G. Eric Moorhouse¹

PSL(3,q) AND PSU(3,q) ON PROJECTIVE PLANES OF ORDER q^4

ABSTRACT. Let $q = p^m$ be an odd prime power.

We show that a projective plane Π of order q^4 admitting a collineation group $G \cong PSL(3,q)$ or PSU(3,q), has a *G*-invariant Desarguesian subplane Π_0 of order q or q^2 respectively, and that *G* contains involutory homologies of Π (with possible exceptions for q = 3, 5 or 11).

We also show that a projective plane Π of order q^2 admitting a collineation group $G \cong PSL(2,q)$ or PGL(2,q), has a *G*-invariant (q+1)-arc or dual thereof, for most reasonably small odd q.

Most of our tools and techniques are known, except seemingly for our results concerning an abelian planar collineation group P of a projective plane Π . These results are applied here in each of the above situations for P a Sylow p-subgroup of G, and presumably they will enjoy broader application.

1. Results

Let $q = p^m$ be a prime power, $m \ge 1$, throughout. It is well known that a projective plane which admits $G \cong PSL(3, q)$ as a collineation group is necessarily Desarguesian. (Indeed, a Sylow *p*-subgroup of *G* suffices; see Dembowski [4]). For planes of order q^2 or q^3 , the following characterizations 1.1,2 are known.

1.1 THEOREM (Unkelbach, Dembowski, Lüneburg). If Π is a projective plane of order q^2 admitting a collineation group $G \cong PSL(3,q)$, then Π is either Desarguesian or a generalized Hughes plane. Conversely, any Desarguesian or generalized Hughes plane of order q^2 , save the exceptional Hughes plane of order 7^2 , admits PSL(3,q) as a collineation group.

(For completeness, we indicate a proof of 1.1 in §4, using the results of Unkelbach [35], Dembowski [6] and Lüneburg [24].) The generalized Hughes planes include the infinite

¹ Supported by NSERC of Canada under a Postdoctoral Fellowship.

family of (ordinary) Hughes planes (one such plane of order q^2 for each odd prime power q), together with the seven exceptional Hughes planes having order 5^2 , 7^2 , 11^2 , 11^2 , 23^2 , 29^2 , 59^2 respectively (see [24]).

1.2 THEOREM (Dempwolff [7]). If Π is a projective plane of order q^3 admitting $G \cong PSL(3,q)$, then Π has a G-invariant Desarguesian subplane Π_0 of order q on which G acts faithfully, and G contains elations and involutory homologies of Π . (Some additional orbit information is obtained in [7].)

The only known occurrences of 1.2 are the Desarguesian planes and the Figueroa planes [10], [14]. A comparison of the above results shows that as the order of Π is increased relative to |G|, it becomes increasingly difficult to completely classify the possibilities for Π to within isomorphism. We go one step further by proving (in §9) the following.

1.3 THEOREM. Suppose that Π is a projective plane of order q^4 admitting $G \cong PSL(3, q)$, q odd. If q > 3 then the following must hold.

- (i) G leaves invariant a Desarguesian subplane Π_0 of order q, on which G induces the little projective group.
- (ii) The involutions in G are homologies of Π , and those elements of G which induce elations of Π_0 are elations of Π .

If q = 3 then the same two conclusions must hold, under the additional hypothesis that G acts irreducibly on Π .

(A collineation group is **irreducible** if it leaves invariant no point, line or triangle.) In the same way we try to extend the following well-known result to planes of larger order.

1.4 THEOREM (Hoffer [16]). Suppose that Π is a projective plane of order q^2 admitting a collineation group $G \cong \text{PSU}(3,q)$. Then Π is Desarguesian and there is (to within equivalence) a unique faithful action of G on Π . G commutes with δ for some hermitian polarity δ of Π , and so G leaves invariant the corresponding hermitian unital. (More is said about hermitian unitals in $\S5$.) The following extension is proven (together with Theorem 1.3) in $\S9$.

1.5 THEOREM. Suppose that Π is a projective plane of order q^4 admitting $G \cong \text{PSU}(3, q)$, q odd.

- (a) If $q \neq 5$, 11 then the following must hold:
 - (i) G leaves invariant a Desarguesian subplane Π_0 of order q^2 , on which G acts faithfully, leaving invariant a hermitian unital.
 - (ii) The involutions in G are homologies of Π .
- (b) If q = 5 or 11 and either conclusion (i) or (ii) above fails, then Π or its dual has a point orbit \mathcal{O} of length $q^3 + 1$, such that \mathcal{O} is an arc (for q = 5 or 11) or a hermitian unital embedded in Π (for q = 5 only).
- (c) If the hypothesis $G \cong PSU(3, q)$ is replaced by $G \cong PGU(3, q)$ then (i), (ii) must hold for all odd prime powers q, including 5, 11.

In Theorems 1.3,5 it is clear that any *G*-invariant subplane of Π contains Π_0 (whenever Π_0 itself exists) since Π_0 is generated by the centres of involutory homologies in *G*.

The only known occurrences of 1.3,5 are Desarguesian and Hughes planes. No analogues of Theorems 1.3,5 are known for q even. Indeed, 1.3 fails for q = 2. Namely, if Π or its dual is a Lorimer-Rahilly translation plane of order 16 (see [22]) then Π admits a collineation group $G \cong PSL(3,2)$ such that Fix(G) is a subplane of order 2. We remark on the situation for q = 3 in §10, pointing out an intriguing similarity with the case q = 2.

If $G \cong PSL(3,q)$ or PSU(3,q) and $\tau \in G$ is an involution, then $C_G(\tau)'/\langle \tau \rangle \cong PSL(2,q)$. Accordingly in proving 1.3,5, in case τ is a Baer involution of Π , we require results concerning the action of PSL(2,q) on a plane of order q^2 . We prove some such results, which are new and interesting in their own right. First, however, we make extensive use of the following well known result, proven in [25].

1.6 THEOREM (Lüneburg, Yaqub). Suppose that Π is a projective plane of order q admitting $G \cong PSL(2, q)$. Then Π is Desarguesian. G acts irreducibly on Π for odd q > 3,

and leaves invariant a triangle but no point or line for q = 3. G fixes a point and/or line of Π if q is even.

In [28] we also proved the following.

1.7 THEOREM. Suppose that Π is a projective plane of order q^2 admitting $G \cong PSL(2, q)$, q odd. Then one of the following must hold:

- (i) G acts irreducibly on Π ;
- (ii) q = 3 and G fixes a triangle but no point or line of Π ;
- (iii) q = 5, Fix(G) consists of an antiflag (X, l), and G has point orbits of length 5, 5, 6, 10 on l; or
- (iv) q = 9 and Fix(G) consists of a flag.

For certain values of q we shall make use of the following result, proven in §7. Note that the case $G/K \cong PGL(2,q)$ is especially included.

1.8 THEOREM. Suppose G = GL(2,q) acts as a group of collineations of a projective plane Π of order q^2 , q odd, such that the kernel K of this action satisfies $K \leq Z(G)$, 2 | |K|. Then G fixes no point or line of Π , and leaves invariant a triangle precisely when q = 3. Furthermore, one of the following must hold:

- (i) there is a point orbit which is a (q+1)-arc;
- (ii) the dual of (i); or
- (iii) $q > 10^6$ and q is a square.

In §8 we prove the following related result, although this is only required for q = 5, 17in proving Theorem 1.5.

1.9 THEOREM. Suppose that Π is a projective plane of order q^2 admitting $G \cong PSL(2,q)$, q odd, and that q is not a square (i.e. m is odd). If $q \neq 5$ then one of the following must hold:

- (i) there is a point orbit which is a (q+1)-arc;
- (ii) the dual of (i); or
- (iii) q > 5000 and $q \equiv 3 \mod 8$.

Furthermore if q = 5 then either (i) or (ii) must hold under the additional hypothesis that G acts irreducibly on Π .

In the situation of Theorems 1.8,9 it is natural to conjecture that conclusions (i),(ii) must hold in all cases, that such a (q + 1)-arc generates a proper subplane of Π ; and that G contains involutory homologies. These statements we could not verify (see however Corollary 5.2 of [28]).

This paper is a sequel to [28], which we will quote freely. Most of the new results contained herein were contained in the author's doctoral thesis [27] under the kind supervision of Professor Chat Y. Ho.

2. NOTATION AND PRELIMINARIES

Most of our notation and terminology is standard. Some better-known results are stated below without proof and the reader is referred to [11] for group theory, and [5] or [18] for projective planes.

We denote the cyclic group of order n by C_n , and the symmetric and alternating groups of degree n by S_n and A_n . For a finite group G we denote by G' the derived subgroup of G, and by $\operatorname{Syl}_p(G)$ the class of all Sylow p-subgroups of G. We denote by $G \rtimes H$ the semidirect product of G with H (see [31]). An **involution** is a group element of order 2.

For a permutation group $G \leq \text{Sym }\Omega$ and an element $X \in \Omega$, we denote the **stabilizer** of X by $G_X = \{g \in G : X^g = X\}$, and the G-orbit of X by $X^G = \{X^g : g \in G\}$. We say that G acts **semiregularly** on Ω if $G_X = 1$ for all $X \in \Omega$. Also G acts **regularly** if it acts both transitively and semiregularly.

Let Π be a finite projective plane. A pair (X, l) consisting f a point X and a line l of Π , is a **flag** or an **antiflag** according as $X \in l$ or $X \notin l$. A collineation $g \neq 1$ of Π is a **generalized** (X, l)-**perspectivity** if it fixes the point X and the line l, and if any additional fixed points (resp., lines) lie on l (resp., pass through X). If g fixes l pointwise and X linewise, g is an (X, l)-**perspectivity** with **centre** X and **axis** l. (Following [5], we include the identity $1 \in \text{Aut } \Pi$ as both a perspectivity and a generalized perspectivity.) We say **elation** or **homology** in place of 'perspectivity' according as $X \in l$ or $X \notin l$. If S is a set of collineations of Π then by Fix(S) we mean the full closed substructure of Π consisting of all points and lines fixed by every element of S.

2.1 PROPOSITION. If G acts on a projective plane Π such that $Fix(G) = \emptyset$, then for any $N \leq G$, Fix(N) is either empty, a triangle, or a (not necessarily proper) subplane of Π .

For a proof, see [13, Cor. 3.6].

2.2 THEOREM (Bruck). If Π_0 is a proper subplane of Π , then their respective orders n_0 , n satisfy either $n_0^2 = n$ or $n_0^2 + n_0 \leq n$.

If $n_0 = n$, we call Π_0 a **Baer** subplane of Π . In this case each point of Π lies on some line of Π_0 . If Fix(G) is a subplane (respectively, a Baer subplane, a triangle) of Π , we say that G is a **planar** (resp., **Baer**, **triangular**) collineation group of Π . A **quasiperspectivity** is either a perspectivity or a Baer collineation.

2.3 THEOREM (Roth). In 2.2 if we assume in addition that $\Pi_0 = \text{Fix}(G)$ for some collineation group G of Π , then either $n_0^2 = n$ or $n_0^2 + n_0 + 2 \le n$.

2.4 PROPOSITION. If Π is a finite projective plane with Baer collineation group G, then |G| | n(n-1).

Proposition 2.4, together with its analogue for perspectivities (see Lemma 4.10 of [18]) are elementary and will often be used without explicit mention.

2.5 THEOREM (Baer). Any involutory collineation of a finite projective plane is a quasiperspectivity.

2.6 PROPOSITION. If g_i is an (X_i, l_i) -perspectivity of Π , $i = 1, 2, X_1 \neq X_2, l_1 \neq l_2$ then g_1g_2 is a generalized $(l_1 \cap l_2, X_1X_2)$ -perspectivity of Π .

3. The Groups PSL(2,q), PGL(2,q)

We assume the reader's familiarity with the classification of subgroups of PSL(2,q) as given in [9], [19] or [34]. Note that if $G \cong PGL(2,q)$ then G is isomorphic to a subgroup of $PSL(2,q^2)$, so by applying the latter classification to $PSL(2,q^2)$ as well as to $G' \cong$ PSL(2,q), we may in fact classify the subgroups of G.

- 3.1 LEMMA. If $q = p^m$ is odd then
- (i) PGL(2,q) has a single conjugacy class of elements of order p;
- (ii) PSL(2, q) has exactly 2 conjugacy classes of elements of order p; it has 2 or 1 conjugacy class(es) of subgroups of order p according as q is or is not a square.

Proof of (ii). Let $G \cong PSL(2,q)$, $P \in Syl_p(G)$, $N = N_G(P)$, $g \in P \setminus 1$. Then G contains $q^2 - 1$ elements of order p, of which q - 1 lie in each of the q + 1 conjugates of P; $|G| = \frac{1}{2}q(q^2 - 1)$, $C_G(g) = P$, $|N_G(\langle g \rangle)| = (m, 2)q(p - 1)/2$ and the statement follows.

3.2 LEMMA. Let $G \cong PGL(2,q)$, q odd. If e is an even divisor of q + 1 such that e > 2, then G contains a pair of elements x, y of order e such that $\langle x, y \rangle \supseteq G' \cong PSL(2,q)$.

