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PSL(3, q) AND PSU(3, q) ON PROJECTIVE PLANES

OF ORDER q4

ABSTRACT. Let q = pm be an odd prime power.
We show that a projective plane Π of order q4 admitting a collineation group G ∼=

PSL(3, q) or PSU(3, q), has a G-invariant Desarguesian subplane Π0 of order q or q2 re-
spectively, and that G contains involutory homologies of Π (with possible exceptions for
q = 3, 5 or 11).

We also show that a projective plane Π of order q2 admitting a collineation group G ∼=
PSL(2, q) or PGL(2, q), has a G-invariant (q + 1)-arc or dual thereof, for most reasonably
small odd q.

Most of our tools and techniques are known, except seemingly for our results con-
cerning an abelian planar collineation group P of a projective plane Π. These results are
applied here in each of the above situations for P a Sylow p-subgroup of G, and presumably
they will enjoy broader application.

1. RESULTS

Let q = pm be a prime power, m ≥ 1, throughout. It is well known that a projective plane

which admits G ∼= PSL(3, q) as a collineation group is necessarily Desarguesian. (Indeed,

a Sylow p-subgroup of G suffices; see Dembowski [4]). For planes of order q2 or q3, the

following characterizations 1.1,2 are known.

1.1 THEOREM (Unkelbach, Dembowski, Lüneburg). If Π is a projective plane of order

q2 admitting a collineation group G ∼= PSL(3, q), then Π is either Desarguesian or a

generalized Hughes plane. Conversely, any Desarguesian or generalized Hughes plane of

order q2, save the exceptional Hughes plane of order 72, admits PSL(3, q) as a collineation

group.

(For completeness, we indicate a proof of 1.1 in §4, using the results of Unkelbach [35],

Dembowski [6] and Lüneburg [24].) The generalized Hughes planes include the infinite
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family of (ordinary) Hughes planes (one such plane of order q2 for each odd prime power

q), together with the seven exceptional Hughes planes having order 52, 72, 112, 112, 232,

292, 592 respectively (see [24]).

1.2 THEOREM (Dempwolff [7]). If Π is a projective plane of order q3 admitting G ∼=
PSL(3, q), then Π has a G-invariant Desarguesian subplane Π0 of order q on which G acts

faithfully, and G contains elations and involutory homologies of Π. (Some additional orbit

information is obtained in [7].)

The only known occurrences of 1.2 are the Desarguesian planes and the Figueroa

planes [10], [14]. A comparison of the above results shows that as the order of Π is increased

relative to |G|, it becomes increasingly difficult to completely classify the possibilities for

Π to within isomorphism. We go one step further by proving (in §9) the following.

1.3 THEOREM. Suppose that Π is a projective plane of order q4 admitting G ∼= PSL(3, q),

q odd. If q > 3 then the following must hold.

(i) G leaves invariant a Desarguesian subplane Π0 of order q, on which G induces the

little projective group.

(ii) The involutions in G are homologies of Π, and those elements of G which induce

elations of Π0 are elations of Π.

If q = 3 then the same two conclusions must hold, under the additional hypothesis that G

acts irreducibly on Π.

(A collineation group is irreducible if it leaves invariant no point, line or triangle.) In

the same way we try to extend the following well-known result to planes of larger order.

1.4 THEOREM (Hoffer [16]). Suppose that Π is a projective plane of order q2 admitting

a collineation group G ∼= PSU(3, q). Then Π is Desarguesian and there is (to within

equivalence) a unique faithful action of G on Π. G commutes with δ for some hermitian

polarity δ of Π, and so G leaves invariant the corresponding hermitian unital.
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(More is said about hermitian unitals in §5.) The following extension is proven (to-

gether with Theorem 1.3) in §9.

1.5 THEOREM. Suppose that Π is a projective plane of order q4 admitting G ∼= PSU(3, q),

q odd.

(a) If q �= 5, 11 then the following must hold:

(i) G leaves invariant a Desarguesian subplane Π0 of order q2, on which G acts

faithfully, leaving invariant a hermitian unital.

(ii) The involutions in G are homologies of Π.

(b) If q = 5 or 11 and either conclusion (i) or (ii) above fails, then Π or its dual has a

point orbit O of length q3 + 1, such that O is an arc (for q = 5 or 11) or a hermitian

unital embedded in Π (for q = 5 only).

(c) If the hypothesis G ∼= PSU(3, q) is replaced by G ∼= PGU(3, q) then (i), (ii) must hold

for all odd prime powers q, including 5, 11.

In Theorems 1.3,5 it is clear that any G-invariant subplane of Π contains Π0 (whenever

Π0 itself exists) since Π0 is generated by the centres of involutory homologies in G.

The only known occurrences of 1.3,5 are Desarguesian and Hughes planes. No ana-

logues of Theorems 1.3,5 are known for q even. Indeed, 1.3 fails for q = 2. Namely, if Π

or its dual is a Lorimer-Rahilly translation plane of order 16 (see [22]) then Π admits a

collineation group G ∼= PSL(3, 2) such that Fix(G) is a subplane of order 2. We remark

on the situation for q = 3 in §10, pointing out an intriguing similarity with the case q = 2.

If G ∼= PSL(3, q) or PSU(3, q) and τ ∈ G is an involution, then CG(τ)′/〈τ〉 ∼=
PSL(2, q). Accordingly in proving 1.3,5, in case τ is a Baer involution of Π, we require

results concerning the action of PSL(2, q) on a plane of order q2. We prove some such re-

sults, which are new and interesting in their own right. First, however, we make extensive

use of the following well known result, proven in [25].

1.6 THEOREM (Lüneburg, Yaqub). Suppose that Π is a projective plane of order q ad-

mitting G ∼= PSL(2, q). Then Π is Desarguesian. G acts irreducibly on Π for odd q > 3,
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and leaves invariant a triangle but no point or line for q = 3. G fixes a point and/or line

of Π if q is even.

In [28] we also proved the following.

1.7 THEOREM. Suppose that Π is a projective plane of order q2 admitting G ∼= PSL(2, q),

q odd. Then one of the following must hold:

(i) G acts irreducibly on Π;

(ii) q = 3 and G fixes a triangle but no point or line of Π;

(iii) q = 5, Fix(G) consists of an antiflag (X, l), and G has point orbits of length 5, 5, 6,

10 on l; or

(iv) q = 9 and Fix(G) consists of a flag.

For certain values of q we shall make use of the following result, proven in §7. Note

that the case G/K ∼= PGL(2, q) is especially included.

1.8 THEOREM. Suppose G = GL(2, q) acts as a group of collineations of a projective

plane Π of order q2, q odd, such that the kernel K of this action satisfies K ≤ Z(G),

2
∣∣ |K|. Then G fixes no point or line of Π, and leaves invariant a triangle precisely when

q = 3. Furthermore, one of the following must hold:

(i) there is a point orbit which is a (q + 1)-arc;

(ii) the dual of (i); or

(iii) q > 106 and q is a square.

In §8 we prove the following related result, although this is only required for q = 5, 17

in proving Theorem 1.5.

1.9 THEOREM. Suppose that Π is a projective plane of order q2 admitting G ∼= PSL(2, q),

q odd, and that q is not a square (i.e. m is odd). If q �= 5 then one of the following must

hold:
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(i) there is a point orbit which is a (q + 1)-arc;

(ii) the dual of (i); or

(iii) q > 5000 and q ≡ 3 mod 8.

Furthermore if q = 5 then either (i) or (ii) must hold under the additional hypothesis that

G acts irreducibly on Π.

In the situation of Theorems 1.8,9 it is natural to conjecture that conclusions (i),(ii)

must hold in all cases, that such a (q + 1)-arc generates a proper subplane of Π; and

that G contains involutory homologies. These statements we could not verify (see however

Corollary 5.2 of [28]).

This paper is a sequel to [28], which we will quote freely. Most of the new results con-

tained herein were contained in the author’s doctoral thesis [27] under the kind supervision

of Professor Chat Y. Ho.

2. NOTATION AND PRELIMINARIES

Most of our notation and terminology is standard. Some better-known results are stated

below without proof and the reader is referred to [11] for group theory, and [5] or [18] for

projective planes.

We denote the cyclic group of order n by Cn, and the symmetric and alternating

groups of degree n by Sn and An. For a finite group G we denote by G′ the derived

subgroup of G, and by Sylp(G) the class of all Sylow p-subgroups of G. We denote by

G×H the semidirect product of G with H (see [31]). An involution is a group element

of order 2.

For a permutation group G ≤ SymΩ and an element X ∈ Ω, we denote the stabilizer

of X by GX = {g ∈ G : Xg = X}, and the G-orbit of X by XG = {Xg : g ∈ G}. We say

that G acts semiregularly on Ω if GX = 1 for all X ∈ Ω. Also G acts regularly if it

acts both transitively and semiregularly.

Let Π be a finite projective plane. A pair (X, l) consisting f a point X and a line l

of Π, is a flag or an antiflag according as X ∈ l or X /∈ l. A collineation g �= 1 of Π
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is a generalized (X, l)-perspectivity if it fixes the point X and the line l, and if any

additional fixed points (resp., lines) lie on l (resp., pass through X). If g fixes l pointwise

and X linewise, g is an (X, l)-perspectivity with centre X and axis l. (Following [5],

we include the identity 1 ∈ AutΠ as both a perspectivity and a generalized perspectivity.)

We say elation or homology in place of ‘perspectivity’ according as X ∈ l or X /∈ l. If

S is a set of collineations of Π then by Fix(S) we mean the full closed substructure of Π

consisting of all points and lines fixed by every element of S.

2.1 PROPOSITION. If G acts on a projective plane Π such that Fix(G) = Ø, then for any

N ≤ G, Fix(N) is either empty, a triangle, or a (not necessarily proper) subplane of Π.

For a proof, see [13,Cor.3.6].

2.2 THEOREM (Bruck). If Π0 is a proper subplane of Π, then their respective orders n0, n

satisfy either n2
0 = n or n2

0 + n0 ≤ n.

If n0 = n, we call Π0 a Baer subplane of Π. In this case each point of Π lies on

some line of Π0. If Fix(G) is a subplane (respectively, a Baer subplane, a triangle) of

Π, we say that G is a planar (resp., Baer, triangular) collineation group of Π. A

quasiperspectivity is either a perspectivity or a Baer collineation.

2.3 THEOREM (Roth). In 2.2 if we assume in addition that Π0 = Fix(G) for some collin-

eation group G of Π, then either n2
0 = n or n2

0 + n0 + 2 ≤ n.

2.4 PROPOSITION. If Π is a finite projective plane with Baer collineation group G, then

|G| ∣∣n(n− 1).

