h) ∈ V0(N ) we have

f(x) + g(y) + h(x ∗ y) = 0

for all x, y ∈ L and so f(x) = g(x) = −h(x) and

∂f(a ∗ x, a ∗ y) = f(a ∗ x) − f(a ∗ y)

= f(a) + f(x) − f(a) − f(y) = f(x) − f(y)

= ∂f(x, y)

so that ∂f ∈ (B1)G. If ∂f = 0 then f(x) = ∂f(x, 1) = 0. Also if φ : L → F such that ∂φ ∈
(B1)G then we easily check that (f, f,−f) ∈ V0(N ) where f(x) = ∂φ(x, 1) = φ(x) − φ(1):

f(x) + f(y) − f(x ∗ y) = ∂φ(x, 1) + ∂φ(y, 1) − ∂φ(x ∗ y, 1)

= ∂φ(x, 1) − ∂φ(x ∗ y, 1) + ∂φ(x ∗ y, x)

= ∂2(x ∗ y, x, 1) = 0.

Theorem 3.1 follows.

5. Third Proof of Main Theorem (Using Finite Fields)

We require the following well-known result, whose proof is included for completeness. As
before we fix F = Fp where p is prime, and we use the convention that 00 = 1.
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5.1 Proposition. Let f : F → F , and for every r ≥ 0, write σf,r =
∑

a∈F f(a)r ∈ F .

Then

(a) The map f is a permutation of F , if and only if

σf,0 = σf,1 = · · · = σf,p−2 = 0 and σf,p−1 = −1.

(b) We have σf,0 = σf,1 = · · · = σf,p−2 = 0, if and only if
∣∣f(F )

∣∣ equals either 1 or p.

Proof. First suppose that the map f is a permutation of F , so that σf,r =
∑

a∈F ar.
Clearly σf,0 = p = 0 ∈ F and σf,p−1 = p−1 = −1 ∈ F . Now suppose 1 ≤ r ≤ p−2. For
every c ∈ {1, 2, . . . , p − 1} we have crσf,r =

∑
a∈F (ca)r =

∑
a∈F ar = σf,r since the map

a �→ ca is a permutation of F . Now the polynomial σf,rX
r − σf,r ∈ F [X] has p−1 > r

zeroes in the field F , so σf,r = 0 as required.
In the general case, for every a ∈ F , let na =

∣∣f−1(a)
∣∣, so that σf,r =

∑
a∈F arna .

The linear system

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1 1
0 1 2 · · · p−2 p−1
0 1 22 · · · (p−2)2 (p−1)2
...

...
...

. . .
...

...
0 1 2p−2 · · · (p−2)p−2 (p−1)p−2

0 1 2p−1 · · · (p−2)p−1 (p−1)p−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

n0

n1

n2
...

np−2

np−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎦

over Q has a unique solution, since the coefficient matrix is a nonsingular Vandermonde
matrix. We have seen that n0 = n1 = · · · = np−1 = 1 is a solution, so (a) follows. Moreover
the linear system

⎡
⎢⎢⎢⎢⎣

1 1 1 · · · 1 1
0 1 2 · · · p−2 p−1
0 1 22 · · · (p−2)2 (p−1)2
...

...
...

. . .
...

...
0 1 2p−2 · · · (p−2)p−2 (p−1)p−2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

n0

n1

n2
...

np−2

np−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
0
0
...
0

⎤
⎥⎥⎥⎥⎦

has as its general solution n0 = n1 = · · · = np−1 since the coefficient matrix has rank p−1.
Since n0 + n1 + n2 + · · · + np−1 = p, we have either (i) n0 = n1 = · · · = np−1 = 1, or (ii)
one of the nk’s is p and the others are zero. Conclusion (b) follows.

Let N be a 3-net of odd prime order p, i.e. a set of p2 triples (x, y, z) ∈ F 3 such that
each point (x, y, z) ∈ N is uniquely determined by any two of its coordinates. We have
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rankp N = 3p−2−dimV0 where V0 is the set of all triples (f, g, h) of functions F → F

such that f(0) = g(0) = h(0) = 0 and

f(x) + g(y) + h(z) = 0 for all (x, y, z) ∈ N .

We must show that dimV0 ≤ 1, and that equality holds iff the 3-net N is cyclic.
Suppose (f, g, h) ∈ V0 is nonzero. Using always the convention that 00 = 1, we see

that σf,0 = σg,0 = σh,0 = 0. Note that for all r ≥ 0 and all (x, y, z) ∈ N , we have

h(z)r = (−1)r
r∑

s=0

(
r

s

)
f(x)r−sg(y)s

by the Binomial Theorem. Summing over all p triples (x, y, z) ∈ N with a fixed value of y

gives

(5.2) σh,r = (−1)r
r∑

s=0

(
r

s

)
σf,r−sg(y)s for all r ≥ 0, y ∈ F .

Summing (5.2) over all y ∈ F gives

(5.3) 0 =
r∑

s=0

(
r

s

)
σf,r−sσg,s for all r ≥ 0.

5.4 Theorem. We have

σf,r = σg,r = σh,r =
{

0, for r = 0, 1, 2, . . . , p−2, and

−1, for r = p−1.