Proof. If e = q + 1 then we may choose $x, y \in G$ of order e such that $\langle x \rangle \neq \langle y \rangle$, and then the classification of subgroups of G (see [9], [19], [34]) gives $\langle x, y \rangle = G$. In particular, we may assume that $q \neq 3, 5, 9$. Let u, v be the elements of G represented by

$$\begin{pmatrix} 0 & 1 \\ \zeta & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 \\ \zeta^3 & 0 \end{pmatrix}$$

respectively, where ζ is a generator of the multiplicative group $GF(q) \setminus \{0\}$. Then $\langle u, v \rangle$ is dihedral of order q - 1. Now $C_G(u)$, $C_G(v)$ are dihedral of order 2(q + 1) since ζ , ζ^3 are non-squares. We may therefore choose $x \in C_G(u)$, $y \in C_G(v)$ of order e.

Now $\langle x, y \rangle \supseteq \langle u, v \rangle$, but $\langle x, y \rangle \not\subseteq N_G(\langle u, v \rangle)$, since for q > 3, the latter is dihedral of order e. If $q \ge 11$ then $\langle x, y \rangle \supseteq G'$ by the classification of subgroups of G. By the initial argument, the only case left to consider is q = 7, e = 4, in which case $\langle u, v \rangle \cong S_3, \langle x, y \rangle \supseteq G'$ unless $\langle x, y \rangle \cong S_4$. But in the latter case $u = x^2, v = y^2$ generate an elementary abelian group of order 4, a contradiction.

The following is proven in [28].

3.3 THEOREM. If a projective plane Π of order n < q admits a collineation group $G \cong$ PSL(2, q), then Π is Desarguesian and (n, q) = (2, 3), (2, 7), (4, 5), (4, 7) or (4, 9). Moreover each of these exceptional cases indeed occurs.

4. The Groups PSL(3,q), PGL(3,q)

Let $G \cong PSL(3,q)$, F = GF(q), $F^{\times} = F \setminus \{0\}$ so that $|G| = q^3(q^3 - 1)(q^2 - 1)/\mu$ where $\mu = (q - 1, 3)$. Throughout §4 we assume that $q = p^m$ is odd. Of the following facts concerning G, those which are stated without proof are either well-known or follow by elementary methods from the list in [26] of maximal subgroups of G. (The corresponding list for q even is given in [12]. Note that certain of the following, eg. 4.1(i), fail for q even.)

Consider the following elements and subgroups of G, as represented by matrices in SL(3, q):

$$\begin{aligned} \tau &= \operatorname{diag}(-1, -1, 1), \qquad Z_{\tau} = \operatorname{Z}(\operatorname{C}_{G}(\tau)) = \left\{ \operatorname{diag}(d, d, d^{-2}) : d \in F^{\times} \right\}, \\ \operatorname{C}_{G}(\tau) &= \left\{ \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e^{-1} \end{pmatrix} : \begin{array}{c} a, b, c, d \in F, \\ e = ad - bc \neq 0 \end{array} \right\}, \\ \operatorname{C}_{G}(\tau)' &= \left\{ \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix} : \begin{array}{c} a, b, c, d \in F, \\ ad - bc = 1 \end{array} \right\} \cong \operatorname{SL}(2, q), \\ P_{0} &= \left\{ \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array} \right\} : a, b \in F \right\}, \qquad P_{1} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & 1 \end{array} \right\} : a, b \in F \right\}, \\ Q &= \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right\} : a, b, c \in F \right\} \in \operatorname{Syl}_{p}(G), \\ P &= \left\{ \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right\} : a \in F \right\} = \operatorname{Z}(Q) = Q', \\ \operatorname{N}_{G}(Q) &= Q \rtimes K, \qquad K = \left\{ \operatorname{diag}(d, e, (de)^{-1}) : d, e \in F^{\times} \right\}. \end{aligned}$$

Likewise define $Z_{\omega} = \mathbb{Z}(\mathbb{C}_G(\omega))$ for any involution $\omega \in G$.

4.1 LEMMA.

- (i) G has a single conjugacy class of involutions, and G acts transitively by conjugation on the set of ordered pairs of commuting distinct involutions. One such pair is {τ, τ'} where τ' = diag(-1, 1, -1).
- (ii) $|C_G(\tau)| = q(q+1)(q-1)^2/\mu$, $|Z_\tau| = (q-1)/\mu$.
- (iii) $C_G(\tau) = C_G(\tau)' \rtimes Z_{\tau'}.$
- (iv) $C_G(\tau)/Z_{\tau} \cong PGL(2,q).$
- (v) $C_G(\tau) \cong H/\Xi_{\mu}$ where $H \cong GL(2,q), \ \Xi_{\mu} \leq Z(H), \ |\Xi_{\mu}| = \mu.$
- (vi) G contains involutions τ_1 , τ_2 such that $C_G(\tau_1)' \cap C_G(\tau_2)' \neq 1$, $\langle C_G(\tau_1)', C_G(\tau_2)' \rangle = G$.

Proof of (vi). Let Σ be a Desarguesian plane of order q admitting G as its little projective group, and consider the configuration in Σ shown in Figure 4A. Let $\tau_i \in G$ be the involutory (X_i, l_i) -homology of $\Sigma, i = 1, 2$. Then $C_G(\tau_1)' \cap C_G(\tau_2)' \supseteq G(X_0, l_0)$ and $\langle C_G(\tau_1)', C_G(\tau_2)' \rangle$ fixes no point or line of Σ , so by [26] we have $\langle C_G(\tau_1)', C_G(\tau_2)' \rangle = G$.

4.2 LEMMA.

- (i) $\langle P_0, P_1 \rangle = G.$
- (ii) G has exactly two conjugacy classes of subgroups of index $q^2 + q + 1$, represented by $P_0C_G(\tau)$ and $P_1C_G(\tau)$. These two classes are interchanged by the transpose-inverse automorphism of G.
- (iii) Suppose that $G \leq \operatorname{Aut} \Sigma$ where Σ is a projective plane of order q. Then Σ is Desarguesian. There are two equivalence classes of faithful actions of G on Π . In one such action, $P_0C_G(\tau)$ (respectively, $P_1C_G(\tau)$) is the stabilizer of a point (resp., a line) of Σ .
- (iv) Suppose that $G \leq \operatorname{Aut} \Pi$ where Π is a projective plane, and let X be a point of Π . If the orbit X^G has length $q^2 + q + 1$, then its points are either collinear, form an arc, or generate a Desarguesian subplane of order q.

Proof of (iv). It is convenient to let Σ be a Desarguesian plane of order q disjoint from Π , and to let G act on Σ as its little projective group in such a way that G_X fixes a point (i.e. rather than a line—see (iii)) of Σ . There exists a bijection θ from X^G to the point set of Σ which commutes with the action of G, viz. $X^{\theta g} = X^{g\theta}$ for all $g \in G$.

Now G acts 2-transitively on $(X^{\theta})^G$ and hence on X^G . Therefore X^G forms a 2design (see [2]) whose blocks are the members of l^G , where l is a given line of Π joining two given points of X^G . If l contains exactly two points of X^G then X^G is an arc. We may assume that l contains at least three distinct points $X_1, X_2, X_3 \in X^G$, and l is fixed by $\langle G_{X_i,X_j} : 1 \leq i < j \leq 3 \rangle$. If $X_1^{\theta}, X_2^{\theta}, X_3^{\theta}$ form a triangle in Σ then $G_l \supseteq \langle G_{X_i^{\theta},X_j^{\theta}} :$ $1 \leq i < j \leq 3 \rangle = G$ (by [26,pp.239–240], observing that $\langle G_{X_1,X_2}, G_{X_1,X_3} \rangle = G_{X_1}$) and so all points in X^G lie on l. Otherwise $X_1^{\theta}, X_2^{\theta}, X_3^{\theta}$ all lie on some line l_1 of $\Sigma, G_l = G_{l_1},$ l contains exactly q + 1 points of X^G and θ^{-1} is an imbedding of Σ in Π .

Proof of Theorem 1.1. Suppose that $G \leq \operatorname{Aut} \Pi$ where Π is a projective plane of order q^2 . By [35,Satz 1], G leaves invariant a Desarguesian subplane Π_0 of order q, and G acts faithfully on Π_0 . (However, the later proofs of [35,§4] contain flaws as pointed out by Lüneburg [24].) By [6,Satz 1], G acts transitively on the set of flags (X, l) of Π such that neither X nor l belongs to Π_0 . By [24,Thm.2], Π is a Desarguesian or generalized Hughes plane as required. The converse also holds; the full collineation groups of the generalized Hughes planes were determined by Rosati [32], [33] (see also see [24,Cor.5,6]).

Now suppose rather that $G \cong PGL(3, q)$, where as before q is odd. The above notations still apply, with the following modifications:

$$Z_{\tau} = \{ \operatorname{diag}(1, 1, d) : d \in F^{\times} \},\$$
$$C_{G}(\tau) = \left\{ \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix} : \begin{array}{c} a, b, c, d \in F, \\ ad - bc \neq 0 \end{pmatrix} \right\}$$

where elements of G are now represented by matrices in GL(3,q), and $|G| = q^3(q^3 - 1) \times (q^2 - 1)$.

4.3 LEMMA. The above Lemmas 4.1,2 remain valid with $G \cong PGL(3,q)$, with the following amendments: 4.1(ii) becomes $|C_G(\tau)| = q(q+1)(q-1)^2$, $|Z_{\tau}| = q-1$; and 4.1(v) becomes $C_G(\tau) \cong GL(2,q)$.

PSL(3,q) AND PSU(3,q) ON PLANES OF ORDER q^4

5. The Groups PSU(3,q), PGU(3,q)

In §5 we again restrict our attention to the case $q = p^m$ is odd, and let $F = GF(q^2)$, $F^{\times} = F \setminus \{0\}$. For $A \in GL(3, q^2)$ let A^T denote its transpose, and let \overline{A} denote the matrix obtained by applying the field automorphism $a \mapsto \overline{a} = a^q$ to each entry of A. (We caution the reader that our matrix entries are from $F = GF(q^2)$ rather than GF(q), for which reason certain authors have prefered the notation $PGU(3, q^2)$ to that which we have followed.)

Let $G \cong \text{PGU}(3, q)$, so that $|G| = q^3(q^3 + 1)(q^2 - 1)$. We shall represent the elements of G as matrices $A \in \text{GL}(3, q^2)$ such that $AW\overline{A}^T = W$, modulo the scalar matrices $\{aI : a \in F^{\times}, a\overline{a} = 1\}$, where $W \in \text{GL}(3, q^2)$ is a suitably chosen hermitian matrix (i.e. $\overline{W}^T = W$). We choose W and name certain elements of G as follows.

$$\begin{split} W &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad \tau' = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \\ \tau &= \operatorname{diag}(-1, 1, -1), \qquad Z_{\tau} = \operatorname{Z}(\operatorname{C}_{G}(\tau)) = \left\{ \operatorname{diag}(1, d, 1) : d \in F^{\times}, \, d\overline{d} = 1 \right\}, \\ \operatorname{C}_{G}(\tau) &= \left\{ \begin{pmatrix} a & 0 & b \\ 0 & 1 & 0 \\ c & 0 & d \end{pmatrix} : a, b, c, d \in F, \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}, \\ \operatorname{C}_{G}(\tau)' &= \left\{ \begin{pmatrix} a & 0 & b \\ 0 & 1 & 0 \\ c & 0 & d \end{pmatrix} \in \operatorname{C}_{G}(\tau) : ad - bc = 1 \right\} \cong \operatorname{SL}(2, q), \\ Q &= \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & -\overline{a} \\ 0 & 0 & 1 \end{pmatrix} : a, b \in F, \\ a\overline{a} + b + \overline{b} = 0 \right\} \in \operatorname{Syl}_{p}(G), \\ P &= \left\{ \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : b \in F, \ b + \overline{b} = 0 \right\} = \operatorname{Z}(Q) = Q', \\ \operatorname{N}_{G}(Q) &= Q \rtimes K, \qquad K = \left\{ \operatorname{diag}(d, 1, d^{-q}) : d \in F^{\times} \right\}. \end{split}$$

Likewise define $Z_{\omega} = \mathbb{Z}(\mathbb{C}_G(\omega))$ for any involution $\omega \in G$.

Let Σ be a Desarguesian plane of order q^2 with points (resp., lines) represented by *F*-subspaces of $F^3 = \{(a, b, c) : a, b, c \in F\}$ of dimension 1 (resp., 2). Right-multiplication of elements of *G* on vectors of F^3 induces an action of *G* on Σ , and *G* commutes with the hermitian polarity δ , where for a point X of Σ represented by $(a, b, c) \in F^3 \setminus \{(0, 0, 0)\}$, we define X^{δ} to be the line

$$\{(x, y, z) \in F^3 : (x, y, z)W(\overline{a}, \overline{b}, \overline{c})^{\mathrm{T}} = 0\}.$$

Now Σ has $q^3 + 1$ **absolute** points with respect to δ (i.e. points X such that $X \in X^{\delta}$) and $q^2(q^2 - q + 1)$ **nonabsolute** lines (i.e. lines l such that $l^{\delta} \notin l$. These together form a $2 \cdot (q^3 + 1, q + 1, 1)$ design (see [2]) called a **hermitial unital** (see [5,p.104], [15,p.156]). Note that P consists of all (X, X^{δ}) -elations of Σ in G, and Z_{τ} consists of all (Y, Y^{δ}) -homologies of Σ in G, where X = (0, 0, 1) is absolute and Y = (0, 1, 0) is nonabsolute.

We state below a few facts concerning G, omitting the proofs of those statements which are well known or which follow readily from [16], [26,p.241], [29].