Proposition 2.4, together with its analogue for perspectivities (see Lemma 4.10 of [18])

are elementary and will often be used without explicit mention.
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2.5 THEOREM (Baer). Any involutory collineation of a finite projective plane is a quasi-

perspectivity.

2.6 PROPOSITION. If gi is an (Xi, li)-perspectivity of Π, i = 1, 2, X1 �= X2, l1 �= l2 then

g1g2 is a generalized (l1 ∩ l2, X1X2)-perspectivity of Π.

3. THE GROUPS PSL(2, q), PGL(2, q)

We assume the reader’s familiarity with the classification of subgroups of PSL(2, q) as

given in [9], [19] or [34]. Note that if G ∼= PGL(2, q) then G is isomorphic to a subgroup

of PSL(2, q2), so by applying the latter classification to PSL(2, q2) as well as to G′ ∼=
PSL(2, q), we may in fact classify the subgroups of G.

3.1 LEMMA. If q = pm is odd then

(i) PGL(2, q) has a single conjugacy class of elements of order p;

(ii) PSL(2, q) has exactly 2 conjugacy classes of elements of order p; it has 2 or 1 conjugacy

class(es) of subgroups of order p according as q is or is not a square.

Proof of (ii). Let G ∼= PSL(2, q), P ∈ Sylp(G), N = NG(P ), g ∈ P \ 1. Then G contains

q2 − 1 elements of order p, of which q − 1 lie in each of the q + 1 conjugates of P ; |G| =
1
2q(q

2 − 1), CG(g) = P, |NG(〈g〉)| = (m, 2)q(p− 1)/2 and the statement follows.

3.2 LEMMA. Let G ∼= PGL(2, q), q odd. If e is an even divisor of q + 1 such that e > 2,

then G contains a pair of elements x, y of order e such that 〈x, y〉 ⊇ G′ ∼= PSL(2, q).

Proof. If e = q + 1 then we may choose x, y ∈ G of order e such that 〈x〉 �= 〈y〉, and then

the classification of subgroups of G (see [9], [19], [34]) gives 〈x, y〉 = G. In particular, we

may assume that q �= 3, 5, 9.
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Let u, v be the elements of G represented by

(
0 1
ζ 0

)
,

(
0 1
ζ3 0

)

respectively, where ζ is a generator of the multiplicative group GF(q) \ {0}. Then 〈u, v〉 is

dihedral of order q − 1. Now CG(u), CG(v) are dihedral of order 2(q + 1) since ζ, ζ3 are

non-squares. We may therefore choose x ∈ CG(u), y ∈ CG(v) of order e.

Now 〈x, y〉 ⊇ 〈u, v〉, but 〈x, y〉 �⊆ NG(〈u, v〉), since for q > 3, the latter is dihedral of

order e. If q ≥ 11 then 〈x, y〉 ⊇ G′ by the classification of subgroups of G. By the initial

argument, the only case left to consider is q = 7, e = 4, in which case 〈u, v〉 ∼= S3, 〈x, y〉 ⊇ G′

unless 〈x, y〉 ∼= S4. But in the latter case u = x2, v = y2 generate an elementary abelian

group of order 4, a contradiction.

The following is proven in [28].

3.3 THEOREM. If a projective plane Π of order n < q admits a collineation group G ∼=
PSL(2, q), then Π is Desarguesian and (n, q) = (2, 3), (2,7), (4,5), (4,7) or (4,9). Moreover

each of these exceptional cases indeed occurs.

4. THE GROUPS PSL(3, q), PGL(3, q)

Let G ∼= PSL(3, q), F = GF(q), F× = F \ {0} so that |G| = q3(q3 − 1)(q2 − 1)/µ where

µ = (q − 1, 3). Throughout §4 we assume that q = pm is odd. Of the following facts

concerning G, those which are stated without proof are either well-known or follow by

elementary methods from the list in [26] of maximal subgroups of G. (The corresponding

list for q even is given in [12]. Note that certain of the following, eg. 4.1(i), fail for q even.)
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Consider the following elements and subgroups of G, as represented by matrices in

SL(3, q):

τ = diag(−1,−1, 1), Zτ = Z
(
CG(τ)

)
=

{
diag(d, d, d−2) : d ∈ F×}

,

CG(τ) =





 a b 0

c d 0
0 0 e−1


 :

a, b, c, d ∈ F,

e = ad− bc �= 0


 ,

CG(τ)′ =





 a b 0

c d 0
0 0 1


 :

a, b, c, d ∈ F,

ad− bc = 1


 ∼= SL(2, q),

P0 =





 1 0 a

0 1 b
0 0 1


 : a, b ∈ F


 , P1 =





 1 0 0

0 1 0
a b 1


 : a, b ∈ F


 ,

Q =





 1 a b

0 1 c
0 0 1


 : a, b, c ∈ F


 ∈ Sylp(G),

P =





 1 0 a

0 1 0
0 0 1


 : a ∈ F


 = Z(Q) = Q′,

NG(Q) = Q×K, K =
{
diag(d, e, (de)−1) : d, e ∈ F×}

.

Likewise define Zω = Z
(
CG(ω)

)
for any involution ω ∈ G.

4.1 LEMMA.

(i) G has a single conjugacy class of involutions, and G acts transitively by conjugation

on the set of ordered pairs of commuting distinct involutions. One such pair is {τ, τ ′}
where τ ′ = diag(−1, 1,−1).

(ii) |CG(τ)| = q(q + 1)(q − 1)2/µ, |Zτ | = (q − 1)/µ.

(iii) CG(τ) = CG(τ)′×Zτ ′ .

(iv) CG(τ)/Zτ ∼= PGL(2, q).

(v) CG(τ) ∼= H/Ξµ where H ∼= GL(2, q), Ξµ ≤ Z(H), |Ξµ| = µ.

(vi) G contains involutions τ1, τ2 such that CG(τ1)′∩CG(τ2)′ �= 1, 〈CG(τ1)′,CG(τ2)′〉 = G.



PSL(3, q) AND PSU(3, q) ON PLANES OF ORDER q4 

FIGURE 4A
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Proof of (vi). Let Σ be a Desarguesian plane of order q admitting G as its little projective

group, and consider the configuration in Σ shown in Figure 4A. Let τi ∈ G be the involutory

(Xi, li)-homology of Σ, i = 1, 2. Then CG(τ1)′∩CG(τ2)′ ⊇ G(X0, l0) and 〈CG(τ1)′,CG(τ2)′〉
fixes no point or line of Σ, so by [26] we have 〈CG(τ1)′,CG(τ2)′〉 = G.

4.2 LEMMA.

(i) 〈P0, P1〉 = G.

(ii) G has exactly two conjugacy classes of subgroups of index q2 + q + 1, represented by

P0CG(τ) and P1CG(τ). These two classes are interchanged by the transpose-inverse

automorphism of G.

(iii) Suppose that G ≤ AutΣ where Σ is a projective plane of order q. Then Σ is Desar-

guesian. There are two equivalence classes of faithful actions of G on Π. In one such

action, P0CG(τ) (respectively, P1CG(τ)) is the stabilizer of a point (resp., a line) of

Σ.

(iv) Suppose that G ≤ AutΠ where Π is a projective plane, and let X be a point of Π. If

the orbit XG has length q2 + q + 1, then its points are either collinear, form an arc,

or generate a Desarguesian subplane of order q.

Proof of (iv). It is convenient to let Σ be a Desarguesian plane of order q disjoint from Π,

and to let G act on Σ as its little projective group in such a way that GX fixes a point (i.e.

rather than a line—see (iii)) of Σ. There exists a bijection θ from XG to the point set of

Σ which commutes with the action of G, viz. Xθg = Xgθ for all g ∈ G.

Now G acts 2-transitively on (Xθ)G and hence on XG. Therefore XG forms a 2-

design (see [2]) whose blocks are the members of lG, where l is a given line of Π joining

two given points of XG. If l contains exactly two points of XG then XG is an arc. We
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may assume that l contains at least three distinct points X1, X2, X3 ∈ XG, and l is fixed

by 〈GXi,Xj
: 1 ≤ i < j ≤ 3〉. If Xθ

1 , X
θ
2 , X

θ
3 form a triangle in Σ then Gl ⊇ 〈GXθ

i
,Xθ

j
:

1 ≤ i < j ≤ 3〉 = G (by [26,pp.239–240], observing that 〈GX1,X2 , GX1,X3〉 = GX1) and so

all points in XG lie on l. Otherwise Xθ
1 , X

θ
2 , X

θ
3 all lie on some line l1 of Σ, Gl = Gl1 ,

l contains exactly q + 1 points of XG and θ−1 is an imbedding of Σ in Π.

Proof of Theorem 1.1. Suppose that G ≤ AutΠ where Π is a projective plane of order q2.

By [35,Satz 1], G leaves invariant a Desarguesian subplane Π0 of order q, and G acts

faithfully on Π0. (However, the later proofs of [35,§4] contain flaws as pointed out by

Lüneburg [24].) By [6,Satz 1], G acts transitively on the set of flags (X, l) of Π such that

neither X nor l belongs to Π0. By [24,Thm.2], Π is a Desarguesian or generalized Hughes

plane as required. The converse also holds; the full collineation groups of the generalized

Hughes planes were determined by Rosati [32], [33] (see also see [24,Cor.5,6]).

Now suppose rather that G ∼= PGL(3, q), where as before q is odd. The above notations

still apply, with the following modifications:

Zτ =
{
diag(1, 1, d) : d ∈ F×}

,

CG(τ) =





 a b 0

c d 0
0 0 1


 :

a, b, c, d ∈ F,

ad− bc �= 0




where elements of G are now represented by matrices in GL(3, q), and |G| = q3(q3 − 1)×
(q2 − 1).

4.3 LEMMA. The above Lemmas 4.1,2 remain valid with G ∼= PGL(3, q), with the fol-

lowing amendments: 4.1(ii) becomes |CG(τ)| = q(q + 1)(q − 1)2, |Zτ | = q − 1; and 4.1(v)

becomes CG(τ) ∼= GL(2, q).
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5. THE GROUPS PSU(3, q), PGU(3, q)

In §5 we again restrict our attention to the case q = pm is odd, and let F = GF(q2), F× =

F \ {0}. For A ∈ GL(3, q2) let AT denote its transpose, and let A denote the matrix

obtained by applying the field automorphism a �→ a = aq to each entry of A. (We

caution the reader that our matrix entries are from F = GF(q2) rather than GF(q), for

which reason certain authors have prefered the notation PGU(3, q2) to that which we have

followed.)

