G. Eric Moorhouse ${ }^{1}$
$\operatorname{PSL}(3, q)$ AND PSU($3, q)$ ON PROJECTIVE PLANES
OF ORDER q^{4}

Abstract. Let $q=p^{m}$ be an odd prime power.
We show that a projective plane Π of order q^{4} admitting a collineation group $G \cong$ $\operatorname{PSL}(3, q)$ or $\operatorname{PSU}(3, q)$, has a G-invariant Desarguesian subplane Π_{0} of order q or q^{2} respectively, and that G contains involutory homologies of Π (with possible exceptions for $q=3,5$ or 11).

We also show that a projective plane Π of order q^{2} admitting a collineation group $G \cong$ $\operatorname{PSL}(2, q)$ or $\operatorname{PGL}(2, q)$, has a G-invariant $(q+1)$-arc or dual thereof, for most reasonably small odd q.

Most of our tools and techniques are known, except seemingly for our results concerning an abelian planar collineation group P of a projective plane Π. These results are applied here in each of the above situations for P a Sylow p-subgroup of G, and presumably they will enjoy broader application.

1. Results

Let $q=p^{m}$ be a prime power, $m \geq 1$, throughout. It is well known that a projective plane which admits $G \cong \operatorname{PSL}(3, q)$ as a collineation group is necessarily Desarguesian. (Indeed, a Sylow p-subgroup of G suffices; see Dembowski [4]). For planes of order q^{2} or q^{3}, the following characterizations 1.1,2 are known.
1.1 THEOREM (Unkelbach, Dembowski, Lüneburg). If Π is a projective plane of order q^{2} admitting a collineation group $G \cong \operatorname{PSL}(3, q)$, then Π is either Desarguesian or a generalized Hughes plane. Conversely, any Desarguesian or generalized Hughes plane of order q^{2}, save the exceptional Hughes plane of order 7^{2}, admits PSL $(3, q)$ as a collineation group.
(For completeness, we indicate a proof of 1.1 in $\S 4$, using the results of Unkelbach [35], Dembowski [6] and Lüneburg [24].) The generalized Hughes planes include the infinite

[^0]family of (ordinary) Hughes planes (one such plane of order q^{2} for each odd prime power q), together with the seven exceptional Hughes planes having order $5^{2}, 7^{2}, 11^{2}, 11^{2}, 23^{2}$, $29^{2}, 59^{2}$ respectively (see [24]).
1.2 THEOREM (Dempwolff [7]). If Π is a projective plane of order q^{3} admitting $G \cong$ $\operatorname{PSL}(3, q)$, then Π has a G-invariant Desarguesian subplane Π_{0} of order q on which G acts faithfully, and G contains elations and involutory homologies of Π. (Some additional orbit information is obtained in [7].)

The only known occurrences of 1.2 are the Desarguesian planes and the Figueroa planes [10], [14]. A comparison of the above results shows that as the order of Π is increased relative to $|G|$, it becomes increasingly difficult to completely classify the possibilities for Π to within isomorphism. We go one step further by proving (in $\S 9$) the following.
1.3 THEOREM. Suppose that Π is a projective plane of order q^{4} admitting $G \cong \operatorname{PSL}(3, q)$, q odd. If $q>3$ then the following must hold.
(i) G leaves invariant a Desarguesian subplane Π_{0} of order q, on which G induces the little projective group.
(ii) The involutions in G are homologies of Π, and those elements of G which induce elations of Π_{0} are elations of Π.