5.1 LEMMA.

- (i) G has a single conjugacy class of involutions, and G acts transitively by conjugation on the set of ordered pairs of commuting distinct involutions. One such pair is {τ, τ'} where τ' = diag(-1, 1, -1).
- (ii) $|C_G(\tau)| = q(q+1)^2(q-1), \quad |Z_\tau| = q+1.$
- (iii) $C_G(\tau) = C_G(\tau)' \rtimes Z_{\tau'}.$
- (iv) $C_G(\tau)/Z_{\tau} \cong PGL(2,q).$
- (v) $C_G(\tau)$ is the unique maximal subgroup of G containing $C_G(\tau)'$.
- (vi) G contains involutions τ_1 , τ_2 such that $C_G(\tau_1)' \cap C_G(\tau_2)' \neq 1$, $\langle C_G(\tau_1)', C_G(\tau_2)' \rangle = G$.
- (vii) If e > 2 is an even divisor of q + 1 then there exists an involution $\tau'' \in C_G(\tau)$ and elements $x \in Z_{\tau'}, y \in Z_{\tau''}$ of order e such that $\langle x, y \rangle \supseteq C_G(\tau)'$.
- (viii) Suppose that q = 3 and $\omega \in G$ is an involution. Then $O_2(C_G(\omega)') = O_2(C_G(\omega))$ is quaternion. Furthermore if $[\tau, \omega] = 1$ then $\langle O_2(C_G(\tau)), O_2(C_G(\omega)) \rangle = N_G(\langle \tau, \omega \rangle)$ of order 96; if $[\tau, \omega] \neq 1$ then $\langle O_2(C_G(\tau)), O_2(C_G(\omega)) \rangle = G$.
- (ix) If q = 3 then there exists an involution $\tau'' \in C_G(\tau)$ such that $[\tau', \tau''] \neq 1, \ \tau' \tau'' \in O_2(C_G(\tau)).$

Proof of (vi), (vii), (ix). Let l_0 be an absolute line of Σ , and let $X_0 = l_0^{\delta}$, X_1 , X_2 be three distinct points of l_0 . Then (vi) follows as in 4.1(vi).

By 3.2 there exist $x, y \in C_G(\tau)$ such that $\overline{x}, \overline{y} \in \overline{C_G(\tau)}$ are of order e, and $\langle \overline{x}, \overline{y} \rangle \supseteq \overline{C_G(\tau)'} \cong PSL(2,q)$ where the bars indicate the canonical images in $C_G(\tau)/Z_\tau \cong PGL(2,q)$. Now $Z_{\tau'}$ contains an element u of order e, and since $Z_{\tau'} \cap Z_\tau = 1$, the image $\overline{u} \in \overline{C_G(\tau)}$ is also of order e. Since $\overline{C_G(\tau)}$ has a single conjugacy class of cyclic subgroups of order e, we may assume that $x \in Z_{\tau'}$, and we also have $y \in Z_{\tau''}$ for some involution $\tau'' \in C_G(\tau)$, and x, y have order e.

Now $\langle x, y \rangle Z_{\tau} \supseteq C_G(\tau)' Z_{\tau}$ which yields $\langle x, y \rangle \supseteq (C_G(\tau)')'$. If q > 3 then $(C_G(\tau)')' = C_G(\tau)'$ and so we are done. If q = 3 then $\langle x, y \rangle \supseteq (C_G(\tau)')'$, the latter being quaternion; but also $\langle x, y \rangle$ contains an element of order 3, so that $\langle x, y \rangle \supseteq C_G(\tau)'$ and in any case (vii) holds.

If q = 3 then

$$O_2(C_G(\tau)) = \left\langle \begin{pmatrix} 0 & 0 & i \\ 0 & 1 & 0 \\ i & 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & -i \\ 0 & 1 & 0 \\ i & 0 & 1 \end{pmatrix} \right\rangle$$

where $i \in F$, $i^2 = -1$, and so (ix) follows by taking

$$\tau'' = \begin{pmatrix} i & 0 & 1\\ 0 & -1 & 0\\ -1 & 0 & -i \end{pmatrix}.$$

5.2 LEMMA.

- (i) K is cyclic of order $q^2 1$. For $d \mid q^2 1$ let K_d be the subgroup of order d in K. Then $Z_{\tau} = K_{q+1}$.
- (ii) K acts irreducibly on the vector space Q/P of dimension 2m over GF(p).
- (iii) $C_G(\tau) = C_G(\tau)'K$.

5.3 LEMMA.

- (i) G has a single conjugacy class of subgroups of index $q^3 + 1$, represented by $N_G(Q)$.
- (ii) Suppose that $G \leq \operatorname{Aut} \Pi$ where Π is a projective plane, and let X be a point of Π . If the orbit X^G has length $q^3 + 1$, then its points are either collinear, form an arc, or form the point set of a hermitian unital embedded in Π .

Proof of (ii). There exists a bijection θ from X^G to the set of absolute points of Σ with respect to δ , such that θ commutes with the action of G, i.e. $X^{\theta g} = X^{g\theta}$ for all $g \in G$. The result follows as in the proof of 4.2(iv), using instead p.241 of [26].

5.4 LEMMA. The above Lemmas 5.1–3 remain valid with $G \cong PSU(3,q)$, with the following amendments: 5.1(ii) becomes $|C_G(\tau)| = q(q+1)^2(q-1)/\mu$, $|Z_{\tau}| = (q+1)/\mu$ where $\mu = (q+1,3)$; 5.1(vii) requires the additional hypothesis that $e \mid (q+1)/\mu$ (and in particular $q \neq 5$); $|K| = (q^2 - 1)/\mu$ and $Z_{\tau} = K_{(q+1)/\mu}$ in 5.2(i).

6. Abelian Planar Collineation Groups

Recall that a collineation group G of a projective plane Π is **planar** if Fix(G) is a subplane of Π . That such collineation groups must often be considered is evident from 2.1. Our results concern the simplest such case, in which G is abelian. For example the following is proven in [28].

6.1 THEOREM. If G is a faithful abelian planar collineation group of a projective plane Π of order n, then |G| < n.

Suppose now that G is a faithful abelian planar collineation group of a finite projective plane Π , and let $\Pi_G = \text{Fix}(G)$. If Π_1 , Π_2 are subplanes of Π , then we shall denote by $\langle \Pi_1, \Pi_2 \rangle$ the subplane generated by Π_1 and Π_2 ; we shall write $\Pi_1 \subseteq \Pi_2$ if Π_1 is a subplane of Π_2 . For any subplane $\Sigma \subseteq \Pi$, let

$$G_{\Sigma} = \{ g \in G : g \text{ fixes } \Sigma \text{ pointwise} \}, \qquad \mathcal{G} = \{ G_{\Sigma} : \Sigma \subseteq \Pi \}.$$

For any subgroup $H \leq G$, let

$$\Pi_H = \operatorname{Fix}(H), \qquad \mathcal{P} = \{\Pi_H : H \le G\};$$

note that \mathcal{P} consists of certain subplanes of Π containing Π_G . We consider \mathcal{G}, \mathcal{P} as **posets** (i.e. partially ordered sets, with respect to inclusion denoted as usual by \subseteq). Let $\mathrm{St} : \mathcal{P} \to \mathcal{G}$ (abbreviation for 'stabilizer') denote the restriction to \mathcal{P} of the map $\Sigma \mapsto G_{\Sigma}$, and let the restriction $\mathrm{Fix}|_{\mathcal{G}}$ also be denoted by Fix, so that $\mathrm{Fix} : \mathcal{G} \to \mathcal{P}$ is the map $H \mapsto \Pi_H$. The following properties may be immediately verified.

- (i) \mathcal{G} contains both $G = \operatorname{St}(\Pi_G)$ and $1 = \operatorname{St}(\Pi)$; \mathcal{P} contains both $\Pi = \operatorname{Fix}(1)$ and $\Pi_G = \operatorname{Fix}(G)$.
- (ii) G leaves invariant every member of \mathcal{P} (because G is abelian).
- (iii) Fix reverses inclusion, i.e. $\Pi_H \subseteq \Pi_K$ whenever $H \supseteq K, H, K \in \mathcal{G}$.
- (iv) St reverses inclusion, i.e. $G_{\Sigma} \subseteq G_{\Sigma'}$ whenever $\Sigma \supseteq \Sigma', \Sigma, \Sigma' \in \mathcal{P}$.
- (v) $\operatorname{Fix} \circ \operatorname{St} = \operatorname{id}_{\mathcal{P}}, \operatorname{St} \circ \operatorname{Fix} = \operatorname{id}_{\mathcal{G}}, \text{ so that } \operatorname{St} : \mathcal{P} \to \mathcal{G} \text{ and } \operatorname{Fix} : \mathcal{G} \to \mathcal{P} \text{ are anti-isomorphisms of posets.}$
- (vi) $G_{\langle \Sigma, \Sigma' \rangle} = G_{\Sigma} \cap G_{\Sigma'}$ whenever $\Sigma, \Sigma' \in \mathcal{P}$; thus \mathcal{G} is closed under intersection.
- (vii) $\Pi_{H\cap K} = \langle \Pi_H, \Pi_K \rangle$ whenever $H, K \in \mathcal{G}$; thus $\langle \Sigma, \Sigma' \rangle \in \mathcal{P}$ whenever $\Sigma, \Sigma' \in \mathcal{P}$.

We caution the reader that \mathcal{G} , \mathcal{P} need not be lattices: namely if $\Sigma, \Sigma' \in \mathcal{P}$ then $\Sigma \cap \Sigma' \subseteq \operatorname{Fix}\langle G_{\Sigma}, G_{\Sigma'} \rangle$, and if the latter inclusion is proper then \mathcal{P} is not closed under the usual intersection. Especially note that our \mathcal{P} is *not* the lattice of all *G*-invariant substructures of Π (or even a sublattice thereof) as considered in [13,§4].

Applying Theorem 6.1 to the action of G/H on Π_H for $H \in \mathcal{G}$, we obtain

(viii)
$$[G:H] < n_H$$
 for all $H \in \mathcal{G}$, where n_H is the order of Π_H .

If $H, K \in \mathcal{G}$ (and similarly for members of \mathcal{P}) we shall write $H \prec K$ in case $H \subsetneq K$ and there is no $L \in \mathcal{G}$ satisfying $H \subsetneq L \subsetneq K$. Whenever $H, K \in \mathcal{G}$ we clearly have

(ix)
$$H \prec K$$
 if and only if $\Pi_K \prec \Pi_H$.

Suppose that $H, K \in \mathcal{G}, H \prec K$ and let Π_H, Π_K have order n_H, n_K respectively. Let l be a line of Π_G , so that l belongs to Π_H, Π_K . If X is a point of l in Π_H outside Π_K , then the orbit X^K consists of $[K:K_X]$ points of l, all of which are fixed by K_X since G is abelian. Thus K_X fixes pointwise the subplane $\langle \Pi_K, X^K \rangle \subseteq \Pi_H$, and since $\Pi_K \prec \Pi_H$ we obtain $\langle \Pi_K, X^K \rangle = \Pi_H$. This yields $K_X = H$, and since every K-orbit on the points of l in Π_H but outside Π_K has length [K:H], we conclude that

(x) $[K:H] \mid n_H - n_K$ whenever $H \prec K$, where Π_H , Π_K has order n_H , n_K respectively.

Choose a maximal chain in \mathcal{P} , namely

$$\Pi_G = \Pi_0 \prec \Pi_1 \prec \cdots \prec \Pi_k = \Pi, \qquad \Pi_i \in \mathcal{P}, \ i = 0, 1, \dots, k,$$

and let n_i be the order of Π_i , i = 0, 1, ..., k. Then $n_{i-1}^2 \leq n_i$, i = 1, 2, ..., k by 2.2, so that by induction we obtain

(xi) the length k of any chain in \mathcal{P} (or in \mathcal{G}) satisfies $n_G^{2^k} \leq n$, where Π , Π_G has order n, n_G respectively.

We make use of the above concepts in proving the following.

6.2 THEOREM. Suppose that P is an elementary abelian group of order $q = p^m$, p a prime, and that $P \trianglelefteq G$ where the group G acts transitively by conjugation on the cyclic subgroups of P. Suppose furthermore that $G \le \operatorname{Aut} \Pi$ for some projective plane Π of order q^2 , such that P fixes pointwise a subplane Π_P of order n_P . Then one of the following must hold:

- (I) Π_P is a Baer subplane of Π , or
- (II) q is a square, $n_P = \sqrt{q}$, and P has a subgroup of order \sqrt{q} fixing pointwise a Baer subplane of Π .

We illustrate 6.2 by listing some known occurrences for $q \leq 4$. If q = 2 and $G = P \cong C_2$, then case (I) occurs for the unique (Desarguesian) plane of order 4. If q = 3 and $G = P \cong C_3$ then case (I) occurs for the Hughes plane of order 9 (see [24,Cor.5]); also for the Hall and dual Hall plane of order 9.

For q = 4 the following translation planes (or their duals) of order 16 (see [8]) admit $G \cong A_4$ as in Theorem 6.2. If Π is a Hall plane, a derived semifield plane or a Dempwolff plane then case (I) occurs; if Π is a Lorimer-Rahilly plane or a Johnson-Walker plane then case (I) or case (II) may occur.