Let G ∼= PGU(3, q), so that |G| = q3(q3 +1)(q2 − 1). We shall represent the elements

of G as matrices A ∈ GL(3, q2) such that AWA
T

= W , modulo the scalar matrices

{aI : a ∈ F×, aa = 1}, where W ∈ GL(3, q2) is a suitably chosen hermitian matrix (i.e.

W
T

= W ). We choose W and name certain elements of G as follows.

W =


 0 0 1

0 1 0
1 0 0


 , τ ′ =


 0 0 1

0 −1 0
1 0 0


 ,

τ = diag(−1, 1,−1), Zτ = Z
(
CG(τ)

)
=

{
diag(1, d, 1) : d ∈ F×, dd = 1

}
,

CG(τ) =





 a 0 b

0 1 0
c 0 d


 : a, b, c, d ∈ F,

(
a b
c d

)(
0 1
1 0

)(
a c
b d

)
=

(
0 1
1 0

)
 ,

CG(τ)′ =





 a 0 b

0 1 0
c 0 d


 ∈ CG(τ) : ad− bc = 1


 ∼= SL(2, q),

Q =





 1 a b

0 1 −a
0 0 1


 :

a, b ∈ F,

aa+ b + b = 0


 ∈ Sylp(G),

P =





 1 0 b

0 1 0
0 0 1


 : b ∈ F, b + b = 0


 = Z(Q) = Q′,

NG(Q) = Q×K, K =
{
diag(d, 1, d−q) : d ∈ F×}

.

Likewise define Zω = Z
(
CG(ω)

)
for any involution ω ∈ G.

Let Σ be a Desarguesian plane of order q2 with points (resp., lines) represented by

F -subspaces of F 3 =
{
(a, b, c) : a, b, c ∈ F

}
of dimension 1 (resp., 2). Right-multiplication

of elements of G on vectors of F 3 induces an action of G on Σ, and G commutes with the
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hermitian polarity δ, where for a point X of Σ represented by (a, b, c) ∈ F 3 \ {(0, 0, 0)},
we define Xδ to be the line

{
(x, y, z) ∈ F 3 : (x, y, z)W (a, b, c)T = 0

}
.

Now Σ has q3 + 1 absolute points with respect to δ (i.e. points X such that X ∈ Xδ)

and q2(q2 − q + 1) nonabsolute lines (i.e. lines l such that lδ /∈ l. These together form a

2-(q3+1, q+1, 1) design (see [2]) called a hermitial unital (see [5,p.104], [15,p.156]). Note

that P consists of all (X,Xδ)-elations of Σ in G, and Zτ consists of all (Y, Y δ)-homologies

of Σ in G, where X = (0, 0, 1) is absolute and Y = (0, 1, 0) is nonabsolute.

We state below a few facts concerning G, omitting the proofs of those statements

which are well known or which follow readily from [16], [26,p.241], [29].

5.1 LEMMA.

(i) G has a single conjugacy class of involutions, and G acts transitively by conjugation

on the set of ordered pairs of commuting distinct involutions. One such pair is {τ, τ ′}
where τ ′ = diag(−1, 1,−1).

(ii) |CG(τ)| = q(q + 1)2(q − 1), |Zτ | = q + 1.

(iii) CG(τ) = CG(τ)′×Zτ ′ .

(iv) CG(τ)/Zτ ∼= PGL(2, q).

(v) CG(τ) is the unique maximal subgroup of G containing CG(τ)′.

(vi) G contains involutions τ1, τ2 such that CG(τ1)′ ∩ CG(τ2)′ �= 1, 〈CG(τ1)′,CG(τ2)′〉
= G.

(vii) If e > 2 is an even divisor of q + 1 then there exists an involution τ ′′ ∈ CG(τ) and

elements x ∈ Zτ ′ , y ∈ Zτ ′′ of order e such that 〈x, y〉 ⊇ CG(τ)′.

(viii) Suppose that q = 3 and ω ∈ G is an involution. Then O2

(
CG(ω)′

)
= O2

(
CG(ω)

)
is

quaternion. Furthermore if [τ, ω] = 1 then
〈
O2

(
CG(τ)

)
,O2

(
CG(ω)

)〉
= NG

(〈τ, ω〉) of

order 96; if [τ, ω] �= 1 then
〈
O2

(
CG(τ)

)
,O2

(
CG(ω)

)〉
= G.

(ix) If q = 3 then there exists an involution τ ′′ ∈ CG(τ) such that [τ ′, τ ′′] �= 1, τ ′τ ′′ ∈
O2

(
CG(τ)

)
.
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Proof of (vi), (vii), (ix). Let l0 be an absolute line of Σ, and let X0=lδ0, X1, X2 be three

distinct points of l0. Then (vi) follows as in 4.1(vi).

By 3.2 there exist x, y ∈ CG(τ) such that x, y ∈ CG(τ) are of order e, and 〈x, y〉 ⊇
CG(τ)′ ∼= PSL(2, q) where the bars indicate the canonical images in CG(τ)/Zτ ∼= PGL(2, q).

Now Zτ ′ contains an element u of order e, and since Zτ ′ ∩ Zτ = 1, the image u ∈ CG(τ)

is also of order e. Since CG(τ) has a single conjugacy class of cyclic subgroups of order e,

we may assume that x ∈ Zτ ′ , and we also have y ∈ Zτ ′′ for some involution τ ′′ ∈ CG(τ),

and x, y have order e.

Now 〈x, y〉Zτ ⊇ CG(τ)′Zτ which yields 〈x, y〉 ⊇ (
CG(τ)′

)′. If q > 3 then
(
CG(τ)′

)′ =
CG(τ)′ and so we are done. If q = 3 then 〈x, y〉 ⊇ (

CG(τ)′
)′, the latter being quaternion;

but also 〈x, y〉 contains an element of order 3, so that 〈x, y〉 ⊇ CG(τ)′ and in any case (vii)

holds.

If q = 3 then

O2

(
CG(τ)

)
=

〈
 0 0 i

0 1 0
i 0 0


 ,


−1 0 −i

0 1 0
i 0 1


〉

where i ∈ F, i2 = −1, and so (ix) follows by taking

τ ′′ =


 i 0 1

0 −1 0
−1 0 −i


 .

5.2 LEMMA.

(i) K is cyclic of order q2 − 1. For d
∣∣ q2 − 1 let Kd be the subgroup of order d in K.

Then Zτ = Kq+1.

(ii) K acts irreducibly on the vector space Q/P of dimension 2m over GF(p).

(iii) CG(τ) = CG(τ)′K.
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5.3 LEMMA.

(i) G has a single conjugacy class of subgroups of index q3 + 1, represented by NG(Q).

(ii) Suppose that G ≤ AutΠ where Π is a projective plane, and let X be a point of Π. If

the orbit XG has length q3 + 1, then its points are either collinear, form an arc, or

form the point set of a hermitian unital embedded in Π.

Proof of (ii). There exists a bijection θ from XG to the set of absolute points of Σ with

respect to δ, such that θ commutes with the action of G, i.e. Xθg = Xgθ for all g ∈ G.

The result follows as in the proof of 4.2(iv), using instead p.241 of [26].

5.4 LEMMA. The above Lemmas 5.1–3 remain valid with G ∼= PSU(3, q), with the follow-

ing amendments: 5.1(ii) becomes |CG(τ)| = q(q + 1)2(q − 1)/µ, |Zτ | = (q + 1)/µ where

µ = (q+1, 3); 5.1(vii) requires the additional hypothesis that e
∣∣ (q+1)/µ (and in particular

q �= 5); |K| = (q2 − 1)/µ and Zτ = K(q+1)/µ in 5.2(i).

6. ABELIAN PLANAR COLLINEATION GROUPS

Recall that a collineation group G of a projective plane Π is planar if Fix(G) is a subplane

of Π. That such collineation groups must often be considered is evident from 2.1. Our

results concern the simplest such case, in which G is abelian. For example the following is

proven in [28].

6.1 THEOREM. If G is a faithful abelian planar collineation group of a projective plane

Π of order n, then |G| < n.

Suppose now that G is a faithful abelian planar collineation group of a finite projective

plane Π, and let ΠG = Fix(G). If Π1, Π2 are subplanes of Π, then we shall denote by

〈Π1,Π2〉 the subplane generated by Π1 and Π2; we shall write Π1 ⊆ Π2 if Π1 is a subplane

of Π2. For any subplane Σ ⊆ Π, let

GΣ = {g ∈ G : g fixes Σ pointwise}, G = {GΣ : Σ ⊆ Π}.
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For any subgroup H ≤ G, let

ΠH = Fix(H), P = {ΠH : H ≤ G};

note that P consists of certain subplanes of Π containing ΠG. We consider G, P as posets

(i.e. partially ordered sets, with respect to inclusion denoted as usual by⊆). Let St : P → G
(abbreviation for ‘stabilizer’) denote the restriction to P of the map Σ �→ GΣ, and let the

restriction Fix
∣∣
G also be denoted by Fix, so that Fix : G → P is the map H �→ ΠH . The

following properties may be immediately verified.

(i) G contains both G = St(ΠG) and 1 = St(Π);

P contains both Π = Fix(1) and ΠG = Fix(G).

(ii) G leaves invariant every member of P (because G is abelian).

(iii) Fix reverses inclusion, i.e. ΠH ⊆ ΠK whenever H ⊇ K, H,K ∈ G.

(iv) St reverses inclusion, i.e. GΣ ⊆ GΣ′ whenever Σ ⊇ Σ′, Σ, Σ′ ∈ P.

(v) Fix ◦ St = idP , St ◦ Fix = idG , so that St : P → G and Fix : G → P are

anti-isomorphisms of posets.

(vi) G〈Σ,Σ′〉 = GΣ ∩GΣ′ whenever Σ, Σ′ ∈ P; thus G is closed under intersec-

tion.

(vii) ΠH∩K = 〈ΠH ,ΠK〉 whenever H, K ∈ G; thus 〈Σ,Σ′〉 ∈ P whenever

Σ, Σ′ ∈ P.

We caution the reader that G, P need not be lattices: namely if Σ, Σ′ ∈ P then

Σ ∩ Σ′ ⊆ Fix〈GΣ, GΣ′〉, and if the latter inclusion is proper then P is not closed under
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the usual intersection. Especially note that our P is not the lattice of all G-invariant

substructures of Π (or even a sublattice thereof) as considered in [13,§4].
Applying Theorem 6.1 to the action of G/H on ΠH for H ∈ G, we obtain

(viii) [G :H] < nH for all H ∈ G, where nH is the order of ΠH .

If H, K ∈ G (and similarly for members of P) we shall write H ≺ K in case H ⊆′ K and

there is no L ∈ G satisfying H ⊆′ L ⊆′ K. Whenever H, K ∈ G we clearly have

(ix) H ≺ K if and only if ΠK ≺ ΠH .