If $q=3$ then the same two conclusions must hold, under the additional hypothesis that G acts irreducibly on Π.
(A collineation group is irreducible if it leaves invariant no point, line or triangle.) In the same way we try to extend the following well-known result to planes of larger order.
1.4 THEOREM (Hoffer [16]). Suppose that Π is a projective plane of order q^{2} admitting a collineation group $G \cong \operatorname{PSU}(3, q)$. Then Π is Desarguesian and there is (to within equivalence) a unique faithful action of G on Π. G commutes with δ for some hermitian polarity δ of Π, and so G leaves invariant the corresponding hermitian unital.
(More is said about hermitian unitals in §5.) The following extension is proven (together with Theorem 1.3) in $\S 9$.
1.5 THEOREM. Suppose that Π is a projective plane of order q^{4} admitting $G \cong \operatorname{PSU}(3, q)$, q odd.
(a) If $q \neq 5,11$ then the following must hold:
(i) G leaves invariant a Desarguesian subplane Π_{0} of order q^{2}, on which G acts faithfully, leaving invariant a hermitian unital.
(ii) The involutions in G are homologies of Π.
(b) If $q=5$ or 11 and either conclusion (i) or (ii) above fails, then Π or its dual has a point orbit \mathcal{O} of length $q^{3}+1$, such that \mathcal{O} is an arc (for $q=5$ or 11) or a hermitian unital embedded in Π (for $q=5$ only).
(c) If the hypothesis $G \cong \operatorname{PSU}(3, q)$ is replaced by $G \cong \operatorname{PGU}(3, q)$ then (i), (ii) must hold for all odd prime powers q, including 5, 11.

In Theorems $1.3,5$ it is clear that any G-invariant subplane of Π contains Π_{0} (whenever Π_{0} itself exists) since Π_{0} is generated by the centres of involutory homologies in G.

The only known occurrences of $1.3,5$ are Desarguesian and Hughes planes. No analogues of Theorems 1.3,5 are known for q even. Indeed, 1.3 fails for $q=2$. Namely, if Π or its dual is a Lorimer-Rahilly translation plane of order 16 (see [22]) then Π admits a collineation group $G \cong \operatorname{PSL}(3,2)$ such that $\operatorname{Fix}(G)$ is a subplane of order 2 . We remark on the situation for $q=3$ in $\S 10$, pointing out an intriguing similarity with the case $q=2$.

If $G \cong \operatorname{PSL}(3, q)$ or $\operatorname{PSU}(3, q)$ and $\tau \in G$ is an involution, then $\mathrm{C}_{G}(\tau)^{\prime} /\langle\tau\rangle \cong$ $\operatorname{PSL}(2, q)$. Accordingly in proving $1.3,5$, in case τ is a Baer involution of Π, we require results concerning the action of $\operatorname{PSL}(2, q)$ on a plane of order q^{2}. We prove some such results, which are new and interesting in their own right. First, however, we make extensive use of the following well known result, proven in [25].
1.6 THEOREM (Lüneburg, Yaqub). Suppose that Π is a projective plane of order q admitting $G \cong \operatorname{PSL}(2, q)$. Then Π is Desarguesian. G acts irreducibly on Π for odd $q>3$,
and leaves invariant a triangle but no point or line for $q=3$. G fixes a point and/or line of Π if q is even.

In [28] we also proved the following.
1.7 THEOREM. Suppose that Π is a projective plane of order q^{2} admitting $G \cong \operatorname{PSL}(2, q)$, q odd. Then one of the following must hold:
(i) G acts irreducibly on Π;
(ii) $q=3$ and G fixes a triangle but no point or line of Π;
(iii) $q=5, \operatorname{Fix}(G)$ consists of an antiflag (X, l), and G has point orbits of length $5,5,6$, 10 on l; or
(iv) $q=9$ and $\operatorname{Fix}(G)$ consists of a flag.

For certain values of q we shall make use of the following result, proven in $\S 7$. Note that the case $G / K \cong \operatorname{PGL}(2, q)$ is especially included.
1.8 THEOREM. Suppose $G=\mathrm{GL}(2, q)$ acts as a group of collineations of a projective plane Π of order q^{2}, q odd, such that the kernel K of this action satisfies $K \leq \mathrm{Z}(G)$, $2||K|$. Then G fixes no point or line of Π, and leaves invariant a triangle precisely when $q=3$. Furthermore, one of the following must hold:
(i) there is a point orbit which is a $(q+1)$-arc;
(ii) the dual of (i); or
(iii) $q>10^{6}$ and q is a square.