Proof of Theorem 6.2. For $g \in P \setminus 1$, let n_1 be the order of the subplane $\Pi_g = \text{Fix}(g)$. (By the action of G on P, n_1 is independent of the choice of $g \in P \setminus 1$.) Let l be a line of Π_P . Counting in two different ways the number of pairs (X, g) such that X is a point of $l, g \in P$ and $X^g = X$, we obtain

$$q^{2} + 1 + (q - 1)(n_{1} + 1) = w|P|$$

where w is the number of orbits of P on the points of l (see [30]). This gives $q \mid n_1$, and since $n_1 \leq q$, we have $n_1 = q$.

Let P_g be the kernel of the action of P on Π_g , so that

$$P_g \in \mathcal{G} = \{P_{\Sigma} : \Sigma \subseteq \Pi\}, \qquad P_{\Sigma} = \{h \in P : h \text{ fixes } \Sigma \text{ pointwise}\}.$$

(We follow the notation used under 6.1, except that our abelian planar collineation group is now P in place of G.) Note that \mathcal{G} is invariant under the action of G by conjugation on the subgroups of P.

Clearly $P_g \succ 1$, and so for any $H \in \mathcal{G}$ we have $H \cap P_g$ = either 1 or P_g . This means that any $H \in \mathcal{G}$ is a disjoint union of certain conjugates of P_g in G. Writing $|P_g| = p^r$, $|H| = p^s$, this means that $p^r - 1 | p^s - 1$, i.e. r | s so that $|H| = u^d$ for some integer $d \ge 0$ where $u = |P_g| = p^r$. In particular $|P| = u^e$ for some integer $e \ge 1$.

If $P_g = P$ we have case (I); hence we may assume that $P_g \subsetneq P$, $e \ge 2$. If $P_g \prec P$ then by (x) we have $u^{e-1} = [P:P_g] | u^e - n_P, u^{e-1} | n_P$; but $n_P \le \sqrt{n_1} = \sqrt{q} = u^{e/2}$ so that $e = 2, n_P = \sqrt{q}$ and we have case (II).

Hence we may assume that $1 \prec P_g \prec H \subsetneq P$ for some $H \in \mathcal{G}$, $|H| = u^d$. By (viii) we have $[P:H] < n_H \leq \sqrt{n_1} = \sqrt{q}$ where n_H is the order of Π_H , i.e. $u^d = |H| > \sqrt{q} = u^{e/2}$, 2d > e. Choose $x \in G$ such that $H^x \neq H$; then

$$H^x \cap H \in \mathcal{G}, \qquad |H^x \cap H| = \frac{|H|^2}{|H^x H|} \ge u^{2d-e} \ge u$$

We may assume that $g \in H^x \cap H$; otherwise replace g by g^y where $y \in G$ is chosen such that $g^y \in H^x \cap H$. Now $P_g \subseteq H^x \cap H \subsetneq H$ and so $H^x \cap H = P_g$ which forces $2d - e = 1, d = \frac{1}{2}(e+1)$ and in particular e is odd, $e \ge 3$.

Suppose that $H \subsetneq K \subsetneq P$ for some $K \in \mathcal{G}$. Choose $z \in G$ such that $K^z \not\supseteq H$; then

$$K^{z} \cap H \in \mathcal{G}, \qquad |K^{z} \cap H| = \frac{|K^{z}||H|}{|K^{z}H|} > \frac{|H|^{2}}{|K^{z}H|} \ge u^{2d-e} = u$$

Again we may assume that $g \in K^z \cap H$; then $P_g \subsetneq K^z \cap H \subsetneq H$, a contradiction.

Therefore $1 \prec P_g \prec H \prec P$, and so (x) gives $u^{(e-1)/2} = [P:H] | n_H - n_P, u^{(e-1)/2} = [H:P_g] | u^e - n_H$ so that $u^{(e-1)/2} | n_P$. By (xi) we have $(u^{(e-1)/2})^8 \leq n_P^8 \leq u^{2e}, e \leq 2$, a final contradiction.

7. Proof of Theorem 1.8

The result is easily established for q = 3 (see Prop. 2.7 of [28]) so we may assume that

$$(1) \quad q > 3$$

We next show that

(2)
$$G'$$
 acts irreducibly on Π .

Since G' induces $G'/G' \cap K \cong PSL(2,q)$ on Π , (2) follows by Theorem 1.7 for $q \neq 5, 9$.

Suppose that q = 5 and that G' fixes a line l of Π . By Theorem 1.7, G' has orbits of length 5, 5, 6, 10 on the points of l, and G permutes these orbits. Indeed, G has the same four orbits on l, since the G'-orbits of length 5 may be represented by X, Y respectively, where $\operatorname{Fix}(\tau, \tau')$ is given by Figure 7A for commuting involutions $\tau \neq \tau'$ in G', and from the lack of symmetry in X and Y it is apparent that G preserves both $X^{G'}$ and $Y^{G'}$.

We may write $G = G' \rtimes \langle g \rangle$ where g is of order 4 and induces an automorphism of order 4 on $G'/G' \cap K$ (cf. 4.1(iii)). This automorphism leaves invariant exactly one subgroup of isomorphism type A₄, two dihedral subgroups of order 10, and none of type S₃ in $G'/G' \cap K \cong A_5$. Thus g induces a collineation of Π of order 4 fixing exactly 4 points of l, which is clearly impossible.

Now suppose that q = 9. Then |Z(G)| = 8, and if $K \subsetneq Z(G)$ then Z(G) contains an element g inducing an involutory collineation of Π . If g induces a homology of Π then G' fixes its centre and axis, contrary to Theorem 1.7. Otherwise Fix(g) is a subplane of order 9 on which G' acts reducibly, contrary to 1.6.

Therefore K = Z(G), i.e. G induces $\overline{G} = G/Z(G) \cong PGL(2,9)$ on Π . By (16) of [28], the lengths of the orbits of $\overline{G'} \cong PSL(2,9)$ on the points of l are given by one of the following cases:

lengths 1, 36,45 (in case (ix) of [28,(16)]);

lengths 1, 15, 30, 36 (in cases (x), (xi));

lengths 1, 6, 15, 60 (in cases (xii), (xiii)); or

lengths 1, 6, 15, 20, 40 (in cases (xiv), (xv)).

If case (x) or (xi) occurs then the unique $\overline{G'}$ -orbit of length 30 on l is \overline{G} -invariant. From Table 3D of [28] we see that ρ_1 , ρ_2 fix 6, 0 points in this orbit, respectively, violating the fact that ρ_1 , ρ_2 are conjugate in \overline{G} . We similarly eliminate cases (xii)–(xv) of [28,(16)].

We are left with case (ix), and $\overline{G'}$ has three orbits on the points of l, of length 1, 45, 36 respectively, and so each of these three orbits is \overline{G} -invariant. The stabilizers in \overline{G} of point representatives from these orbits are \overline{G} , dihedral of order 16, and dihedral of order 20 respectively. We compute (cf. (9) of [28]) that an involution $\omega \in \overline{G} \setminus \overline{G'}$ fixes 1, 5, 6 points in these orbits respectively, so that ω fixes exactly 12 points of l, which is clearly impossible. This concludes the proof of (2).

Let

$$P = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} : a \in \operatorname{GF}(q) \right\} \in \operatorname{Syl}_p(G), \qquad P < G',$$

$$Z = \left\{ \operatorname{diag}(d, d) : d \in \operatorname{GF}(q) \setminus \{0\} \right\} = \operatorname{Z}(G),$$

$$C = \left\{ \operatorname{diag}(d, 1) : d \in \operatorname{GF}(q) \setminus \{0\} \right\},$$

$$N = \operatorname{N}_G(P) = CZP,$$

$$\gamma = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \in C, \qquad \tau = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

(3) We may assume that $Fix(N) = \emptyset$.

For otherwise, by duality we may suppose that N fixes a point X of Π . Since N is a maximal subgroup of G, (2) gives $G_X = N$. By (2), not all q + 1 points of X^G are collinear, and so [28,Prop.2.9] gives conclusion (i) of 1.8 and we are done. This proves assertion (3).

Since every *P*-orbit has length either 1 or a multiple of *p*, Fix(P) is neither empty nor a triangle. Hence by (3) and 2.1 we conclude that Fix(P) is a subplane of Π . Since *C* acts transitively on $P \setminus 1$ by conjugation, Theorem 6.2 yields

PSL(3,q) AND PSU(3,q) ON PLANES OF ORDER q^4

(4) Fix(P) is a subplane of Π of order n_P , where $n_P \in \{\sqrt{q}, q\}$.

Suppose that X is a point of Π with X^G an arc, $|X^G| > q + 1$. If $g \in P \setminus 1$ then $\operatorname{Fix}(g)$ is a subplane of order q by the proof of Theorem 6.2. There certainly exists a point of X^G outside $\operatorname{Fix}(g)$; thus $X^h \notin \operatorname{Fix}(g)$ for some $h \in G$. Since X^h lies on a unique line of $\operatorname{Fix}(g)$, this line contains at least $|\langle g \rangle| > 2$ points of X^G . Thus

(5) for any point X of Π such that $|X^G| > q + 1$, X^G is not an arc.

Clearly

(6) the permutation group induced by N on the points of Fix(P) is abelian of order dividing $\frac{1}{2}(q-1)^2$;

namely, the induced permutation group is a homomorphic image of $N/KP \cong CZ/K$.

- (7) One of the following must occur:
 - (I) $n_P = q$, γ induces a Baer collineation of Fix(P) (i.e. $Fix(P, \gamma)$ is a subplane of order \sqrt{q});
 - (II) $n_P = \sqrt{q}$, γ acts trivially on Fix(P) (i.e. Fix(γ) \supseteq Fix(P)); or
 - (III) $n_P = \sqrt{q}$, γ induces a Baer collineation of Fix(P) (i.e. Fix(P, γ) is a subplane of order $q^{1/4}$).

To see this, note firstly that γ cannot induce a homology on $\operatorname{Fix}(P)$ (for otherwise its centre would be fixed by N, contrary to (3)). Secondly if $n_P = q$, then γ cannot act trivially on $\operatorname{Fix}(P)$ (or else $\operatorname{Fix}(\gamma) = \operatorname{Fix}(P)$, but then since $\gamma^{\tau} \equiv \gamma \mod K$ we obtain $\operatorname{Fix}(P^{\tau}) = \operatorname{Fix}(\gamma^{\tau}) = \operatorname{Fix}(\gamma) = \operatorname{Fix}(P)$, i.e. a Baer subplane of Π is fixed pointwise by $\langle P^{\tau}, P \rangle = G'$, contradicting (2)). This gives (7), and as a corollary,

(8) q is a square; in particular $q \equiv 1 \mod 8$.

Next we show that

(9) in case (7,II) we have $q \notin \{9, 25, 121\}$.

For suppose that case (7,II) occurs with q = 121. Now Fix(P) is of order 11, and by (6) the group induced by N on Fix(P) is abelian of order dividing $2^5 \cdot 3^2 \cdot 5^2$. If $g \in N$ induces an involutory collineation of Fix(P), then g induces a homology of Fix(P) whose centre is fixed by N, contrary to (3).

Suppose that $g \in N$ induces a collineation of order 5 on Fix(P). Since N = CZP, we may assume that $g \in CZ = N_G(P) \cap N_G(P^{\tau})$. By (3), Fix(P, g) must be a triangle with vertices X_0, X_1, X_2 , say. Since Fix(P), Fix(P^{τ}) are disjoint Baer subplanes of Fix(γ), there is a unique point Y_j of Fix(P^{τ}) on the line $X_j X_{j+1}, j = 0, 1, 2$ (subscripts modulo 3). Now g leaves Fix(P^{τ}) invariant and so fixes Y_0, Y_1, Y_2 . But g induces a triangular collineation of Fix(P^{τ}) (for otherwise g acts trivially on the subplane generated by Fix(P^{τ}) $\cup \{X_0, X_1, X_2\}$, i.e. on Fix(γ), contradicting the assumption that g acts nontrivially on Fix(P)). Also, g^{τ} induces a triangular collineation of Fix(P^{τ}); namely, Fix(P^{τ}, g^{τ}) is the triangle $X_0^{\tau} X_1^{\tau} X_2^{\tau}$. Since the actions of g, g^{τ} on Fix(P^{τ}) commute, we must have $\{X_0^{\tau}, X_1^{\tau}, X_2^{\tau}\} = \{Y_0, Y_1, Y_2\}$. But this means that the triangle $X_0^{\tau} X_1^{\tau} X_2^{\tau}$ is inscribed in the distinct triangle $X_0 X_1 X_2$, and by applying τ we see that the triangle $X_0 X_1 X_2$ is likewise inscribed in $X_0^{\tau} X_1^{\tau} X_2^{\tau}$, which is absurd.

Hence the group induced by N on Fix(P) has order dividing 9, and so N fixes at least one of the 133 points of Fix(P), contradicting (3).

The cases q = 9, 25 are eliminated with much less difficulty, as the reader may verify, and in any case (9) holds.

(10) N has no orbit of length 3 on the points (or lines) of Fix(P).