Suppose that H, K ∈ G, H ≺ K and let ΠH , ΠK have order nH , nK respectively. Let

l be a line of ΠG, so that l belongs to ΠH , ΠK . If X is a point of l in ΠH outside ΠK ,

then the orbit XK consists of [K :KX ] points of l, all of which are fixed by KX since G is

abelian. Thus KX fixes pointwise the subplane 〈ΠK , XK〉 ⊆ ΠH , and since ΠK ≺ ΠH we

obtain 〈ΠK , XK〉 = ΠH . This yields KX = H, and since every K-orbit on the points of l

in ΠH but outside ΠK has length [K :H], we conclude that

(x) [K :H]
∣∣ nH − nK whenever H ≺ K, where ΠH , ΠK has order nH , nK

respectively.

Choose a maximal chain in P, namely

ΠG = Π0 ≺ Π1 ≺ · · · ≺ Πk = Π, Πi ∈ P, i = 0, 1, . . . , k,

and let ni be the order of Πi, i = 0, 1, . . . , k. Then n2
i−1 ≤ ni, i = 1, 2, . . . , k by 2.2, so

that by induction we obtain

(xi) the length k of any chain in P (or in G) satisfies n2k

G ≤ n, where Π, ΠG

has order n, nG respectively.
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We make use of the above concepts in proving the following.

6.2 THEOREM. Suppose that P is an elementary abelian group of order q = pm, p a

prime, and that P ≤ G where the group G acts transitively by conjugation on the cyclic

subgroups of P . Suppose furthermore that G ≤ AutΠ for some projective plane Π of order

q2, such that P fixes pointwise a subplane ΠP of order nP . Then one of the following must

hold:

(I) ΠP is a Baer subplane of Π, or

(II) q is a square, nP =
√
q, and P has a subgroup of order

√
q fixing pointwise a Baer

subplane of Π.

We illustrate 6.2 by listing some known occurrences for q ≤ 4. If q = 2 and G = P ∼= C2,

then case (I) occurs for the unique (Desarguesian) plane of order 4. If q = 3 and G = P ∼=
C3 then case (I) occurs for the Hughes plane of order 9 (see [24,Cor.5]); also for the Hall

and dual Hall plane of order 9.

For q = 4 the following translation planes (or their duals) of order 16 (see [8]) admit

G ∼= A4 as in Theorem 6.2. If Π is a Hall plane, a derived semifield plane or a Dempwolff

plane then case (I) occurs; if Π is a Lorimer-Rahilly plane or a Johnson-Walker plane then

case (I) or case (II) may occur.

Proof of Theorem 6.2. For g ∈ P \ 1, let n1 be the order of the subplane Πg = Fix(g).

(By the action of G on P , n1 is independent of the choice of g ∈ P \ 1.) Let l be a line of

ΠP . Counting in two different ways the number of pairs (X, g) such that X is a point of

l, g ∈ P and Xg = X , we obtain

q2 + 1 + (q − 1)(n1 + 1) = w|P |

where w is the number of orbits of P on the points of l (see [30]). This gives q
∣∣ n1, and

since n1 ≤ q, we have n1 = q.

Let Pg be the kernel of the action of P on Πg, so that

Pg ∈ G = {PΣ : Σ ⊆ Π}, PΣ = {h ∈ P : h fixes Σ pointwise}.
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(We follow the notation used under 6.1, except that our abelian planar collineation group

is now P in place of G.) Note that G is invariant under the action of G by conjugation on

the subgroups of P .

Clearly Pg � 1, and so for any H ∈ G we have H ∩ Pg = either 1 or Pg. This

means that any H ∈ G is a disjoint union of certain conjugates of Pg in G. Writing

|Pg| = pr, |H| = ps, this means that pr − 1
∣∣ ps − 1, i.e. r

∣∣ s so that |H| = ud for some

integer d ≥ 0 where u = |Pg| = pr. In particular |P | = ue for some integer e ≥ 1.

If Pg = P we have case (I); hence we may assume that Pg ⊆′ P, e ≥ 2. If Pg ≺ P then

by (x) we have ue−1 = [P :Pg]
∣∣ ue − nP , ue−1

∣∣ nP ; but nP ≤ √n1 =
√
q = ue/2 so that

e = 2, nP =
√
q and we have case (II).

Hence we may assume that 1 ≺ Pg ≺ H ⊆′ P for some H ∈ G, |H| = ud. By (viii)

we have [P :H] < nH ≤ √n1 =
√
q where nH is the order of ΠH , i.e. ud = |H| > √

q =

ue/2, 2d > e. Choose x ∈ G such that Hx �= H; then

Hx ∩H ∈ G, |Hx ∩H| = |H|2
|HxH| ≥ u2d−e ≥ u.

We may assume that g ∈ Hx ∩ H; otherwise replace g by gy where y ∈ G is chosen

such that gy ∈ Hx ∩ H. Now Pg ⊆ Hx ∩ H ⊆′ H and so Hx ∩ H = Pg which forces

2d− e = 1, d = 1
2(e+ 1) and in particular e is odd, e ≥ 3.

Suppose that H ⊆′ K ⊆′ P for some K ∈ G. Choose z ∈ G such that Kz �⊇ H; then

Kz ∩H ∈ G, |Kz ∩H| = |Kz||H|
|KzH| >

|H|2
|KzH| ≥ u2d−e = u.

Again we may assume that g ∈ Kz ∩H; then Pg ⊆′ Kz ∩H ⊆′ H, a contradiction.

Therefore 1 ≺ Pg ≺ H ≺ P , and so (x) gives u(e−1)/2 = [P :H]
∣∣nH − nP , u

(e−1)/2 =

[H :Pg]
∣∣ ue − nH so that u(e−1)/2

∣∣ nP . By (xi) we have
(
u(e−1)/2

)8 ≤ n8
P ≤ u2e, e ≤ 2, a

final contradiction.

7. PROOF OF THEOREM 1.8

The result is easily established for q = 3 (see Prop. 2.7 of [28]) so we may assume that
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(1) q > 3.

We next show that

(2) G′ acts irreducibly on Π.

Since G′ induces G′/G′ ∩K ∼= PSL(2, q) on Π, (2) follows by Theorem 1.7 for q �= 5, 9.

Suppose that q = 5 and that G′ fixes a line l of Π. By Theorem 1.7, G′ has orbits of

length 5, 5, 6, 10 on the points of l, and G permutes these orbits. Indeed, G has the same

four orbits on l, since the G′-orbits of length 5 may be represented by X , Y respectively,

where Fix(τ, τ ′) is given by Figure 7A for commuting involutions τ �= τ ′ in G′, and from

the lack of symmetry in X and Y it is apparent that G preserves both XG′
and Y G

′
.

FIGURE 7A. Exceptional
Fix(τ, τ ′) for q = 5
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We may write G = G′ × 〈g〉 where g is of order 4 and induces an automorphism

of order 4 on G′/G′ ∩ K (cf. 4.1(iii)). This automorphism leaves invariant exactly one

subgroup of isomorphism type A4, two dihedral subgroups of order 10, and none of type

S3 in G′/G′∩K ∼= A5. Thus g induces a collineation of Π of order 4 fixing exactly 4 points

of l, which is clearly impossible.

Now suppose that q = 9. Then |Z(G)| = 8, and if K ⊆′ Z(G) then Z(G) contains an

element g inducing an involutory collineation of Π. If g induces a homology of Π then G′

fixes its centre and axis, contrary to Theorem 1.7. Otherwise Fix(g) is a subplane of order

9 on which G′ acts reducibly, contrary to 1.6.

Therefore K = Z(G), i.e. G induces G = G/Z(G) ∼= PGL(2, 9) on Π. By (16) of

[28], the lengths of the orbits of G′ ∼= PSL(2, 9) on the points of l are given by one of the

following cases:
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lengths 1, 36,45 (in case (ix) of [28,(16)]);

lengths 1, 15, 30, 36 (in cases (x), (xi));

lengths 1, 6, 15, 60 (in cases (xii), (xiii)); or

lengths 1, 6, 15, 20, 40 (in cases (xiv), (xv)).

If case (x) or (xi) occurs then the unique G′-orbit of length 30 on l is G-invariant. From

Table 3D of [28] we see that ρ1, ρ2 fix 6, 0 points in this orbit, respectively, violating the

fact that ρ1, ρ2 are conjugate in G. We similarly eliminate cases (xii)–(xv) of [28,(16)].

We are left with case (ix), and G′ has three orbits on the points of l, of length 1, 45,

36 respectively, and so each of these three orbits is G-invariant. The stabilizers in G of

point representatives from these orbits are G, dihedral of order 16, and dihedral of order

20 respectively. We compute (cf. (9) of [28]) that an involution ω ∈ G \ G′ fixes 1, 5, 6

points in these orbits respectively, so that ω fixes exactly 12 points of l, which is clearly

impossible. This concludes the proof of (2).

Let

P =
{(

1 a
0 1

)
: a ∈ GF(q)

}
∈ Sylp(G), P < G′,

Z =
{
diag(d, d) : d ∈ GF(q) \ {0}} = Z(G),

C =
{
diag(d, 1) : d ∈ GF(q) \ {0}},

N = NG(P ) = CZP,

γ =
(−1 0

0 1

)
∈ C, τ =

(
0 −1
1 0

)
.

(3) We may assume that Fix(N) = Ø.

For otherwise, by duality we may suppose that N fixes a point X of Π. Since N is a

maximal subgroup of G, (2) gives GX = N . By (2), not all q + 1 points of XG are

collinear, and so [28,Prop.2.9] gives conclusion (i) of 1.8 and we are done. This proves

assertion (3).

Since every P -orbit has length either 1 or a multiple of p, Fix(P ) is neither empty nor

a triangle. Hence by (3) and 2.1 we conclude that Fix(P ) is a subplane of Π. Since C acts

transitively on P \ 1 by conjugation, Theorem 6.2 yields
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(4) Fix(P ) is a subplane of Π of order nP , where nP ∈ {√q, q}.

Suppose that X is a point of Π with XG an arc, |XG| > q + 1. If g ∈ P \ 1 then Fix(g) is

a subplane of order q by the proof of Theorem 6.2. There certainly exists a point of XG

outside Fix(g); thus Xh /∈ Fix(g) for some h ∈ G. Since Xh lies on a unique line of Fix(g),

this line contains at least |〈g〉| > 2 points of XG. Thus

(5) for any point X of Π such that |XG| > q + 1, XG is not an arc.