In $\S 8$ we prove the following related result, although this is only required for $q=5,17$ in proving Theorem 1.5.
1.9 THEOREM. Suppose that Π is a projective plane of order q^{2} admitting $G \cong \operatorname{PSL}(2, q)$, q odd, and that q is not a square (i.e. m is odd). If $q \neq 5$ then one of the following must hold:
(i) there is a point orbit which is a $(q+1)$-arc;
(ii) the dual of (i); or
(iii) $q>5000$ and $q \equiv 3 \bmod 8$.

Furthermore if $q=5$ then either (i) or (ii) must hold under the additional hypothesis that G acts irreducibly on Π.

In the situation of Theorems $1.8,9$ it is natural to conjecture that conclusions (i),(ii) must hold in all cases, that such a $(q+1)$-arc generates a proper subplane of Π; and that G contains involutory homologies. These statements we could not verify (see however Corollary 5.2 of [28]).

This paper is a sequel to [28], which we will quote freely. Most of the new results contained herein were contained in the author's doctoral thesis [27] under the kind supervision of Professor Chat Y. Ho.

2. Notation and Preliminaries

Most of our notation and terminology is standard. Some better-known results are stated below without proof and the reader is referred to [11] for group theory, and [5] or [18] for projective planes.

We denote the cyclic group of order n by C_{n}, and the symmetric and alternating groups of degree n by S_{n} and A_{n}. For a finite group G we denote by G^{\prime} the derived subgroup of G, and by $\operatorname{Syl}_{p}(G)$ the class of all Sylow p-subgroups of G. We denote by $G \rtimes H$ the semidirect product of G with H (see [31]). An involution is a group element of order 2 .

For a permutation group $G \leq \operatorname{Sym} \Omega$ and an element $X \in \Omega$, we denote the stabilizer of X by $G_{X}=\left\{g \in G: X^{g}=X\right\}$, and the G-orbit of X by $X^{G}=\left\{X^{g}: g \in G\right\}$. We say that G acts semiregularly on Ω if $G_{X}=1$ for all $X \in \Omega$. Also G acts regularly if it acts both transitively and semiregularly.

Let Π be a finite projective plane. A pair (X, l) consisting f a point X and a line l of Π, is a flag or an antiflag according as $X \in l$ or $X \notin l$. A collineation $g \neq 1$ of Π
is a generalized (X, l)-perspectivity if it fixes the point X and the line l, and if any additional fixed points (resp., lines) lie on l (resp., pass through X). If g fixes l pointwise and X linewise, g is an (X, l)-perspectivity with centre X and axis l. (Following [5], we include the identity $1 \in$ Aut Π as both a perspectivity and a generalized perspectivity.) We say elation or homology in place of 'perspectivity' according as $X \in l$ or $X \notin l$. If S is a set of collineations of Π then by $\operatorname{Fix}(S)$ we mean the full closed substructure of Π consisting of all points and lines fixed by every element of S.
2.1 PROPOSITION. If G acts on a projective plane Π such that $\operatorname{Fix}(G)=\varnothing$, then for any $N \unlhd G, \operatorname{Fix}(N)$ is either empty, a triangle, or a (not necessarily proper) subplane of Π.

For a proof, see [13,Cor.3.6].
2.2 THEOREM (Bruck). If Π_{0} is a proper subplane of Π, then their respective orders n_{0}, n satisfy either $n_{0}^{2}=n$ or $n_{0}^{2}+n_{0} \leq n$.

If $n_{0}=n$, we call Π_{0} a Baer subplane of Π. In this case each point of Π lies on some line of Π_{0}. If $\operatorname{Fix}(G)$ is a subplane (respectively, a Baer subplane, a triangle) of Π, we say that G is a planar (resp., Baer, triangular) collineation group of Π. A quasiperspectivity is either a perspectivity or a Baer collineation.
2.3 THEOREM (Roth). In 2.2 if we assume in addition that $\Pi_{0}=\operatorname{Fix}(G)$ for some collineation group G of Π, then either $n_{0}^{2}=n$ or $n_{0}^{2}+n_{0}+2 \leq n$.
2.4 PROPOSITION. If Π is a finite projective plane with Baer collineation group G, then $|G| \mid n(n-1)$.