Proof. As previously noted, the result holds for r = 0. Assume the conclusion of the
Theorem holds for all r ∈ {0, 1, . . . , t} where t ≤ p−2, and we will verify the conclusion in
the case r = t+1. Applying (5.2) in the case r = t+1, we have σh,t+1 = (−1)t+1σf,t+1 .
Similarly, we obtain σf,t+1 = (−1)t+1σg,t+1 and σg,t+1 = (−1)t+1σh,t+1 . Clearly the
conclusion σf,t+1 = σg,t+1 = σh,t+1 = 0 follows if t is even, but we proceed to obtain the
same conclusion regardless of the parity of t.

We consider first the case t ≤ 1
2 (p−3). Applying (5.3) for r = 2t+2 yields

0 =
2t+2∑
s=0

(
2t+2

s

)
σf,2t+2−sσg,s =

(
2t+2
t+1

)
σf,t+1σg,t+1 .

Since 2t+2 < p, this implies that σf,t+1σg,t+1 = 0. Combining this with the previous
paragraph yields σf,t+1 = σg,t+1 = σh,t+1 = 0. Thus the conclusion holds for r = t+1 as
well.
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Next consider the case 1
2(p−1) ≤ t < p−2. Multiplying both sides of (5.2) by

g(y)2t+3−p and setting r = p−1 yields

σh,p−1g(y)2t+3−p =
p−1∑
s=0

(
p−1
s

)
σf,p−1−sg(y)s+2t+3−p

=
p−t−2∑

s=0

(
p−1
s

)
σf,p−1−sg(y)s+2t+3−p.

Note that 2t+3−p ≥ 2, so all exponents are non-negative. Now observe that 2t+3−p < t

and sum over y ∈ F to obtain

0 = σh,p−1σg,2t+3−p =
p−t−2∑

s=0

(
p−1
s

)
σf,p−1−sσg,s+2t+3−p =

(
p−1

p−t−2

)
σf,t+1σg,t+1.

Since the latter binomial coefficient is not divisible by p, we obtain σf,t+1σg,t+1 = 0. This
yields σf,t+1 = σg,t+1 = σh,t+1 = 0 as before.

Applying (5.2) for r = p−1 gives σh,p−1 = σf,p−1 ; and similarly, σh,p−1 = σg,p−1 .
By assumption, (f, g, h) ∈ V0 is nonzero; therefore by Proposition 5.1 we have σf,p−1 =
σg,p−1 = σh,p−1 = −1 and each of the maps f, g, h is a permutation of F . We may assume
that f(x) = g(x) = −h(x) = x for all x ∈ F ; otherwise relabel the lines in each parallel
class so that this is the case. Since f(x) + g(y) + h(z) = 0 for all (x, y, z) ∈ N , we obtain
N = {(x, y, x+y) : x, y ∈ F} and so the 3-net N is cyclic.

6. Fourth Proof of Main Theorem (Using Exponential Sums)

Let F = Fp where p is prime, and let ζ ∈ C be a primitive p-th root of unity. We have a
well-defined map

e : F → Z[ζ ], a �→ ζa

satisfying e(a + b) = e(a)e(b) for all a, b ∈ F . Each function f : F → F gives rise to an
exponential sum

Sf =
∑
a∈F

e(f(a)) ∈ Z[ζ ].

Now suppose N is a 3-net of order p, and let (f, g, h) ∈ V0(N ). Summing ζf(a)+g(b) =
ζ−h(c) over all (a, b, c) ∈ N gives SfSg = Sh, and similarly SgSh = Sf and ShSf = Sg.
Thus

|Sf |2 = |Sg|2 = |Sh|2 = 1
pSfSgSh.

Now if |Sf | = |Sg| = |Sh| = p then f, g, h : F → F are constant functions, but then the
condition f(0) = g(0) = h(0) = 0 forces (f, g, h) = (0, 0, 0).
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Otherwise we must have Sf = Sg = Sh = 0, so that f, g, h : F → F are permutations.
After permuting labels, we may assume that

f(X) = X, g(X) = X, h(X) = −X.

Now

0 = f(a) + g(b) + h(c) = a + b − c

for all (a, b, c) ∈ N , i.e.
N = {(a, b, a+b) : a, b ∈ F}

which is the cyclic 3-net of order p.

7. 4-Nets of Prime Order

Let N be a 4-net of prime order p, and let (f, g, h, u) ∈ V(N ). In the notation of Section 6,
we sum the quantity ζf(x)+g(y) = ζ−h(z)−u(t) over all (x, y, z, t) ∈ N to obtain SfSg =
ShSu. It is not hard to check that either

|Sf | = |Sg| = |Sh| = |Su| > 0

or at least three of the exponential sums {Sf , Sg, Sh, Su} vanish, in which case the cor-
responding members of {f, g, h, u} are permutations. With some further investigation we
have shown

7.1 Theorem [8]. Let N be a 4-net of order p.

(i) The number of cyclic 3-subnets of N is 0, 1, 3 or 4.

(ii) N has four cyclic 3-subnets iff N is Desarguesian.

(iii) Suppose N has at least one cyclic 3-subnet. Then N has rank at least 4p−3, and

equality holds iff N is Desarguesian.

We remark that (i) and (ii) are best possible in the sense that there exist (necessarily
non-Desarguesian) 4-nets of prime order p having 0, 1 or 3 cyclic subnets. Examples of
these for p = 7, 11 are found at [6,7].
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