Clearly

(6) the permutation group induced by N on the points of Fix(P ) is abelian

of order dividing 1
2 (q − 1)2;

namely, the induced permutation group is a homomorphic image of N/KP ∼= CZ/K.

(7) One of the following must occur:

(I) nP = q, γ induces a Baer collineation of Fix(P ) (i.e. Fix(P, γ) is a

subplane of order
√
q);

(II) nP =
√
q, γ acts trivially on Fix(P ) (i.e. Fix(γ) ⊇′ Fix(P )); or

(III) nP =
√
q, γ induces a Baer collineation of Fix(P ) (i.e. Fix(P, γ) is a

subplane of order q1/4).

To see this, note firstly that γ cannot induce a homology on Fix(P ) (for otherwise its

centre would be fixed by N , contrary to (3)). Secondly if nP = q, then γ cannot act

trivially on Fix(P ) (or else Fix(γ) = Fix(P ), but then since γτ ≡ γ mod K we obtain

Fix(P τ ) = Fix(γτ ) = Fix(γ) = Fix(P ), i.e. a Baer subplane of Π is fixed pointwise by

〈P τ , P 〉 = G′, contradicting (2)). This gives (7), and as a corollary,

(8) q is a square; in particular q ≡ 1 mod 8.
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Next we show that

(9) in case (7,II) we have q /∈ {9, 25, 121}.

For suppose that case (7,II) occurs with q = 121. Now Fix(P ) is of order 11, and by (6)

the group induced by N on Fix(P ) is abelian of order dividing 25·32·52. If g ∈ N induces

an involutory collineation of Fix(P ), then g induces a homology of Fix(P ) whose centre is

fixed by N , contrary to (3).

Suppose that g ∈ N induces a collineation of order 5 on Fix(P ). Since N = CZP , we

may assume that g ∈ CZ = NG(P ) ∩ NG(P τ ). By (3), Fix(P, g) must be a triangle with

vertices X0, X1, X2, say. Since Fix(P ), Fix(P τ) are disjoint Baer subplanes of Fix(γ), there

is a unique point Yj of Fix(P τ) on the line XjXj+1, j = 0, 1, 2 (subscripts modulo 3). Now

g leaves Fix(P τ ) invariant and so fixes Y0, Y1, Y2. But g induces a triangular collineation of

Fix(P τ ) (for otherwise g acts trivially on the subplane generated by Fix(P τ )∪{X0, X1, X2},
i.e. on Fix(γ), contradicting the assumption that g acts nontrivially on Fix(P )). Also, gτ

induces a triangular collineation of Fix(P τ); namely, Fix(P τ , gτ) is the triangle Xτ
0X

τ
1X

τ
2 .

Since the actions of g, gτ on Fix(P τ) commute, we must have {Xτ
0 , X

τ
1 , Xτ

2 } = {Y0,

Y1, Y2}. But this means that the triangle Xτ
0X

τ
1X

τ
2 is inscribed in the distinct triangle

X0X1X2, and by applying τ we see that the triangle X0X1X2 is likewise inscribed in

Xτ
0X

τ
1X

τ
2 , which is absurd.

Hence the group induced by N on Fix(P ) has order dividing 9, and so N fixes at least

one of the 133 points of Fix(P ), contradicting (3).

The cases q = 9, 25 are eliminated with much less difficulty, as the reader may verify,

and in any case (9) holds.

(10) N has no orbit of length 3 on the points (or lines) of Fix(P ).

For suppose that {X0, X1, X2} are three points of Fix(P ) which form an orbit under N .

By (3) these three ponts are not collinear, and hence form a triangle. By (6) these three

points have the same stabilizer N0 in N . Now N0 ⊇ KP , [N : N0] = 3 and (6) gives
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p �= 3. Since N is the unique maximal subgroup of G containing N0, we have N0 = GX0 ,

|XG
0 | = 3(q+1). Let y ∈ N \N0, and by proper choice of subscripts, we may assume that

Xy
j = Xj+1, j = 0, 1, 2 (subscripts modulo 3). Since N = CZP , we may assume that

y ∈ CZ = NG(P )∩NG(P τ ). Since τ ∈ NG(〈y〉), {Xτ
0 , Xτ

1 , Xτ
2 } is also a 〈y〉-orbit forming

the vertices of a triangle. We claim that {X0, X1, X2, Xτ
0 , Xτ

1 , Xτ
2 } is an arc. If not then

by symmetry, we may suppose that some point of {Xτ
0 , Xτ

1 , Xτ
2 } lies on the line X0X1,

and the action of y shows that the triangle Xτ
0X

τ
1X

τ
2 is inscribed in the triangle X0X1X2.

But then an application of τ shows that X0X1X2 is likewise inscribed in Xτ
0X

τ
1X

τ
2 , which

is absurd. Hence {X0, X1, X2, Xτ
0 , Xτ

1 , Xτ
2 } is a 6-arc as claimed.

By (5) we may choose three distinct collinear points Y0, Y1, Y2 ∈ XG
0 . Let Pj be

the (unique) Sylow p-subgroup of G fixing Yj , j = 0, 1, 2. The previous paragraph shows

that we cannot have P0 = P1 �= P2. Of course we cannot have P0 = P1 = P2 (since the

three points of XG
0 belonging to Fix(P0) form a triangle). Hence P0, P1, P2 are distinct.

We may assume that P0 = P , Y0 = X0, P1 = P τ . For every g ∈ N whose order is not

divisible by 3, (6) yields g ∈ N0. Choosing involutions τj ∈
(
NG′(Pj) ∩ NG′(Pj+1)

) \ Z,

j = 0, 1, 2 (subscripts modulo 3), this means that Y
τj

j = Yj, Y
τj

j+1 = Yj+1. (Note

that (8) guarantees the existence of such involutions τj.) Therefore the line l joining Y0,

Y1, Y2 is fixed by τjτj+1 ∈ Pj+1 \ 1, j = 0, 1, 2 (note that τj, τj+1 both invert each

element of Pj+1, so that τjτj+1 ∈ CG′(Pj+1) = Pj+1). We have the stabilizers (P0)l �= 1,

(P1)l �= 1; however (P0)l ⊆′ P0 and (P1)l ⊆′ P1, for otherwise l is fixed by G′, contradicting

(2). Hence either case (I) or (II) of (7) occurs, and |(P0)l| = |(P1)l| =
√
q. Writing

S = 〈(P0)l, (P1)l〉 ⊆ Gl, we have S ⊆′ G′ ∼= SL(2, q) and so the classification of subgroups

of SL(2, q) (see [34]) gives S ∼= SL(2,
√
q). The stabilizer (P0)Y1 = 1; for otherwise Y1 is

fixed by 〈P1, (P0)Y1〉 = G′, contrary to (2). Hence l contains at least
√
q + 1 members

of XG
0 , namely {Y0} ∪ {Y g1 : g ∈ (P0)l}. On the other hand, if Y3 ∈ XG

0 lies on l, and

P3 is the unique Sylow p-subgroup of G fixing Y3, then the previous argument shows that

|(P3)l| = √q and (P3)l ∈ Sylp(S). Since S has only
√
q+1 Sylow p-subgroups, this means

that l carries exactly
√
q + 1 points of XG

0 .

Now consider the lines lj = X0X
τ
j , j = 0, 1, 2. Let kj be the number of points

of XG
0 on lj, and let rj be the number of lines of lGj through X0. We have seen that
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kj ∈ {2,√q + 1} for j = 0, 1, 2 and that at least one of k0, k1, k2 equals
√
q + 1. There

are three cases to consider:

(a) lG0 = lG1 = lG2 ;

(b) lG0 , lG1 , lG2 are mutually distinct; or

(c) two of lG0 , lG1 , lG2 coincide and the third is distinct.

We shall examine each of these cases in turn, by counting in two different ways each of the

quantities
n1 =

∣∣{(X, l) ∈ XG
0 × lGj : X ∈ lj

}∣∣,
n2 =

∣∣{(X, Y ) ∈ XG
0 ×XG

0 : X �= Y, XY ∈ lGj
}∣∣

where we now fix a subscript j such that kj =
√
q + 1. In case (a), k0 = k1 = k2 =

√
q +1

and we obtain
n1 = 3(q + 1)r0 = |lG0 | k0,

n2 = 3(q + 1) · 3q = |lG0 | k0(k0 − 1);

hence r0 = 3
√
q and our expression for n1 yields

√
q + 1

∣∣ 9√q(q + 1) so that
√
q + 1

∣∣ 18
which yields q = 25, contrary to (9).

In case (b) we obtain

n1 = 3(q + 1)rj = |lGj | kj,
n2 = 3(q + 1)q = |lGj | kj(kj − 1);

hence rj =
√
q,
√
q + 1

∣∣ 3√q(q + 1) which leads to a contradiction as in (a).

In case (c) we may assume that lGj coincides with precisely one of lGj+1, lGj+2 (sub-

scripts modulo 3); for otherwise lGj �= lGj+1 = lGj+2 and so n1, n2 are precisely as in (b), a

contradiction. Therefore we have

n1 = 3(q + 1)rj = |lGj | kj ,
n2 = 3(q + 1) · 2q = |lGj | kj(kj − 1);

hence rj = 2
√
q,
√
q+1

∣∣ 6√q(q+1) so that
√
q+1

∣∣ 12, q ∈ {9, 25, 121}, again contradicting

(9). This completes the proof of (10).
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By (7), N acts on a subplane Π1 of order
√
q : in case (7, I) we let Π1 = Fix(P, γ); in

cases (II), (III) of (7) let Π1 = Fix(P ). By (3), (6), (10) we conclude that no subgroup of

N fixes precisely a triangle of Π1. By 2.1 this means that

(11) for any H ≤ N , FixΠ1(H) is either empty or a (not necessarily proper)

subplane of Π1.

(Here FixΠ1(H) denotes Π1 ∩ Fix(H).) Letting Dr be the Sylow r-subgroup of CZ for

each prime r
∣∣ q − 1, we have

(12) Dr fixes pointwise a (not necessarily proper) subplane of Π1 for r �= 3.

The order kr of this subplane satisfies r
∣∣ kr ± 1 according as r

∣∣√q ± 1.

If FixΠ1(Dr) = Ø, then |Dr|
∣∣ (q−1, q+

√
q+1), i.e. |Dr| ∈ {1, 3}, contrary to assumption.

Hence by (11), FixΠ1(Dr) is a subplane of Π1. If kr is its order, we clearly have r
∣∣√q−kr

from which (12) follows.

We may factorise N = CZP , CZ = D0D1D3 where D1 is the product of the Sylow r-

subgroups of CZ as r ranges over all primes r
∣∣ q−1 such that r ≡ 1 mod 3, r2−r+2 ≤ √q;

and D0 ∩D1D3 = 1. We claim that

(13) FixΠ1(D1) = Ø.