For suppose that $\{X_0, X_1, X_2\}$ are three points of Fix(P) which form an orbit under N. By (3) these three points are not collinear, and hence form a triangle. By (6) these three points have the same stabilizer N_0 in N. Now $N_0 \supseteq KP$, $[N:N_0] = 3$ and (6) gives $p \neq 3$. Since N is the unique maximal subgroup of G containing N_0 , we have $N_0 = G_{X_0}$, $|X_0^G| = 3(q+1)$. Let $y \in N \setminus N_0$, and by proper choice of subscripts, we may assume that $X_j^y = X_{j+1}, j = 0, 1, 2$ (subscripts modulo 3). Since N = CZP, we may assume that $y \in CZ = N_G(P) \cap N_G(P^{\tau})$. Since $\tau \in N_G(\langle y \rangle)$, $\{X_0^{\tau}, X_1^{\tau}, X_2^{\tau}\}$ is also a $\langle y \rangle$ -orbit forming the vertices of a triangle. We claim that $\{X_0, X_1, X_2, X_0^{\tau}, X_1^{\tau}, X_2^{\tau}\}$ is an arc. If not then by symmetry, we may suppose that some point of $\{X_0^{\tau}, X_1^{\tau}, X_2^{\tau}\}$ lies on the line X_0X_1 , and the action of y shows that the triangle $X_0^{\tau}X_1^{\tau}X_2^{\tau}$ is inscribed in the triangle $X_0X_1X_2$. But then an application of τ shows that $X_0X_1X_2$ is likewise inscribed in $X_0^{\tau}X_1^{\tau}X_2^{\tau}$, which is absurd. Hence $\{X_0, X_1, X_2, X_0^{\tau}, X_1^{\tau}, X_2^{\tau}\}$ is a 6-arc as claimed.

By (5) we may choose three distinct collinear points $Y_0, Y_1, Y_2 \in X_0^G$. Let P_j be the (unique) Sylow p-subgroup of G fixing Y_j , j = 0, 1, 2. The previous paragraph shows that we cannot have $P_0 = P_1 \neq P_2$. Of course we cannot have $P_0 = P_1 = P_2$ (since the three points of X_0^G belonging to Fix (P_0) form a triangle). Hence P_0 , P_1 , P_2 are distinct. We may assume that $P_0 = P$, $Y_0 = X_0$, $P_1 = P^{\tau}$. For every $g \in N$ whose order is not divisible by 3, (6) yields $g \in N_0$. Choosing involutions $\tau_j \in (N_{G'}(P_j) \cap N_{G'}(P_{j+1})) \setminus Z$, j = 0, 1, 2 (subscripts modulo 3), this means that $Y_j^{\tau_j} = Y_j, Y_{j+1}^{\tau_j} = Y_{j+1}$. (Note that (8) guarantees the existence of such involutions τ_j .) Therefore the line l joining Y_0 , Y_1, Y_2 is fixed by $\tau_j \tau_{j+1} \in P_{j+1} \setminus 1, j = 0, 1, 2$ (note that τ_j, τ_{j+1} both invert each element of P_{j+1} , so that $\tau_j \tau_{j+1} \in C_{G'}(P_{j+1}) = P_{j+1}$). We have the stabilizers $(P_0)_l \neq 1$, $(P_1)_l \neq 1$; however $(P_0)_l \subsetneq P_0$ and $(P_1)_l \subsetneq P_1$, for otherwise l is fixed by G', contradicting (2). Hence either case (I) or (II) of (7) occurs, and $|(P_0)_l| = |(P_1)_l| = \sqrt{q}$. Writing $S = \langle (P_0)_l, (P_1)_l \rangle \subseteq G_l$, we have $S \subsetneq G' \cong SL(2,q)$ and so the classification of subgroups of SL(2,q) (see [34]) gives $S \cong SL(2,\sqrt{q})$. The stabilizer $(P_0)_{Y_1} = 1$; for otherwise Y_1 is fixed by $\langle P_1, (P_0)_{Y_1} \rangle = G'$, contrary to (2). Hence *l* contains at least $\sqrt{q} + 1$ members of X_0^G , namely $\{Y_0\} \cup \{Y_1^g : g \in (P_0)_l\}$. On the other hand, if $Y_3 \in X_0^G$ lies on l, and P_3 is the unique Sylow p-subgroup of G fixing Y_3 , then the previous argument shows that $|(P_3)_l| = \sqrt{q}$ and $(P_3)_l \in \text{Syl}_p(S)$. Since S has only $\sqrt{q} + 1$ Sylow p-subgroups, this means that *l* carries exactly $\sqrt{q} + 1$ points of X_0^G .

Now consider the lines $l_j = X_0 X_j^{\tau}$, j = 0, 1, 2. Let k_j be the number of points of X_0^G on l_j , and let r_j be the number of lines of l_j^G through X_0 . We have seen that $k_j \in \{2, \sqrt{q}+1\}$ for j = 0, 1, 2 and that at least one of k_0, k_1, k_2 equals $\sqrt{q}+1$. There are three cases to consider:

- (a) $l_0^G = l_1^G = l_2^G;$
- (b) l_0^G, l_1^G, l_2^G are mutually distinct; or
- (c) two of l_0^G , l_1^G , l_2^G coincide and the third is distinct.

We shall examine each of these cases in turn, by counting in two different ways each of the quantities

$$n_{1} = \left| \left\{ (X, l) \in X_{0}^{G} \times l_{j}^{G} : X \in l_{j} \right\} \right|,$$

$$n_{2} = \left| \left\{ (X, Y) \in X_{0}^{G} \times X_{0}^{G} : X \neq Y, \ XY \in l_{j}^{G} \right\} \right|$$

where we now fix a subscript j such that $k_j = \sqrt{q} + 1$. In case (a), $k_0 = k_1 = k_2 = \sqrt{q} + 1$ and we obtain

$$n_1 = 3(q+1)r_0 = |l_0^G| k_0,$$

$$n_2 = 3(q+1) \cdot 3q = |l_0^G| k_0(k_0 - 1);$$

hence $r_0 = 3\sqrt{q}$ and our expression for n_1 yields $\sqrt{q} + 1 | 9\sqrt{q}(q+1)$ so that $\sqrt{q} + 1 | 18$ which yields q = 25, contrary to (9).

In case (b) we obtain

$$n_1 = 3(q+1)r_j = |l_j^G| k_j,$$

$$n_2 = 3(q+1)q = |l_j^G| k_j(k_j-1);$$

hence $r_j = \sqrt{q}, \sqrt{q} + 1 | 3\sqrt{q}(q+1)$ which leads to a contradiction as in (a).

In case (c) we may assume that l_j^G coincides with precisely one of l_{j+1}^G , l_{j+2}^G (subscripts modulo 3); for otherwise $l_j^G \neq l_{j+1}^G = l_{j+2}^G$ and so n_1 , n_2 are precisely as in (b), a contradiction. Therefore we have

$$n_1 = 3(q+1)r_j = |l_j^G| k_j,$$

$$n_2 = 3(q+1) \cdot 2q = |l_j^G| k_j(k_j-1);$$

hence $r_j = 2\sqrt{q}, \sqrt{q}+1 \mid 6\sqrt{q}(q+1)$ so that $\sqrt{q}+1 \mid 12, q \in \{9, 25, 121\}$, again contradicting (9). This completes the proof of (10).

By (7), N acts on a subplane Π_1 of order \sqrt{q} : in case (7, I) we let $\Pi_1 = \text{Fix}(P, \gamma)$; in cases (II), (III) of (7) let $\Pi_1 = \text{Fix}(P)$. By (3), (6), (10) we conclude that no subgroup of N fixes precisely a triangle of Π_1 . By 2.1 this means that

(11) for any $H \leq N$, $\operatorname{Fix}_{\Pi_1}(H)$ is either empty or a (not necessarily proper) subplane of Π_1 .

(Here $\operatorname{Fix}_{\Pi_1}(H)$ denotes $\Pi_1 \cap \operatorname{Fix}(H)$.) Letting D_r be the Sylow *r*-subgroup of CZ for each prime $r \mid q - 1$, we have

(12) D_r fixes pointwise a (not necessarily proper) subplane of Π_1 for $r \neq 3$. The order k_r of this subplane satisfies $r \mid k_r \pm 1$ according as $r \mid \sqrt{q} \pm 1$.

If $\operatorname{Fix}_{\Pi_1}(D_r) = \emptyset$, then $|D_r| | (q-1, q+\sqrt{q}+1)$, i.e. $|D_r| \in \{1, 3\}$, contrary to assumption. Hence by (11), $\operatorname{Fix}_{\Pi_1}(D_r)$ is a subplane of Π_1 . If k_r is its order, we clearly have $r | \sqrt{q} - k_r$ from which (12) follows.

We may factorise N = CZP, $CZ = D_0D_1D_3$ where D_1 is the product of the Sylow *r*subgroups of CZ as *r* ranges over all primes r | q-1 such that $r \equiv 1 \mod 3$, $r^2 - r + 2 \le \sqrt{q}$; and $D_0 \cap D_1D_3 = 1$. We claim that

(13) $\operatorname{Fix}_{\Pi_1}(D_1) = \emptyset.$

If $\operatorname{Fix}_{\Pi_1}(D_0D_1) \neq \emptyset$ then (11) implies that $\operatorname{Fix}_{\Pi_1}(D_0D_1)$ is a subplane of Π_1 , of order k, say. By (3) every point orbit of D_3 on $\operatorname{Fix}_{\Pi_1}(D_0D_1)$ has length 3^e for some $e \geq 1$. But $9 \not| k^2 + k + 1$, so D_3 has at least one point orbit of length 3 on $\operatorname{Fix}_{\Pi_1}(D_0D_1)$, contrary to (10). Therefore $\operatorname{Fix}_{\Pi_1}(D_0D_1) = \emptyset$.

We complete the proof of (13) by induction on the number of prime divisors of $|D_0|$. Accordingly, suppose that $\operatorname{Fix}_{\Pi_1}(D_r D^*) = \emptyset$ where $D^* \leq CZ$ and r is some prime divisor of q-1 such that $r \equiv 2 \mod 3$, or $r \equiv 1 \mod 3$ and $r^2 - r + 2 > \sqrt{q}$. We must show that $\operatorname{Fix}_{\Pi_1}(D^*) = \emptyset$. If not, then (11) implies that $\operatorname{Fix}_{\Pi_1}(D^*)$ is a subplane of Π_1 , of order k, say. Now D_r acts on $\operatorname{Fix}_{\Pi_1}(D^*)$ without fixing any point, so that $r \mid k^2 + k + 1$. Since $r \neq 3$ this means that $\operatorname{GF}(r)$ contains a nontrivial cube root of 1. Hence $r \equiv 1 \mod 3$ and $r^2 - 2 + 2 > \sqrt{q}$. Also since D_r acts nontrivially on Π_1 , (12) implies that $\operatorname{Fix}_{\Pi_1}(D_r)$ is a proper subplane of Π_1 , i.e. its order $k_r < \sqrt{q}$, and $r \mid \sqrt{q} - k_r$. If $k_r^2 = \sqrt{q}$ then $r \mid (q^{1/2} - q^{1/4}, q - 1)$ so that $r \leq q^{1/4} - 1$, violating $r^2 - r + 2 > \sqrt{q}$. Otherwise by 2.3 we have $k_r^2 + k_r + 2 \leq \sqrt{q}$. By (12) we have $r - 1 \leq k_r$ so that $(r - 1)^2 + (r - 1) + 2 \leq \sqrt{q}$, again a contradiction. This completes the induction step, and (13) follows. Combining (12) and (13), we obtain

(14) $|\mathcal{P}_q| \ge 2$, where \mathcal{P}_q is the set of primes $r \mid q-1$ such that $r \equiv 1 \mod 3$ and $r^2 - r + 2 \le \sqrt{q}$.

Denying conclusion (iii) of 1.8, we assume for the remainder of the proof that $q < 10^6$. From factor tables (eg. [1,pp.844,845]) we quickly see that the only values of $q < 10^6$ satisfying (8), (14) are as listed in Table 7B. (Checking is facilitated by the fact that the factorizations of $\sqrt{q} - 1$, \sqrt{q} , $\sqrt{q} + 1$ occupy adjacent entries in the factor tables.)

q	\mathcal{P}_q	q	\mathcal{P}_q
181^{2}	7, 13	701^{2}	7, 13
337^{2}	7, 13	3^{12}	7, 13
379^{2}	7, 19	797^{2}	7, 19
419^{2}	7, 19	883^{2}	7,13
547^{2}	7,13	911^{2}	7,13,19
571^{2}	13, 19	937^{2}	7,13