Proposition 2.4, together with its analogue for perspectivities (see Lemma 4.10 of [18]) are elementary and will often be used without explicit mention.
2.5 THEOREM (Baer). Any involutory collineation of a finite projective plane is a quasiperspectivity.
2.6 PROPOSITION. If g_{i} is an $\left(X_{i}, l_{i}\right)$-perspectivity of $\Pi, i=1,2, X_{1} \neq X_{2}, l_{1} \neq l_{2}$ then $g_{1} g_{2}$ is a generalized ($l_{1} \cap l_{2}, X_{1} X_{2}$)-perspectivity of Π.
3. The Groups $\operatorname{PSL}(2, q), \operatorname{PGL}(2, q)$

We assume the reader's familiarity with the classification of subgroups of $\operatorname{PSL}(2, q)$ as given in [9], [19] or [34]. Note that if $G \cong \operatorname{PGL}(2, q)$ then G is isomorphic to a subgroup of $\operatorname{PSL}\left(2, q^{2}\right)$, so by applying the latter classification to $\operatorname{PSL}\left(2, q^{2}\right)$ as well as to $G^{\prime} \cong$ $\operatorname{PSL}(2, q)$, we may in fact classify the subgroups of G.
3.1 LEMMA. If $q=p^{m}$ is odd then
(i) $\operatorname{PGL}(2, q)$ has a single conjugacy class of elements of order p;
(ii) $\operatorname{PSL}(2, q)$ has exactly 2 conjugacy classes of elements of order p; it has 2 or 1 conjugacy class(es) of subgroups of order p according as q is or is not a square.

Proof of (ii). Let $G \cong \operatorname{PSL}(2, q), P \in \operatorname{Syl}_{p}(G), N=\mathrm{N}_{G}(P), g \in P \backslash 1$. Then G contains $q^{2}-1$ elements of order p, of which $q-1$ lie in each of the $q+1$ conjugates of $P ;|G|=$ $\frac{1}{2} q\left(q^{2}-1\right), \mathrm{C}_{G}(g)=P,\left|\mathrm{~N}_{G}(\langle g\rangle)\right|=(m, 2) q(p-1) / 2$ and the statement follows.
3.2 LEMMA. Let $G \cong \operatorname{PGL}(2, q), q$ odd. If e is an even divisor of $q+1$ such that $e>2$, then G contains a pair of elements x, y of order e such that $\langle x, y\rangle \supseteq G^{\prime} \cong \operatorname{PSL}(2, q)$.

Proof. If $e=q+1$ then we may choose $x, y \in G$ of order e such that $\langle x\rangle \neq\langle y\rangle$, and then the classification of subgroups of G (see [9], [19], [34]) gives $\langle x, y\rangle=G$. In particular, we may assume that $q \neq 3,5,9$.

Let u, v be the elements of G represented by

$$
\left(\begin{array}{ll}
0 & 1 \\
\zeta & 0
\end{array}\right), \quad\left(\begin{array}{cc}
0 & 1 \\
\zeta^{3} & 0
\end{array}\right)
$$

respectively, where ζ is a generator of the multiplicative group $\operatorname{GF}(q) \backslash\{0\}$. Then $\langle u, v\rangle$ is dihedral of order $q-1$. Now $\mathrm{C}_{G}(u), \mathrm{C}_{G}(v)$ are dihedral of order $2(q+1)$ since ζ, ζ^{3} are non-squares. We may therefore choose $x \in \mathrm{C}_{G}(u), y \in \mathrm{C}_{G}(v)$ of order e.