If FixΠ1(D0D1) �= Ø then (11) implies that FixΠ1(D0D1) is a subplane of Π1, of order k,

say. By (3) every point orbit of D3 on FixΠ1(D0D1) has length 3e for some e ≥ 1. But

9 � ∣∣ k2 + k + 1, so D3 has at least one point orbit of length 3 on FixΠ1(D0D1), contrary to

(10). Therefore FixΠ1(D0D1) = Ø.

We complete the proof of (13) by induction on the number of prime divisors of |D0|.
Accordingly, suppose that FixΠ1(DrD

∗) = Ø where D∗ ≤ CZ and r is some prime divisor

of q − 1 such that r ≡ 2 mod 3, or r ≡ 1 mod 3 and r2 − r + 2 >
√
q. We must show that

FixΠ1(D
∗) = Ø. If not, then (11) implies that FixΠ1(D

∗) is a subplane of Π1, of order k,
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say. Now Dr acts on FixΠ1(D
∗) without fixing any point, so that r

∣∣ k2 + k + 1. Since

r �= 3 this means that GF(r) contains a nontrivial cube root of 1. Hence r ≡ 1 mod 3

and r2 − 2 + 2 >
√
q. Also since Dr acts nontrivially on Π1, (12) implies that FixΠ1(Dr)

is a proper subplane of Π1, i.e. its order kr <
√
q, and r

∣∣ √q − kr. If k2
r =

√
q then

r
∣∣ (q1/2 − q1/4, q− 1) so that r ≤ q1/4 − 1, violating r2 − r +2 >

√
q. Otherwise by 2.3 we

have k2
r + kr + 2 ≤ √q. By (12) we have r − 1 ≤ kr so that (r − 1)2 + (r − 1) + 2 ≤ √q,

again a contradiction. This completes the induction step, and (13) follows. Combining

(12) and (13), we obtain

(14) |Pq| ≥ 2, where Pq is the set of primes r
∣∣ q − 1 such that r ≡ 1 mod 3

and r2 − r + 2 ≤ √q.

Denying conclusion (iii) of 1.8, we assume for the remainder of the proof that q < 106.

From factor tables (eg. [1,pp.844,845]) we quickly see that the only values of q < 106

satisfying (8), (14) are as listed in Table 7B. (Checking is facilitated by the fact that the

factorizations of
√
q − 1,

√
q,
√
q + 1 occupy adjacent entries in the factor tables.)

q Pq q Pq
1812 7, 13 7012 7, 13

3372 7, 13 312 7, 13

3792 7, 19 7972 7, 19

4192 7, 19 8832 7, 13

5472 7, 13 9112 7, 13, 19

5712 13, 19 9372 7, 13

TABLE 7B
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Suppose first that q = 8832. Then (12), (13) imply that FixΠ1(D7), FixΠ1(D13) are

disjoint proper subplanes of Π1. Hence k7, k13 ≤
√

883; furthermore (12) gives k7 ≡ 1

mod 7, k13 ≡ 12 mod 13; 13
∣∣ (k2

7 + k7 + 1), 7
∣∣ (k2

13 + k13 + 1) implies k7 ≡ 3 or 9

mod 13, k13 ≡ 2 or 4 mod 7. Since k7 �= 22 by the Bruck-Ryser Theorem, we must have

k7 = 29, k13 = 25. Note that Dτ
7 = D7, so that FixΠ1(D7), FixΠτ1

(D7) are two subplanes

of order 29 interchanged by τ ; they are disjoint, since they are fixed pointwise by P , P τ

respectively. Let Π7 be the subplane generated by FixΠ1(D7), FixΠτ1
(D7). Now Π7 does

not meet FixΠ1(D13), and so Π7 is a proper subplane of Fix(γ). Therefore its order m7

satisfies 292 ≤ m7 ≤ 883. In particular Π7 is a maximal subplane of Fix(γ), and since

Π7 is fixed pointwise by D7 while Fix(γ) is not, we have Fix(D7, γ) = Π7. This yields

7
∣∣ 8832 −m7, from which we obtain m7 �= 292, and so m7 ≥ 292 + 29, m7 ∈ {875, 882}.

But τ induces an involutory collineation of Π7, and so m7 �≡ 2 mod 4 by [17,Thm.3.2].

Thus m7 = 875 is a non-square, and so τ induces a homology on Π7 with centre X and

axis l, say, both of which are fixed by D13. Let X0, X1, . . . , X875 be the points of l in

Π7, and let l0, l1, . . . , l870 be the lines of FixΠ1(D7). None of X0, X1, . . . , X875 belongs

to FixΠ1(D7); for instance if X0 ∈ FixΠ1(D7), then because Xτ
0 = X0 we would have X0

in both FixΠ1(D7) and FixΠτ1
(D7), which is impossible. Therefore l0, l1, . . . , l870 pass

through distinct points of l in Π7, so we may assume that lj ∩ l = Xj, j = 0, 1, . . . , 870.

Since D13 acts on FixΠ1(D7) without fixing any line, it follows that D13 acts on {X0,

X1, . . . , X870} without fixing any point. Now D13 fixes X , X871, X872, . . . , X875, so that

FixΠ7(D13) is a subplane of order 4. From the action of τ on Π7, we deduce that τ also

induces a homology on FixΠ7(D13), contradicting the fact that FixΠ7(D13) has even order.

Therefore q �= 8832.

Suppose that q = 9112. Then D19 acts nontrivially on Π1 (for otherwise k13 ≤
√

911,

k13 ≡ 1 mod 13, and k13 ≡ 2 or 4 mod 7; this is impossible). Likewise D13 acts nontrivially

on Π1 (for otherwise k7 ≤
√

911, k7 ≡ 1 mod 7, and k7 ≡ 7 or 11 mod 19; this is impossible).

Then k19 ≤
√

911, k19 ≡ 18 mod 19, and k19 ≡ 3 or 9 mod 13; impossible. Hence q �= 9112.

The remaining ten cases in Table 7B are eliminated much more quickly: for some

r ∈ Pq , the necessary conditions on kr prove to be inconsistent.



PSL(3, q) AND PSU(3, q) ON PLANES OF ORDER q4 

8. PROOF OF THEOREM 1.9

Suppose that we are given a counterexample. Consider the following subgroups and ele-

ments of G, as represented by matrices in SL(2, q):

P =
{(

1 a
0 1

)
: a ∈ GF(q)

}
∈ Sylp(G),

τ =
(

0 −1
1 0

)
,

D =
{
diag(d, d−1) : d ∈ GF(q) \ {0}}, |D| = 1

2
(q − 1),

N = NG(P ) = PD, Nτ = NG(P τ ) = P τD.

Mimicking the proof of 1.8, we obtain

(1′) q > 3;

(2′) G acts irreducibly on Π;

(3′) Fix(PD) = Ø;

(4′) Fix(P ) is a subplane of order q.

Note that Theorem 6.2 applies in view of Lemma 3.1(ii).

(6′) D acts faithfully on Fix(P ).

For if g ∈ D \ 1 acts trivially on Fix(P ) then 〈gτ 〉 = 〈g〉 implies Fix(P ) = Fix(g) =

Fix(gτ ) = Fix(P τ ), contrary to (2′).

(8′) q ≡ 3 mod 4.

For otherwise D contains an involution γ and we conclude as in (7) that q is a square.
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(10′) D has no orbit of length 3 on the points (or lines) of Fix(P ).

The proof of (10′) is a much shorter variation of the proof of (10), since q is not a square.

(7′) τ is a Baer collineation of Π.

For suppose that τ is a homology of Π. If g ∈ D \ 1 then g = gτ · τ is the product of

two involutions, so by 2.6, g is a generalized perspectivity of Π, and in fact a generalized

homology since |〈g〉| ∣∣ 1
2
(q − 1). But by (3′), (10′) and 2.1 we have Fix(P, g) = Ø. Thus D

acts semiregularly on the points of Fix(P ) and |D| = 1
2
(q − 1)

∣∣ q2 + q + 1 so that q ∈ {3,
7}, |D| ∈ {1, 3} contrary to (3′), (10′). This gives (7′).

(8′′) q ≡ 3 mod 8.

For otherwise (8′) gives q ≡ 7 mod 8 and G contains an element g such that g2 = τ ,

violating Lemma 2.5(ii) of [28].

Again as in the proof of 1.8 we obtain

(11′) If 1 �= H ≤ D then Fix(PH) is either empty or a proper subplane of

Fix(P ).

Let Dr be the Sylow r-subgroup of D, for each prime r
∣∣ 1
2
(q − 1).

(12′) Fix(PDr) is a proper subplane of Fix(P ) whenever 3 �= r
∣∣ 1
2 (q − 1). The

order kr of this subplane satisfies r
∣∣ kr − 1.

If Fix(PDp1Dp2 · · ·Dpe
) �= Ø for some distinct primes p1, p2, . . . , pe dividing 1

2 (q − 1)

then Fix(PDp1Dp2 · · ·Dpe
) is a subplane which we call Πp1,p2,...,pe

of order kp1,p2,...,pe
. We

factorise D = D0D1D3 where

D1 =
∏
r∈Pq

Dr, D0 ∩D1D3 = 1,

Pq =
{
r
∣∣ 1
2(q − 1) : r is a prime, r ≡ 1 mod 3, r2 − r + 2 ≤ q

}
.
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Once again imitating the proof of 1.8 we have

(13′) Fix(PD1) = Ø;

(14′) |Pq| ≥ 2.

By (14′), (8′′) and [1,pp.844–853], q is one of 547, 113=1331, 1483, 2003, 2731, 3011, 3907,

4219, 4523, 4691. In each case |Pq| = 2 and so r
∣∣ k2
s+ks+1 ≤ q−1, s

∣∣ k2
r+kr+1 ≤ q−1,

r
∣∣ kr−1, s

∣∣ ks−1 where Pq = {r, s}. This narrows the possibilities to those given in Table

8A.

q 1
2 (q − 1) r kr s ks

3011 5·7·43 7 36 43 44

3907 32·7·31 7 36 31 32

4523 7·17·19 7 64 19 39 or 58

TABLE 8A

If q = 3011 then 5 � ∣∣ k2
7 + k7 +1 and so Fix(PD7D5) �= Ø, 5

∣∣ k7−k5,7, k5,7 �= 6 so that

Π5,7 = Π7. But D5 also fixes some point of Π43 so that Π7 ⊆′ Π5, 362 ≤ k5 <
√

3011, a

contradiction.