Table 7B

Suppose first that $q = 883^2$. Then (12), (13) imply that $\operatorname{Fix}_{\Pi_1}(D_7)$, $\operatorname{Fix}_{\Pi_1}(D_{13})$ are disjoint proper subplanes of Π_1 . Hence $k_7, k_{13} \leq \sqrt{883}$; furthermore (12) gives $k_7 \equiv 1$ mod 7, $k_{13} \equiv 12 \mod 13$; 13 | $(k_7^2 + k_7 + 1)$, 7 | $(k_{13}^2 + k_{13} + 1)$ implies $k_7 \equiv 3$ or 9 mod 13, $k_{13} \equiv 2$ or 4 mod 7. Since $k_7 \neq 22$ by the Bruck-Ryser Theorem, we must have $k_7 = 29, k_{13} = 25$. Note that $D_7^{\tau} = D_7$, so that $\operatorname{Fix}_{\Pi_1}(D_7)$, $\operatorname{Fix}_{\Pi_1^{\tau}}(D_7)$ are two subplanes of order 29 interchanged by τ ; they are disjoint, since they are fixed pointwise by P, P^{τ} respectively. Let Π_7 be the subplane generated by $\operatorname{Fix}_{\Pi_1}(D_7)$, $\operatorname{Fix}_{\Pi_7}(D_7)$. Now Π_7 does not meet $\operatorname{Fix}_{\Pi_1}(D_{13})$, and so Π_7 is a proper subplane of $\operatorname{Fix}(\gamma)$. Therefore its order m_7 satisfies $29^2 \leq m_7 \leq 883$. In particular Π_7 is a maximal subplane of Fix(γ), and since Π_7 is fixed pointwise by D_7 while $\operatorname{Fix}(\gamma)$ is not, we have $\operatorname{Fix}(D_7,\gamma) = \Pi_7$. This yields 7 | 883² - m_7 , from which we obtain $m_7 \neq 29^2$, and so $m_7 \geq 29^2 + 29$, $m_7 \in \{875, 882\}$. But τ induces an involutory collineation of Π_7 , and so $m_7 \not\equiv 2 \mod 4$ by [17,Thm.3.2]. Thus $m_7 = 875$ is a non-square, and so τ induces a homology on Π_7 with centre X and axis l, say, both of which are fixed by D_{13} . Let $X_0, X_1, \ldots, X_{875}$ be the points of l in Π_7 , and let $l_0, l_1, \ldots, l_{870}$ be the lines of $\operatorname{Fix}_{\Pi_1}(D_7)$. None of $X_0, X_1, \ldots, X_{875}$ belongs to $\operatorname{Fix}_{\Pi_1}(D_7)$; for instance if $X_0 \in \operatorname{Fix}_{\Pi_1}(D_7)$, then because $X_0^{\tau} = X_0$ we would have X_0 in both $\operatorname{Fix}_{\Pi_1}(D_7)$ and $\operatorname{Fix}_{\Pi_1^{\tau}}(D_7)$, which is impossible. Therefore $l_0, l_1, \ldots, l_{870}$ pass through distinct points of l in Π_7 , so we may assume that $l_j \cap l = X_j$, $j = 0, 1, \ldots, 870$. Since D_{13} acts on $\operatorname{Fix}_{\Pi_1}(D_7)$ without fixing any line, it follows that D_{13} acts on $\{X_0, X_0\}$ X_1, \ldots, X_{870} without fixing any point. Now D_{13} fixes $X, X_{871}, X_{872}, \ldots, X_{875}$, so that $\operatorname{Fix}_{\Pi_7}(D_{13})$ is a subplane of order 4. From the action of τ on Π_7 , we deduce that τ also induces a homology on $\operatorname{Fix}_{\Pi_7}(D_{13})$, contradicting the fact that $\operatorname{Fix}_{\Pi_7}(D_{13})$ has even order. Therefore $q \neq 883^2$.

Suppose that $q = 911^2$. Then D_{19} acts nontrivially on Π_1 (for otherwise $k_{13} \leq \sqrt{911}$, $k_{13} \equiv 1 \mod 13$, and $k_{13} \equiv 2 \text{ or } 4 \mod 7$; this is impossible). Likewise D_{13} acts nontrivially on Π_1 (for otherwise $k_7 \leq \sqrt{911}$, $k_7 \equiv 1 \mod 7$, and $k_7 \equiv 7 \text{ or } 11 \mod 19$; this is impossible). Then $k_{19} \leq \sqrt{911}$, $k_{19} \equiv 18 \mod 19$, and $k_{19} \equiv 3 \text{ or } 9 \mod 13$; impossible. Hence $q \neq 911^2$.

The remaining ten cases in Table 7B are eliminated much more quickly: for some $r \in \mathcal{P}_q$, the necessary conditions on k_r prove to be inconsistent.

8. Proof of Theorem 1.9

Suppose that we are given a counterexample. Consider the following subgroups and elements of G, as represented by matrices in SL(2,q):

$$P = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} : a \in \mathrm{GF}(q) \right\} \in \mathrm{Syl}_p(G),$$

$$\tau = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

$$D = \left\{ \mathrm{diag}(d, d^{-1}) : d \in \mathrm{GF}(q) \setminus \{0\} \right\}, \qquad |D| = \frac{1}{2}(q-1),$$

$$N = \mathrm{N}_G(P) = PD, \qquad N^{\tau} = \mathrm{N}_G(P^{\tau}) = P^{\tau}D.$$

Mimicking the proof of 1.8, we obtain

- (2') G acts irreducibly on Π ;
- $(3') \qquad \operatorname{Fix}(PD) = \emptyset;$
- (4') Fix(P) is a subplane of order q.

Note that Theorem 6.2 applies in view of Lemma 3.1(ii).

(6') D acts faithfully on Fix(P).

For if $g \in D \setminus 1$ acts trivially on $\operatorname{Fix}(P)$ then $\langle g^{\tau} \rangle = \langle g \rangle$ implies $\operatorname{Fix}(P) = \operatorname{Fix}(g) = \operatorname{Fix}(g^{\tau}) = \operatorname{Fix}(P^{\tau})$, contrary to (2').

$$(8') \qquad q \equiv 3 \mod 4.$$

For otherwise D contains an involution γ and we conclude as in (7) that q is a square.

(10') D has no orbit of length 3 on the points (or lines) of Fix(P).

The proof of (10') is a much shorter variation of the proof of (10), since q is not a square.

(7)
$$au$$
 is a Baer collineation of Π .

For suppose that τ is a homology of Π . If $g \in D \setminus 1$ then $g = g\tau \cdot \tau$ is the product of two involutions, so by 2.6, g is a generalized perspectivity of Π , and in fact a generalized homology since $|\langle g \rangle| \left| \frac{1}{2}(q-1) \right|$. But by (3'), (10') and 2.1 we have $\operatorname{Fix}(P,g) = \emptyset$. Thus Dacts semiregularly on the points of $\operatorname{Fix}(P)$ and $|D| = \frac{1}{2}(q-1) \left| q^2 + q + 1$ so that $q \in \{3, 7\}, |D| \in \{1, 3\}$ contrary to (3'), (10'). This gives (7').

 $(8'') \qquad q \equiv 3 \bmod 8.$

For otherwise (8') gives $q \equiv 7 \mod 8$ and G contains an element g such that $g^2 = \tau$, violating Lemma 2.5(ii) of [28].

Again as in the proof of 1.8 we obtain

(11') If $1 \neq H \leq D$ then Fix(*PH*) is either empty or a proper subplane of Fix(*P*).

Let D_r be the Sylow r-subgroup of D, for each prime $r \mid \frac{1}{2}(q-1)$.

(12') Fix (PD_r) is a proper subplane of Fix(P) whenever $3 \neq r \left| \frac{1}{2}(q-1) \right|$. The order k_r of this subplane satisfies $r \left| k_r - 1 \right|$.

If $\operatorname{Fix}(PD_{p_1}D_{p_2}\cdots D_{p_e}) \neq \emptyset$ for some distinct primes p_1, p_2, \ldots, p_e dividing $\frac{1}{2}(q-1)$ then $\operatorname{Fix}(PD_{p_1}D_{p_2}\cdots D_{p_e})$ is a subplane which we call $\prod_{p_1,p_2,\ldots,p_e}$ of order k_{p_1,p_2,\ldots,p_e} . We factorise $D = D_0D_1D_3$ where

$$\begin{aligned} D_1 &= \prod_{r \in \mathcal{P}_q} D_r, \qquad D_0 \cap D_1 D_3 = 1, \\ \mathcal{P}_q &= \big\{ r \, \big| \, \frac{1}{2} (q-1) : r \text{ is a prime}, \, r \equiv 1 \mod 3, \, r^2 - r + 2 \leq q \big\}. \end{aligned}$$

Once again imitating the proof of 1.8 we have

(13')
$$\operatorname{Fix}(PD_1) = \emptyset;$$

$$(14') \qquad |\mathcal{P}_q| \ge 2.$$

By (14'), (8") and [1,pp.844–853], q is one of 547, $11^3=1331$, 1483, 2003, 2731, 3011, 3907, 4219, 4523, 4691. In each case $|\mathcal{P}_q| = 2$ and so $r \mid k_s^2 + k_s + 1 \leq q-1$, $s \mid k_r^2 + k_r + 1 \leq q-1$, $r \mid k_r - 1$, $s \mid k_s - 1$ where $\mathcal{P}_q = \{r, s\}$. This narrows the possibilities to those given in Table 8A.

q	$\frac{1}{2}(q-1)$	r	k_r	s	k_s
3011	5.7.43	7	36	43	44
3907	$3^2 \cdot 7 \cdot 31$	7	36	31	32
4523	$7 \cdot 17 \cdot 19$	7	64	19	39 or 58

TABLE 8A

If q = 3011 then $5 \not\mid k_7^2 + k_7 + 1$ and so $\operatorname{Fix}(PD_7D_5) \neq \emptyset$, $5 \mid k_7 - k_{5,7}, k_{5,7} \neq 6$ so that $\Pi_{5,7} = \Pi_7$. But D_5 also fixes some point of Π_{43} so that $\Pi_7 \subsetneq \Pi_5$, $36^2 \le k_5 < \sqrt{3011}$, a contradiction.

If q = 3907 then $3 \not\mid k_7^2 + k_7 + 1$ and so $\operatorname{Fix}(PD_7D_3) \neq \emptyset$; $31 \mid k_{3,7}^2 + k_{3,7} + 1$, $3 \mid k_7 - k_{3,7}$ yields $k_{3,7} = 36$, $\Pi_7 \subseteq \Pi_3$. Since $k_7^2 > \sqrt{q}$ we have $\Pi_7 = \Pi_3$; but D_{17} fixes some point of Π_{31} , a contradiction. The same argument eliminates the case q = 4523.

9. Proof of Theorems 1.3,5

The following assertions, (15) through (17), pertain to the proofs of Theorems 1.3 and 1.5(a),(b). Let $\tau, \tau', Z_{\tau}, \mu, Q, P$ be as in §4 for $G \cong PSL(3,q)$, or as in §5 for $G \cong PSU(3,q)$.

We first suppose that τ is a homology of Π . If τ , τ' have the same centre X and axis l, then (X, l) is invariant under $\langle C_G(\tau), C_G(\tau') \rangle = G$ and so G consists of (X, l)-homologies of Π . Since $|G| \not| q^4 - 1$ this cannot occur. However τ and τ' commute, so they must have distinct centres and axes (see Prop. 2.4(i) of [28]). By [23,Thm.C(i),(iii)] the remaining conclusions follow. Therefore we may assume that

(15) Fix(τ) is a subplane of order q^2 ,

and derive a contradiction. Let K_{τ} denote the kernel of the action of $C_G(\tau)$ on $Fix(\tau)$, and for $H \leq C_G(\tau)$ let \overline{H} denote its image in $\overline{C_G(\tau)} = C_G(\tau)/K_{\tau}$, so that \overline{H} is the collineation group induced by H on $Fix(\tau)$. By $Fix(\overline{H})$ we shall mean the substructure consisting of all points and lines of $Fix(\tau)$ which are fixed by \overline{H} , i.e. $Fix(\overline{H}) = Fix(\tau, H)$. We show that

(16)
$$K_{\tau} \cap C_G(\tau)' = \langle \tau \rangle$$
, i.e. $\langle \tau \rangle \subseteq K_{\tau} \subseteq Z_{\tau}$; and

(17) G acts irreducibly on Π .

(Observe the equivalence of the two formulations of (16): if $K_{\tau} \cap C_G(\tau)' = \langle \tau \rangle$ then by considering quotients in $C_G(\tau)/Z_{\tau} \cong PGL(2,q)$ we obtain $K_{\tau} \subseteq Z_{\tau}$. The converse is immediate.)

Assume first that q > 3. We suppose that (16) fails. Since $\langle \tau \rangle \subsetneq K_{\tau} \cap C_G(\tau)' \trianglelefteq C_G(\tau)'$ and $C_G(\tau)'/\langle \tau \rangle \cong PSL(2,q)$ is simple, we have $K_{\tau} \supseteq C_G(\tau)'$. By 4.1(vi), 5.1(vi), 5.4 there exist involutions $\tau_1, \tau_2 \in G$ such that $\langle C_G(\tau_1)', C_G(\tau_2)' \rangle = G$ and $C_G(\tau_1)' \cap C_G(\tau_2)'$ contains some $g \neq 1$. Now Fix(g) is a Baer subplane of II fixed pointwise by $\langle C_G(\tau_1)', C_G(\tau_2)' \rangle = G$, contrary to 2.4. This gives (16). If $G \cong PSL(3,q)$ then $C_G(\tau)$ acts irreducibly on Fix(τ) by 4.1(v) and Theorem 1.8, which yields (17). If $G \cong PSU(3,q)$, $q \neq 5$, 9 then $\overline{C_G(\tau)'} \cong PSL(2,q)$ acts irreducibly on Fix(τ) by Theorem 1.7, again yielding (17). For $G \cong PSU(3,5)$ or PSU(3,9) we have $|\overline{Z_{\tau}}|$ divides $(q+1)/2\mu, \mu = (q+1,3)$; but if $\overline{Z_{\tau}} = 1$ then $\overline{C_G(\tau)} \cong PGL(2,q)$ acts irreducibly on Fix(τ) by Theorem 1.8, which yields (17). We may therefore assume that $G \cong PSU(3,9), |\overline{Z_{\tau}}| = 5$, and note that $Fix(\overline{Z_{\tau}})$

is invariant under $\overline{C_G(\tau)}$. If $\operatorname{Fix}(\overline{Z_{\tau}})$ is a subplane of $\operatorname{Fix}(\tau)$ (necessarily proper since $\overline{Z_{\tau}} \leq \operatorname{Aut} \operatorname{Fix}(\tau)$) then $\operatorname{Fix}(\overline{Z_{\tau}})$ is of order 4 or 9 by Theorem 3.3, which is impossible since $5 \not| 9^2 - 4, 5 \not| 9^2 - 9$. Otherwise $\overline{Z_{\tau}}$ induces a generalized homology group of order 5 on $\operatorname{Fix}(\tau)$ and $\overline{C_G(\tau)'}$ fixes an antiflag in $\operatorname{Fix}(\tau)$, contrary to Theorem 1.7.