If q = 3907 then 3 � ∣∣ k2
7+k7+1 and so Fix(PD7D3) �= Ø; 31

∣∣ k2
3,7+k3,7+1, 3

∣∣ k7−k3,7

yields k3,7 = 36, Π7 ⊆ Π3. Since k2
7 >

√
q we have Π7 = Π3; but D17 fixes some point of

Π31, a contradiction. The same argument eliminates the case q = 4523.

9. PROOF OF THEOREMS 1.3,5

The following assertions, (15) through (17), pertain to the proofs of Theorems 1.3 and

1.5(a),(b). Let τ , τ ′, Zτ , µ, Q, P be as in §4 for G ∼= PSL(3, q), or as in §5 for G ∼=
PSU(3, q).
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We first suppose that τ is a homology of Π. If τ, τ ′ have the same centre X and axis l,

then (X, l) is invariant under 〈CG(τ),CG(τ ′)〉 = G and so G consists of (X, l)-homologies

of Π. Since |G| � ∣∣ q4 − 1 this cannot occur. However τ and τ ′ commute, so they must have

distinct centres and axes (see Prop. 2.4(i) of [28]). By [23,Thm.C(i),(iii)] the remaining

conclusions follow. Therefore we may assume that

(15) Fix(τ) is a subplane of order q2,

and derive a contradiction. Let Kτ denote the kernel of the action of CG(τ) on Fix(τ), and

for H ≤ CG(τ) let H denote its image in CG(τ) = CG(τ)/Kτ , so that H is the collineation

group induced by H on Fix(τ). By Fix(H) we shall mean the substructure consisting of all

points and lines of Fix(τ) which are fixed by H, i.e. Fix(H) = Fix(τ,H). We show that

(16) Kτ ∩CG(τ)′ = 〈τ〉, i.e. 〈τ〉 ⊆ Kτ ⊆ Zτ ; and

(17) G acts irreducibly on Π.

(Observe the equivalence of the two formulations of (16): if Kτ ∩ CG(τ)′ = 〈τ〉 then by

considering quotients in CG(τ)/Zτ ∼= PGL(2, q) we obtain Kτ ⊆ Zτ . The converse is

immediate.)

Assume first that q > 3. We suppose that (16) fails. Since 〈τ〉 ⊆′ Kτ ∩ CG(τ)′ ≤
CG(τ)′ and CG(τ)′/〈τ〉 ∼= PSL(2, q) is simple, we have Kτ ⊇ CG(τ)′. By 4.1(vi), 5.1(vi),

5.4 there exist involutions τ1, τ2 ∈ G such that 〈CG(τ1)′,CG(τ2)′〉 = G and CG(τ1)′ ∩
CG(τ2)′ contains some g �= 1. Now Fix(g) is a Baer subplane of Π fixed pointwise by

〈CG(τ1)′,CG(τ2)′〉 = G, contrary to 2.4. This gives (16). If G ∼= PSL(3, q) then CG(τ)

acts irreducibly on Fix(τ) by 4.1(v) and Theorem 1.8, which yields (17). If G ∼= PSU(3, q),

q �= 5, 9 then CG(τ)′ ∼= PSL(2, q) acts irreducibly on Fix(τ) by Theorem 1.7, again yielding

(17). For G ∼= PSU(3, 5) or PSU(3,9) we have |Zτ | divides (q+1)/2µ, µ = (q+1, 3); but if

Zτ = 1 then CG(τ) ∼= PGL(2, q) acts irreducibly on Fix(τ) by Theorem 1.8, which yields

(17). We may therefore assume that G ∼= PSU(3, 9), |Zτ | = 5, and note that Fix(Zτ )
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is invariant under CG(τ). If Fix(Zτ ) is a subplane of Fix(τ) (necessarily proper since

Zτ ≤ Aut Fix(τ)) then Fix(Zτ) is of order 4 or 9 by Theorem 3.3, which is impossible

since 5 � ∣∣ 92 − 4, 5 � ∣∣ 92 − 9. Otherwise Zτ induces a generalized homology group of order 5

on Fix(τ) and CG(τ)′ fixes an antiflag in Fix(τ), contrary to Theorem 1.7.

Now suppose that q = 3. Since (17) is included in the hypothesis for G ∼= PSL(3, 3),

we prove (17) for G ∼= PSU(3, 3). If G fixes a line l of Π then let w be the number of

orbits of G on the points of l and let G1, G2, . . . , Gw be the respective stabilizers of point

representatives from these orbits. Using (9) of [28] we compute Fν(τ), the number of

points of l fixed by τ in the ν-th orbit, ν = 1, 2, . . . , w. Since [G :Gν ] ≤ 82, Mitchell’s list

[26,p.241] restricts such Gν to be among the types listed in Table 9A.

Type in
Type Mitchell’s list |Gν | [G :Gν ] Fν(τ) Gν

1 — 6048 1 1 G

2 2 96 63 7 CG(τ)

3 3 96 63 3 NG(〈τ, τ ′〉)
4 9 168 36 12 PSL(2, 7)

5 1 216 28 4 NG(Q)

6 — 108 56 8 subgroup of NG(Q)

TABLE 9A

If l contains ni point orbits of type i, i = 1, 2, . . . , 6 then

w∑
ν=1

[G :Gν ] = n1 + 63(n2 + n3) + 36n4 + 28(n5 + 2n6) = 82,

w∑
ν=1

Fν(τ) = n1 + 7n2 + 3n3 + 12n4 + 4(n5 + 2n6) = 10,

which has no simultaneous solution in non-negative integers {ni}. By contradiction, this

proves (17).
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Suppose that (16) fails for q = 3. Then Kτ ⊇ O2

(
CG(τ)

)
, a quaternion group of order

8. Now τ ′ induces a collineation of order at most 2 on Fix(τ), so τ ′ fixes a point X of

Fix(τ). By 5.1(ix) we may choose an involution τ ′′ ∈ CG(τ) such that τ ′τ ′′ ∈ O2

(
CG(τ)

)
,

[τ ′, τ ′′] �= 1 so that τ ′′ also fixes X . But then X is fixed by
〈
O2

(
CG(τ ′)

)
,O2

(
CG(τ ′′)

)〉
= G

by 5.1(viii), contrary to (17). This completes the proof of (16).

Proof of Theorem 1.3 (concluded), in which G ∼= PSL(3, q). We may suppose that τ, P0, P1

are as in §4.

(18) Fix
(
CG(τ)P0

)
, Fix

(
CG(τ)P1

)
are not both empty.

For suppose that Fix
(
CG(τ)P0

)
= Fix

(
CG(τ)P1

)
= Ø. Clearly Fix(Pi) is neither empty

nor a triangle, so by 2.1, Pi is planar, i = 0, 1. Now τ does not induce a homology

on Fix(Pi); otherwise (since Pi〈τ〉 < CG(τ)Pi) its centre would be fixed by CG(τ)Pi.

Hence Fix(τ, Pi) is a subplane, i = 0, 1. By (16), CG(τ)′ induces PSL(2, q) on Fix(τ),

leaving invariant the subplanes Fix(τ, P0), Fix(τ, P1). If q /∈ {5, 9} then the latter two

subplanes of Fix(τ) are disjoint by 4.2(i), violating Corollary 5.2(iv) of [28]. Indeed the

same contradiction is obtained for q ∈ {5, 9}. (Clearly the orders of Fix(P0), Fix(τ, P0)

are divisible by p; in particular Fix(τ, P0) is not of order 4. By Theorem 3.3, the additional

hypothesis required in [28,Cor.5.2] is satisfied.) This gives (18).

By 4.2(ii),(iii) we may assume that X is a point of Π such that GX = CG(τ)P0,

|XG| = q2 + q + 1. By (17) the points of XG are not collinear.

(19) XG is not an arc.

For suppose that XG is an arc. Clearly P0 fixes q + 1 points of XG. (This is evident from

the proof of 4.2(iv), in which P0 fixes exactly q + 1 points of Σ.) Therefore P0 is planar,

and since CG(τ) acts transitively on P0 \ 1 by conjugation, Theorem 6.2 shows that Fix(g)

is a Baer subplane, given any g ∈ P0 \ 1. But Fix(g) contains only q + 1 points of XG, so
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let Y ∈ XG be outside Fix(g) and let l be the unique line of Fix(g) containing Y . Then l

carries p ≥ 3 points of XG, which gives (19). Therefore 4.2(iv) yields

(20) G leaves invariant a Desarguesian subplane Π0 of order q, on which G acts

faithfully.

If X is the centre of the homology induced by τ on Π0, then CG(τ) acts on Fix(τ), fixing

X , contrary to 4.1(v) and Theorem 1.8.

Proof of Theorem 1.5(a) concluded,, in which G ∼= PSU(3, q), q �= 5, 11. We have Fix(g) =

Fix(τ ′) for all g ∈ Kτ ′ \ 1, since Fix(g) = Fix(τ ′). Also since Zτ ′ ∩ Kτ ⊆ Zτ ′ ∩ Zτ = 1

by (16), we have Zτ ′ ∼= Zτ ′ ∼= Zτ is cyclic of order (q + 1)/µ, and Kτ ′ ∼= Kτ ′ ∼= Kτ . In

particular τ ′ �= 1.

(21) Kτ = 〈τ〉, |Zτ | = q + 1
2µ

> 1.

If τ ′ is a Baer involution of Fix(τ) then using 2.4 and (16), |Kτ ′ | = |Kτ ′ | = |Kτ | divides(
q(q−1), (q+1)/µ

)
= 2, which yields (21).

Otherwise τ ′ is a homology of Fix(τ). Let e = |Kτ | and suppose that e > 2. By 5.1(vii)

we may suppose that τ ′, τ ′′ ∈ CG(τ) are involutions such that 〈Kτ ′ , Kτ ′′〉 ⊇ CG(τ)′. Now

a point X of Fix(τ) common to the axes of τ ′, τ ′′ is fixed by 〈Kτ ′ , Kτ ′′〉 ⊇ CG(τ)′ ∼=
PSL(2, q), contrary to Theorem 1.7. (Recall that the exceptional cases (iii), (iv) of 1.7 do

not occur if PSL(2, q) contains involutory homologies.) This concludes the proof of (21).

(22) Fix(g) is not a subplane of Fix(τ), for any g ∈ Zτ \ 1.

For suppose that Fix(g) is a (necessarily proper) subplane of Fix(τ) for some g ∈ Zτ \ 1.

Since Fix(g) is invariant under CG(τ), Corollary 5.2(v) of [28] implies that |Zτ | = (q+1)/2µ

divides q(q − 1), i.e. q ∈ {3, 5, 11}. (If q = 9 then |Zτ | = 5 � ∣∣ 81− 4 so that Fix(g) is not
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of order 4; by Theorem 3.3, the additional hypothesis required in [28,Cor.5.2] is satisfied.)