Now suppose that q = 3. Since (17) is included in the hypothesis for $G \cong PSL(3,3)$, we prove (17) for $G \cong PSU(3,3)$. If G fixes a line l of II then let w be the number of orbits of G on the points of l and let G_1, G_2, \ldots, G_w be the respective stabilizers of point representatives from these orbits. Using (9) of [28] we compute $F_{\nu}(\tau)$, the number of points of l fixed by τ in the ν -th orbit, $\nu = 1, 2, \ldots, w$. Since $[G:G_{\nu}] \leq 82$, Mitchell's list [26,p.241] restricts such G_{ν} to be among the types listed in Table 9A.

Type	Type in Mitchell's list	$ G_{\nu} $	$[G:G_{\nu}]$	$F_{\nu}(\tau)$	$G_{ u}$
1		6048	1	1	G
2	2	96	63	7	$\mathrm{C}_G(au)$
3	3	96	63	3	$N_G(\langle \tau, \tau' \rangle)$
4	9	168	36	12	$\mathrm{PSL}(2,7)$
5	1	216	28	4	$N_G(Q)$
6		108	56	8	subgroup of $N_G(Q)$

TABLE 9A

If l contains n_i point orbits of type i, i = 1, 2, ..., 6 then

$$\sum_{\nu=1}^{w} [G:G_{\nu}] = n_1 + 63(n_2 + n_3) + 36n_4 + 28(n_5 + 2n_6) = 82,$$
$$\sum_{\nu=1}^{w} F_{\nu}(\tau) = n_1 + 7n_2 + 3n_3 + 12n_4 + 4(n_5 + 2n_6) = 10,$$

which has no simultaneous solution in non-negative integers $\{n_i\}$. By contradiction, this proves (17).

Suppose that (16) fails for q = 3. Then $K_{\tau} \supseteq O_2(C_G(\tau))$, a quaternion group of order 8. Now τ' induces a collineation of order at most 2 on Fix (τ) , so τ' fixes a point X of Fix (τ) . By 5.1(ix) we may choose an involution $\tau'' \in C_G(\tau)$ such that $\tau'\tau'' \in O_2(C_G(\tau))$, $[\tau', \tau''] \neq 1$ so that τ'' also fixes X. But then X is fixed by $\langle O_2(C_G(\tau')), O_2(C_G(\tau'')) \rangle = G$ by 5.1(viii), contrary to (17). This completes the proof of (16).

Proof of Theorem 1.3 (concluded), in which $G \cong PSL(3, q)$. We may suppose that τ , P_0 , P_1 are as in §4.

(18) $\operatorname{Fix}(C_G(\tau)P_0), \operatorname{Fix}(C_G(\tau)P_1)$ are not both empty.

For suppose that $\operatorname{Fix}(\operatorname{C}_G(\tau)P_0) = \operatorname{Fix}(\operatorname{C}_G(\tau)P_1) = \emptyset$. Clearly $\operatorname{Fix}(P_i)$ is neither empty nor a triangle, so by 2.1, P_i is planar, i = 0, 1. Now τ does not induce a homology on $\operatorname{Fix}(P_i)$; otherwise (since $P_i\langle\tau\rangle \triangleleft \operatorname{C}_G(\tau)P_i$) its centre would be fixed by $\operatorname{C}_G(\tau)P_i$. Hence $\operatorname{Fix}(\tau, P_i)$ is a subplane, i = 0, 1. By (16), $\operatorname{C}_G(\tau)'$ induces $\operatorname{PSL}(2, q)$ on $\operatorname{Fix}(\tau)$, leaving invariant the subplanes $\operatorname{Fix}(\tau, P_0)$, $\operatorname{Fix}(\tau, P_1)$. If $q \notin \{5, 9\}$ then the latter two subplanes of $\operatorname{Fix}(\tau)$ are disjoint by 4.2(i), violating Corollary 5.2(iv) of [28]. Indeed the same contradiction is obtained for $q \in \{5, 9\}$. (Clearly the orders of $\operatorname{Fix}(P_0)$, $\operatorname{Fix}(\tau, P_0)$ are divisible by p; in particular $\operatorname{Fix}(\tau, P_0)$ is not of order 4. By Theorem 3.3, the additional hypothesis required in [28, \operatorname{Cor.5.2}] is satisfied.) This gives (18).

By 4.2(ii),(iii) we may assume that X is a point of Π such that $G_X = C_G(\tau)P_0$, $|X^G| = q^2 + q + 1$. By (17) the points of X^G are not collinear.

(19) X^G is not an arc.

For suppose that X^G is an arc. Clearly P_0 fixes q + 1 points of X^G . (This is evident from the proof of 4.2(iv), in which P_0 fixes exactly q + 1 points of Σ .) Therefore P_0 is planar, and since $C_G(\tau)$ acts transitively on $P_0 \setminus 1$ by conjugation, Theorem 6.2 shows that Fix(g)is a Baer subplane, given any $g \in P_0 \setminus 1$. But Fix(g) contains only q + 1 points of X^G , so let $Y \in X^G$ be outside Fix(g) and let l be the unique line of Fix(g) containing Y. Then l carries $p \ge 3$ points of X^G , which gives (19). Therefore 4.2(iv) yields

(20) G leaves invariant a Desarguesian subplane Π_0 of order q, on which G acts faithfully.

If X is the centre of the homology induced by τ on Π_0 , then $C_G(\tau)$ acts on $Fix(\tau)$, fixing X, contrary to 4.1(v) and Theorem 1.8.

Proof of Theorem 1.5(a) concluded,, in which $G \cong \text{PSU}(3,q), q \neq 5$, 11. We have $\text{Fix}(\overline{g}) = \text{Fix}(\overline{\tau'})$ for all $g \in K_{\tau'} \setminus 1$, since $\text{Fix}(g) = \text{Fix}(\tau')$. Also since $Z_{\tau'} \cap K_{\tau} \subseteq Z_{\tau'} \cap Z_{\tau} = 1$ by (16), we have $\overline{Z_{\tau'}} \cong Z_{\tau'} \cong Z_{\tau}$ is cyclic of order $(q+1)/\mu$, and $\overline{K_{\tau'}} \cong K_{\tau'} \cong K_{\tau}$. In particular $\overline{\tau'} \neq 1$.

(21)
$$K_{\tau} = \langle \tau \rangle, \qquad |\overline{Z_{\tau}}| = \frac{q+1}{2\mu} > 1.$$

If $\overline{\tau'}$ is a Baer involution of Fix(τ) then using 2.4 and (16), $|\overline{K_{\tau'}}| = |K_{\tau'}| = |K_{\tau}|$ divides $(q(q-1), (q+1)/\mu) = 2$, which yields (21).

Otherwise $\overline{\tau'}$ is a homology of Fix (τ) . Let $e = |K_{\tau}|$ and suppose that e > 2. By 5.1(vii) we may suppose that $\tau', \tau'' \in C_G(\tau)$ are involutions such that $\langle K_{\tau'}, K_{\tau''} \rangle \supseteq C_G(\tau)'$. Now a point X of Fix (τ) common to the axes of $\overline{\tau'}, \overline{\tau''}$ is fixed by $\langle \overline{K_{\tau'}}, \overline{K_{\tau''}} \rangle \supseteq \overline{C_G(\tau)'} \cong$ PSL(2, q), contrary to Theorem 1.7. (Recall that the exceptional cases (iii), (iv) of 1.7 do not occur if PSL(2, q) contains involutory homologies.) This concludes the proof of (21).

(22) Fix(\overline{g}) is not a subplane of Fix(τ), for any $\overline{g} \in \overline{Z_{\tau}} \setminus 1$.

For suppose that $\operatorname{Fix}(\overline{g})$ is a (necessarily proper) subplane of $\operatorname{Fix}(\tau)$ for some $\overline{g} \in \overline{Z_{\tau}} \setminus 1$. Since $\operatorname{Fix}(\overline{g})$ is invariant under $\overline{C_G(\tau)}$, Corollary 5.2(v) of [28] implies that $|\overline{Z_{\tau}}| = (q+1)/2\mu$ divides q(q-1), i.e. $q \in \{3, 5, 11\}$. (If q = 9 then $|\overline{Z_{\tau}}| = 5 \not| 81 - 4$ so that $\operatorname{Fix}(\overline{g})$ is not of order 4; by Theorem 3.3, the additional hypothesis required in [28,Cor.5.2] is satisfied.) By hypothesis this means that q = 3, $\overline{C_G(\tau)'} \cong A_4$, $\operatorname{Fix}(\tau)$ is either Desarguesian or a Hughes plane of order 9 (see Prop. 2.7 of [28]), and $\overline{C_G(\tau)}$ leaves invariant an oval \mathcal{O} (i.e. quadrangle) of the subplane $\operatorname{Fix}(\overline{Z_{\tau}})$ of order 3. The group of all collineations of $\operatorname{Fix}(\tau)$ leaving \mathcal{O} invariant is isomorphic to $S_4 \times H$, where H fixes $\operatorname{Fix}(\overline{g})$ pointwise and $H \cong C_2$ or S_3 according as $\operatorname{Fix}(\tau)$ is Desarguesian or Hughes. (See [32], [24,Cor.5,6] for the collineation groups of the Hughes planes.) In neither case does $S_4 \times H$ contain a subgroup isomorphic to $\overline{C_G(\tau)} = C_G(\tau)/\langle \tau \rangle$. (Lemma 5.1(iii) yields $\overline{C_G(\tau)} \cong A_4 \rtimes \langle \theta \rangle$ where θ is an automorphism of A_4 of order 4. Any subgroup of $S_4 \times H$ of order 48 is isomorphic to $S_4 \times C_2$ or $D_8 \times S_3$, where D_8 is dihedral of order 8. However, since θ permutes regularly the four Sylow 3-subgroups of A_4 , it is easily seen that $\overline{C_G(\tau)}$ has no subgroup isomorphic to S_3 .)

(23) $\overline{Z_{\tau}}$ acts semiregularly on the points and lines of Fix(τ).

For if q = 9, (21) gives $|\overline{Z_{\tau}}| = 5$ and by (22) it is clear that $\overline{Z_{\tau}}$ is a generalized homology group of the subplane $\operatorname{Fix}(\tau)$ of order 81. Since $\overline{C_G(\tau)'}$ leaves invariant $\operatorname{Fix}(\overline{Z_{\tau}})$, it fixes at least an antiflag in $\operatorname{Fix}(\tau)$, contrary to Theorem 1.7.

Otherwise $q \neq 5$, 9 and Theorem 1.7 implies that $\overline{C_G(\tau)'}$ fixes no point or line of Fix(τ). If (23) is false then by (22) and 2.1, Fix(\overline{g}) is a triangle invariant under $\overline{C_G(\tau)'}$, for some $\overline{g} \in \overline{Z_\tau} \setminus 1$. But then Theorem 1.7 gives q = 3, and (21) gives $|\overline{Z_\tau}| = 2$ so that \overline{g} is an involution, which can never be triangular. Therefore (23) must hold.

Now $|\overline{Z_{\tau}}| = (q+1)/2\mu$ divides $q^4 + q^2 + 1 = (q^2 - 1)(q^2 + 2) + 3$, and since $q \neq 5$ by hypothesis, we have q = 17. By Theorem 1.9 and duality, we may assume that $\overline{C_G(\tau)'}$ has a point orbit $\mathcal{O} \subset \operatorname{Fix}(\tau)$ which is an 18-arc. Let $\overline{h} \in \overline{C_G(\tau)'}$ have order 17, and let $X \in \mathcal{O}$ be the unique point of \mathcal{O} fixed by \overline{h} . We have $\overline{Z_{\tau}} = \langle \overline{g} \rangle \cong C_3$, and (23) implies that $\{X, X^{\overline{g}}, X^{\overline{g}^2}\}$ is a triangle. But \overline{h} fixes $X, X^{\overline{g}}, X^{\overline{g}^2}$ and so \overline{h} is a Baer collineation of Fix (τ) . But \overline{h} acts transitively on $\mathcal{O} \setminus \{X\}$ which is a 17-arc in Fix (τ) , whereas any point orbit of a Baer collineation consists of collinear points, a contradiction. Proof of Theorem 1.5(b) concluded, in which $G \cong PSU(3, q), q \in \{5, 11\}$. We have

(24)
$$\operatorname{Fix}(\operatorname{N}_G(Q)) \neq \emptyset.$$

For suppose that $\operatorname{Fix}(N_G(Q)) = \emptyset$. Clearly $\operatorname{Fix}(Q)$ is neither empty nor a triangle, so by 2.1, $\operatorname{Fix}(Q)$ is a subplane of Π . By Theorem 6.1, $[Q:Q_0] < n_P \leq q^2$ where n_P is the order of $\Pi_P = \operatorname{Fix}(P)$ and Q_0 is the kernel of the action of Q on Π_P . Thus $P \subsetneq Q_0 \triangleleft \operatorname{N}_G(Q)$, so by 5.2(ii) we have $Q_0 = Q$, i.e. $\operatorname{Fix}(Q) = \Pi_P$. Let $y \in Q \setminus P$, and let n_P, n_y be the respective orders of the subplanes Π_P , $\operatorname{Fix}(y)$. Since q is prime, P acts semiregularly on the set of points of l outside Π_P , where l is a given line of Π_P , so that $q \mid q^4 - n_P$, i.e. $q \mid n_P$. If $n_y = n_P$ then Q acts semiregularly on the points of l outside Π_P , and $q^3 \mid q^4 - n_P$, contradicting $n_P \leq q^2$. Hence $q^2 \leq n_P^2 \leq n_y \leq q^2$, and we have equality: $n_P = q$, $n_y = q^2$.