By hypothesis this means that q = 3, CG(τ)′ ∼= A4, Fix(τ) is either Desarguesian or a

Hughes plane of order 9 (see Prop. 2.7 of [28]), and CG(τ) leaves invariant an oval O
(i.e. quadrangle) of the subplane Fix(Zτ ) of order 3. The group of all collineations of

Fix(τ) leaving O invariant is isomorphic to S4 × H, where H fixes Fix(g) pointwise and

H ∼= C2 or S3 according as Fix(τ) is Desarguesian or Hughes. (See [32], [24,Cor.5,6] for the

collineation groups of the Hughes planes.) In neither case does S4×H contain a subgroup

isomorphic to CG(τ) = CG(τ)/〈τ〉. (Lemma 5.1(iii) yields CG(τ) ∼= A4 ×〈θ〉 where θ is

an automorphism of A4 of order 4. Any subgroup of S4 ×H of order 48 is isomorphic to

S4 × C2 or D8 × S3, where D8 is dihedral of order 8. However, since θ permutes regularly

the four Sylow 3-subgroups of A4, it is easily seen that CG(τ) has no subgroup isomorphic

to S3.)

(23) Zτ acts semiregularly on the points and lines of Fix(τ).

For if q = 9, (21) gives |Zτ | = 5 and by (22) it is clear that Zτ is a generalized homology

group of the subplane Fix(τ) of order 81. Since CG(τ)′ leaves invariant Fix(Zτ), it fixes

at least an antiflag in Fix(τ), contrary to Theorem 1.7.

Otherwise q �= 5, 9 and Theorem 1.7 implies that CG(τ)′ fixes no point or line of

Fix(τ). If (23) is false then by (22) and 2.1, Fix(g) is a triangle invariant under CG(τ)′,

for some g ∈ Zτ \ 1. But then Theorem 1.7 gives q = 3, and (21) gives |Zτ | = 2 so that g

is an involution, which can never be triangular. Therefore (23) must hold.

Now |Zτ | = (q + 1)/2µ divides q4 + q2 + 1 = (q2 − 1)(q2 + 2) + 3, and since q �= 5

by hypothesis, we have q = 17. By Theorem 1.9 and duality, we may assume that CG(τ)′

has a point orbit O ⊂ Fix(τ) which is an 18-arc. Let h ∈ CG(τ)′ have order 17, and let

X ∈ O be the unique point of O fixed by h. We have Zτ = 〈g〉 ∼= C3, and (23) implies

that {X,Xg, Xg2} is a triangle. But h fixes X,Xg, Xg2 and so h is a Baer collineation of

Fix(τ). But h acts transitively on O \ {X} which is a 17-arc in Fix(τ), whereas any point

orbit of a Baer collineation consists of collinear points, a contradiction.
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Proof of Theorem 1.5(b) concluded,, in which G ∼= PSU(3, q), q ∈ {5, 11}. We have

(24) Fix
(
NG(Q)

) �= Ø.

For suppose that Fix
(
NG(Q)

)
= Ø. Clearly Fix(Q) is neither empty nor a triangle, so by

2.1, Fix(Q) is a subplane of Π. By Theorem 6.1, [Q :Q0] < nP ≤ q2 where nP is the order

of ΠP = Fix(P ) and Q0 is the kernel of the action of Q on ΠP . Thus P ⊆′ Q0 < NG(Q),

so by 5.2(ii) we have Q0 = Q, i.e. Fix(Q) = ΠP . Let y ∈ Q \ P , and let nP , ny be the

respective orders of the subplanes ΠP , Fix(y). Since q is prime, P acts semiregularly on

the set of points of l outside ΠP , where l is a given line of ΠP , so that q
∣∣ q4 − nP , i.e.

q
∣∣nP . If ny = nP then Q acts semiregularly on the points of l outside ΠP , and q3

∣∣ q4−nP ,

contradicting nP ≤ q2. Hence q2 ≤ n2
P ≤ ny ≤ q2, and we have equality: nP = q, ny = q2.

Since Q acts trivially on ΠP , and by 5.2(i), 5.4, the collineation group N (say) induced

by NG(Q) on ΠP is cyclic of order dividing (q2 − 1)/µ. If q = 5 then |N | ∣∣ 8 and clearly N

fixes a point of ΠP . Hence we may assume that q = 11, |N | ∣∣ 40. If 2
∣∣ |N | then N contains

a homology of ΠP , whose centre is fixed by N . Otherwise |N | ∣∣ 5 and N fixes at least 3 of

the 112 + 11 + 1 points of ΠP . This proves (24).

By (24) and duality we may assume that G has a point orbit O of length q3 + 1. By

5.3(ii) and (17), O is either an oval or a unital embedded in Π. But if O is a unital then

τ fixes exactly q + 1 collinear points of O, whose common line is fixed by CG(τ), and so

CG(τ)′ acts reducibly on the subplane Fix(τ), and by 1.7 we have q �= 11 in this case.

Proof of Theorem 1.5(c), in which G ∼= PGU(3, q). Mimicking the proof of 1.5(a), it is

clear that

(21′) Kτ = 〈τ〉, |Zτ | = 1
2
(q + 1) > 1

and that (22) holds. If q �= 5 then (23) holds and |Zτ | = 1
2 (q + 1) divides q4 + q2 + 1,

a contradiction as before. For the remainder of the proof we may therefore assume that
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q = 5, |Zτ | = 3. Consider the action of CG(τ)′ ∼= PSL(2, 5) on the subplane Fix(τ) of

order 25.

Suppose that CG(τ)′ acts reducibly on Fix(τ). By Theorem 1.7, CG(τ)′ fixes an

antiflag (X, l) and has orbits O1, O2, O3, O4 of length 5, 5, 6, 10 on l, respectively. Now

Zτ fixes all 26 points of l in Fix(τ). (For Zτ cannot interchange O1 and O2 since |Zτ | = 3.

Thus Zτ leaves each Oi invariant, i = 1, 2, 3, 4. If Y ∈ Oi then Y is the unique point of Oi
fixed by CG(τ)′, so that Zτ fixes Y as claimed.) Let g ∈ CG(τ)′ be an involution. Then g

fixes 1, 1, 2, 2 points of O1, O2, O3, O4 respectively, so that Fix(g) is a subplane of order

5 on which Zτ induces an (X, l)-homology group, contradicting |Zτ | = 3.

Hence CG(τ)′ acts irreducibly on Fix(τ), and by duality we may assume by Theo-

rem 1.9 that CG(τ)′ has a point orbit O which is a 6-arc. This leads to a contradiction

just as in the case PSU(3,17) treated above.

10. THE CASE PSL(3,3)

We indicate here what happens when the additional hypothesis in Theorem 1.3 for

q = 3 is removed. Suppose that Π is a projective plane of order 81 admitting a reducible

collineation group G ∼= PGL(3, 3) = PSL(3, 3). We claim that Fix(G) is a subplane of

order 3. To see this, suppose that G fixes a line l, and let n1 be the number of points

of l fixed by G. For every maximal subgroup H of G satisfying [G : H] ≤ 82 we have

[G : H] = 13 (type 1 or 2 in the list of Mitchell [26,p.241]) so that 82 ≡ n1 mod 13.

However n1 ≤ 10 by (15), and so n1 = 4. Dually, every point of Π fixed by G lies on

exactly 4 fixed lines. Hence Fix(G) is a subplane of order 3 as claimed.

For the remainder of this paper we assume that Π is a projective plane of order q4

admitting G ∼= PGL(3, q) fixing pointwise a subplane Π0 of order q; having q2 + q + 1

point orbits of length q4 − q (those points outside Π0 but on some line of Π0); and with

the remaining q3(q3 − 1)(q2 − 1) points of Π forming a regular G-orbit. These conditions

are satisfied by the Lorimer-Rahilly translation plane in case q = 2. By Theorem 1.3 (see
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assertion (17), which is also implicit in the statement of Theorem 1.3) the only permissible

odd value of q is 3. The case q = 3 cannot yield a translation plane by [20] or [21,Lemma

4.6]; nevertheless to settle this exceptional possibility is a very interesting problem in which

the case q = 2 provides some inspiration. We proceed with the highlights, omitting the

details.

In any case by our hypothesis there exist flags (X, l), (Y,m) such that the stabilizers

GX = Gl = 1, and GY = Gm of order q2(q2 − 1). Then GY acts tangentially transitively

on Π relative to the Baer subplane Fix(GY ) (in a slight and obvious extension of the

terminology of Jha [20]). Furthermore NG(GY )/GY is a group of order q(q − 1) acting

faithfully on Fix(GY ), tangentially transitively relative to Π0 = Fix(G). If {g1, g2, . . . , gm}
is a set of m = q2 + q+1 representatives of the distinct right cosets of NG(GY ) in G, then

we may express G as the disjoint union

G = {1} ∪ (
Gg1Y \ 1

) ∪ (
Gg2Y \ 1

) ∪ · · · ∪ (
Ggm

Y \ 1
) ∪ T

where T is a normal subset of size q(q3− q− 1)
[
q(q3− q− 1)− 1

]
. If S = {g ∈ G : Xg ∈ l}

then |S| = q(q3 − q − 1) and every element t ∈ T is representable uniquely as t = s1s
−1
2

with s1, s2 ∈ S. Also every t ∈ T is representable uniquely as t = s−1
3 s4 with s3, s4 ∈ S.

(Thus S is a sort of ‘partial difference set’.)

In case q = 2 with the Lorimer-Rahilly plane, we may identify G ∼= PGL(3, 2) with the

permutation group
〈
(1234567), (12)(36)

〉
< A7, and then (X, l) may be chosen such that

S =
{
(1), (1264735), (1274653), (1367425), (1576423), (14)(3756), (16)(2437), (17)(2456),

(34)(1752), (45)(1632)
}
. In this case GY ∼= A4 and T is the union of the conjugacy classes

of types 4A, 7A and 7B in the notation of the Atlas [3,p.3].

In case q = 3 we have GY ∼= 32:Q8 where Q8 is quaternion of order 8. Also

NG(GY )/GY ∼= S3, so that Fix(GY ) is a Hughes, Hall or dual Hall plane of order 9

(as in the comments following Theorem 6.2). In the Atlas notation [3,p.13], T is the union

of the conjugacy classes of types 3B, 6A, 8A, 8B, 13A, 13B, 13C, 13D. A crucial step in

the construction of such an exceptional plane of order 81 appears to be finding a subset

S ⊂ G of size 69 satisfying the above ‘partial difference set’ condition, which remains an

open problem.
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