Since Q acts trivially on Π_P , and by 5.2(i), 5.4, the collineation group \overline{N} (say) induced by $N_G(Q)$ on Π_P is cyclic of order dividing $(q^2 - 1)/\mu$. If q = 5 then $|\overline{N}| | 8$ and clearly \overline{N} fixes a point of Π_P . Hence we may assume that q = 11, $|\overline{N}| | 40$. If $2 | |\overline{N}|$ then \overline{N} contains a homology of Π_P , whose centre is fixed by \overline{N} . Otherwise $|\overline{N}| | 5$ and \overline{N} fixes at least 3 of the $11^2 + 11 + 1$ points of Π_P . This proves (24).

By (24) and duality we may assume that G has a point orbit \mathcal{O} of length $q^3 + 1$. By 5.3(ii) and (17), \mathcal{O} is either an oval or a unital embedded in Π . But if \mathcal{O} is a unital then τ fixes exactly q + 1 collinear points of \mathcal{O} , whose common line is fixed by $C_G(\tau)$, and so $C_G(\tau)'$ acts reducibly on the subplane $Fix(\tau)$, and by 1.7 we have $q \neq 11$ in this case.

Proof of Theorem 1.5(c), in which $G \cong PGU(3,q)$. Mimicking the proof of 1.5(a), it is clear that

(21')
$$K_{\tau} = \langle \tau \rangle, \qquad |\overline{Z_{\tau}}| = \frac{1}{2}(q+1) > 1$$

and that (22) holds. If $q \neq 5$ then (23) holds and $|\overline{Z_{\tau}}| = \frac{1}{2}(q+1)$ divides $q^4 + q^2 + 1$, a contradiction as before. For the remainder of the proof we may therefore assume that q = 5, $|\overline{Z_{\tau}}| = 3$. Consider the action of $\overline{C_G(\tau)'} \cong PSL(2,5)$ on the subplane Fix (τ) of order 25.

Suppose that $\overline{C_G(\tau)'}$ acts reducibly on $\operatorname{Fix}(\tau)$. By Theorem 1.7, $\overline{C_G(\tau)'}$ fixes an antiflag (X, l) and has orbits $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_4$ of length 5, 5, 6, 10 on l, respectively. Now $\overline{Z_{\tau}}$ fixes all 26 points of l in $\operatorname{Fix}(\tau)$. (For $\overline{Z_{\tau}}$ cannot interchange \mathcal{O}_1 and \mathcal{O}_2 since $|\overline{Z_{\tau}}| = 3$. Thus $\overline{Z_{\tau}}$ leaves each \mathcal{O}_i invariant, i = 1, 2, 3, 4. If $Y \in \mathcal{O}_i$ then Y is the unique point of \mathcal{O}_i fixed by $\overline{C_G(\tau)'}$, so that $\overline{Z_{\tau}}$ fixes Y as claimed.) Let $\overline{g} \in \overline{C_G(\tau)'}$ be an involution. Then \overline{g} fixes 1, 1, 2, 2 points of $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_4$ respectively, so that $\operatorname{Fix}(\overline{g})$ is a subplane of order 5 on which $\overline{Z_{\tau}}$ induces an (X, l)-homology group, contradicting $|\overline{Z_{\tau}}| = 3$.

Hence $\overline{C_G(\tau)'}$ acts irreducibly on $Fix(\tau)$, and by duality we may assume by Theorem 1.9 that $\overline{C_G(\tau)'}$ has a point orbit \mathcal{O} which is a 6-arc. This leads to a contradiction just as in the case PSU(3,17) treated above.

10. The Case PSL(3,3)

We indicate here what happens when the additional hypothesis in Theorem 1.3 for q = 3 is removed. Suppose that Π is a projective plane of order 81 admitting a reducible collineation group $G \cong PGL(3,3) = PSL(3,3)$. We claim that Fix(G) is a subplane of order 3. To see this, suppose that G fixes a line l, and let n_1 be the number of points of l fixed by G. For every maximal subgroup H of G satisfying $[G:H] \leq 82$ we have [G:H] = 13 (type 1 or 2 in the list of Mitchell [26,p.241]) so that $82 \equiv n_1 \mod 13$. However $n_1 \leq 10$ by (15), and so $n_1 = 4$. Dually, every point of Π fixed by G lies on exactly 4 fixed lines. Hence Fix(G) is a subplane of order 3 as claimed.

For the remainder of this paper we assume that Π is a projective plane of order q^4 admitting $G \cong \text{PGL}(3,q)$ fixing pointwise a subplane Π_0 of order q; having $q^2 + q + 1$ point orbits of length $q^4 - q$ (those points outside Π_0 but on some line of Π_0); and with the remaining $q^3(q^3 - 1)(q^2 - 1)$ points of Π forming a regular *G*-orbit. These conditions are satisfied by the Lorimer-Rahilly translation plane in case q = 2. By Theorem 1.3 (see assertion (17), which is also implicit in the statement of Theorem 1.3) the only permissible odd value of q is 3. The case q = 3 cannot yield a translation plane by [20] or [21,Lemma 4.6]; nevertheless to settle this exceptional possibility is a very interesting problem in which the case q = 2 provides some inspiration. We proceed with the highlights, omitting the details.

In any case by our hypothesis there exist flags (X, l), (Y, m) such that the stabilizers $G_X = G_l = 1$, and $G_Y = G_m$ of order $q^2(q^2 - 1)$. Then G_Y acts tangentially transitively on Π relative to the Baer subplane $\operatorname{Fix}(G_Y)$ (in a slight and obvious extension of the terminology of Jha [20]). Furthermore $N_G(G_Y)/G_Y$ is a group of order q(q - 1) acting faithfully on $\operatorname{Fix}(G_Y)$, tangentially transitively relative to $\Pi_0 = \operatorname{Fix}(G)$. If $\{g_1, g_2, \ldots, g_m\}$ is a set of $m = q^2 + q + 1$ representatives of the distinct right cosets of $N_G(G_Y)$ in G, then we may express G as the disjoint union

$$G = \{1\} \cup \left(G_Y^{g_1} \setminus 1\right) \cup \left(G_Y^{g_2} \setminus 1\right) \cup \dots \cup \left(G_Y^{g_m} \setminus 1\right) \cup T$$

where T is a normal subset of size $q(q^3 - q - 1)[q(q^3 - q - 1) - 1]$. If $S = \{g \in G : X^g \in l\}$ then $|S| = q(q^3 - q - 1)$ and every element $t \in T$ is representable uniquely as $t = s_1 s_2^{-1}$ with $s_1, s_2 \in S$. Also every $t \in T$ is representable uniquely as $t = s_3^{-1} s_4$ with $s_3, s_4 \in S$. (Thus S is a sort of 'partial difference set'.)

In case q = 2 with the Lorimer-Rahilly plane, we may identify $G \cong PGL(3, 2)$ with the permutation group $\langle (1234567), (12)(36) \rangle < A_7$, and then (X, l) may be chosen such that $S = \{(1), (1264735), (1274653), (1367425), (1576423), (14)(3756), (16)(2437), (17)(2456), (34)(1752), (45)(1632)\}$. In this case $G_Y \cong A_4$ and T is the union of the conjugacy classes of types 4A, 7A and 7B in the notation of the Atlas [3,p.3].

In case q = 3 we have $G_Y \cong 3^2: Q_8$ where Q_8 is quaternion of order 8. Also $N_G(G_Y)/G_Y \cong S_3$, so that $Fix(G_Y)$ is a Hughes, Hall or dual Hall plane of order 9 (as in the comments following Theorem 6.2). In the Atlas notation [3,p.13], T is the union of the conjugacy classes of types 3B, 6A, 8A, 8B, 13A, 13B, 13C, 13D. A crucial step in the construction of such an exceptional plane of order 81 appears to be finding a subset $S \subset G$ of size 69 satisfying the above 'partial difference set' condition, which remains an open problem.

REFERENCES

- Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 9th printing, Dover, 1970.
- Beth, T., Jungnickel, D. and Lenz, H., Design Theory, Bibliographisches Institut, Zürich, 1985, p.29.
- 3. Conway, J. H. et al, Atlas of Finite Groups, Oxford Univ. Press, 1985.
- Dembowski, P., 'Gruppentheoretische Kennzeichnungen der endlichen desarguesschen Ebenen', Abh. Math. Sem. Univ. Hamburg 29 (1965), 92–106.
- 5. ———, Finite Geometries, Springer-Verlag, Berlin, 1968.
- 6. _____, 'Zur Geometrie der Gruppen $PSL_3(q)$ ', Math. Z. 117 (1970), 125–134.
- 7. Dempwolff, U., 'PSL(3, q) on projective planes of order q^3 ', Geom. Ded. 18 (1985), 101–112.
- Dempwolff, U. and Reifart, R., 'The classification of translation planes of order 16, I', Geom. Ded. 15 No.2 (1983), 137–153.
- Dickson, L. E., Linear Groups with an Exposition of the Galois Field Theory, Dover, New York, 1958.
- 10. Figueroa, R., 'A family of not (V, l)-transitive projective planes of order q^3 , $q \neq 1$ (mod 3) and q > 2', Math. Z. 181 (1982), 471–479.
- 11. Gorenstein, D., Finite Groups, Harper & Row, New York, 1968.
- Hartley, R., 'Determination of the ternary collineation groups whose coefficients lie in the GF(2ⁿ)', Ann. Math. 27 (1926), 140–158.
- Hering, C., 'On the structure of collineation groups of finite projective planes', Abh. Math. Sem. Univ. Hamburg 49 (1979), 155–182.
- Hering, C. and Schäffer, H. J., 'On the new projective planes of R. Figueroa', in: *Combinatorial Theory*, Springer-Verlag Lecture Notes in Mathematics No. 969, 1982, 187–190.
- Hering, C. and Walker, M., 'Perspectivities in irreducible collineation groups of projective planes. II', J. Stat. Plan. Inf. 3 (1979), 151–177.

- 16. Hoffer, A. R., 'On unitary collineation groups', J. Alg. 22 (1972), 211–218.
- Hughes, D. R., 'Generalized incidence matrices over group algebras', Ill. J. Math. 1 (1957), 545–551.
- 18. Hughes, D. R. and Piper, F. C., Projective Planes, Springer-Verlag, New York, 1973.
- 19. Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin, 1967, pp. 191–214.
- Jha, V., 'On tangentially transitive translation planes and related systems', Geom. Ded. 4 (1975), 457–483.
- Jha, V. and Kallaher, M. J., 'On the Lorimer-Rahilly and Johnson-Walker translation planes', Pac. J. Math. 103 No.2 (1982), 409–427.
- Johnson, N. L. and Ostrom, T. G., 'The translation planes of order 16 that admit PSL(2,7)', J. Comb. Theory Ser. A 26 (1979), 127–134.
- Kantor, W. M., 'On the structure of collineation groups of finite projective planes', Proc. Lond. Math. Soc. (3) 32 (1976), 385–402.
- Lüneburg, H., 'Characterizations of the generalized Hughes planes', Can. J. Math. 28 No.2 (1976), 376–402.
- 25. ———, Translation Planes, Springer-Verlag, Berlin, 1980, pp. 193–203.
- Mitchell, H. H., 'Determination of the ordinary and modular ternary linear groups', Trans. Amer. Math. Soc. 12 (1911), 207–242.
- Moorhouse, G. E., 'Unitary and other linear groups acting on finite projective planes', doctoral thesis, University of Toronto, 1987.
- 28. _____, 'PSL(2,q) as a collineation group of projective planes of small order', submitted.
- 29. O'Nan, M. E., 'Automorphisms of unitary block designs', J. Alg. 20 (1972), 495–511.
- 30. Passman, D. S., Permutation Groups, W. A. Benjamin, N. Y., 1968, p.13.
- Robinson, D. J. S., A Course in the Theory of Groups, Springer-Verlag, N. Y., 1982, p.27.
- Rosati, L. A., 'I gruppi di collineazioni dei piani di Hughes', Boll. Un. Mat. Ital. 13 (1958), 505–513.
- 33. ______, 'Sui piani di Hughes generalizzati e i loro derivati', Le Matematiche
 22 (1967), 289–302.

- 34. Suzuki, M., Group Theory I, Springer-Verlag, Berlin, 1982, pp. 392–416.
- Unkelbach, H., 'Eine Charakterisierung der endlichen Hughes-Ebenen', Geom. Ded. 1 (1973), 148–159.

Author's address (after 1989)

G. Eric Moorhouse,Department of Mathematics,University of Wyoming,Laramie, WY 82071–3036,U.S.A.