Now $\langle x, y\rangle \supseteq\langle u, v\rangle$, but $\langle x, y\rangle \nsubseteq \mathrm{N}_{G}(\langle u, v\rangle)$, since for $q>3$, the latter is dihedral of order e. If $q \geq 11$ then $\langle x, y\rangle \supseteq G^{\prime}$ by the classification of subgroups of G. By the initial argument, the only case left to consider is $q=7, e=4$, in which case $\langle u, v\rangle \cong \mathrm{S}_{3},\langle x, y\rangle \supseteq G^{\prime}$ unless $\langle x, y\rangle \cong \mathrm{S}_{4}$. But in the latter case $u=x^{2}, v=y^{2}$ generate an elementary abelian group of order 4, a contradiction.

The following is proven in [28].
3.3 THEOREM. If a projective plane Π of order $n<q$ admits a collineation group $G \cong$ $\operatorname{PSL}(2, q)$, then Π is Desarguesian and $(n, q)=(2,3),(2,7),(4,5),(4,7)$ or $(4,9)$. Moreover each of these exceptional cases indeed occurs.

4. The Groups PSL $(3, q), \operatorname{PGL}(3, q)$

Let $G \cong \operatorname{PSL}(3, q), F=\operatorname{GF}(q), F^{\times}=F \backslash\{0\}$ so that $|G|=q^{3}\left(q^{3}-1\right)\left(q^{2}-1\right) / \mu$ where $\mu=(q-1,3)$. Throughout $\S 4$ we assume that $q=p^{m}$ is odd. Of the following facts concerning G, those which are stated without proof are either well-known or follow by elementary methods from the list in [26] of maximal subgroups of G. (The corresponding list for q even is given in [12]. Note that certain of the following, eg. 4.1(i), fail for q even.)

Consider the following elements and subgroups of G, as represented by matrices in SL(3, q):

$$
\begin{aligned}
\tau & =\operatorname{diag}(-1,-1,1), \quad Z_{\tau}=\mathrm{Z}\left(\mathrm{C}_{G}(\tau)\right)=\left\{\operatorname{diag}\left(d, d, d^{-2}\right): d \in F^{\times}\right\}, \\
\mathrm{C}_{G}(\tau) & =\left\{\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & e^{-1}
\end{array}\right): \begin{array}{c}
a, b, c, d \in F, \\
e=a d-b c \neq 0
\end{array}\right\}, \\
\mathrm{C}_{G}(\tau)^{\prime} & =\left\{\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right): \begin{array}{c}
a, b, c, d \in F, \\
a d-b c=1
\end{array}\right\} \cong \mathrm{SL}(2, q), \\
P_{0} & =\left\{\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right): a, b \in F\right\}, \quad P_{1}=\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & b & 1
\end{array}\right): a, b \in F\right\}, \\
Q & =\left\{\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): a, b, c \in F\right\} \in \operatorname{Syl}_{p}(G), \\
P & =\left\{\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): a \in F\right\}=\mathrm{Z}(Q)=Q^{\prime}, \\
\mathrm{N}_{G}(Q) & =Q \rtimes K, \quad K=\left\{\operatorname{diag}\left(d, e,(d e)^{-1}\right): d, e \in F^{\times}\right\} .
\end{aligned}
$$

Likewise define $Z_{\omega}=\mathrm{Z}\left(\mathrm{C}_{G}(\omega)\right)$ for any involution $\omega \in G$.

4.1 LEMMA.

(i) G has a single conjugacy class of involutions, and G acts transitively by conjugation on the set of ordered pairs of commuting distinct involutions. One such pair is $\left\{\tau, \tau^{\prime}\right\}$ where $\tau^{\prime}=\operatorname{diag}(-1,1,-1)$.
(ii) $\left|\mathrm{C}_{G}(\tau)\right|=q(q+1)(q-1)^{2} / \mu, \quad\left|Z_{\tau}\right|=(q-1) / \mu$.
(iii) $\mathrm{C}_{G}(\tau)=\mathrm{C}_{G}(\tau)^{\prime} \rtimes Z_{\tau^{\prime}}$.
(iv) $\mathrm{C}_{G}(\tau) / Z_{\tau} \cong \operatorname{PGL}(2, q)$.
(v) $\mathrm{C}_{G}(\tau) \cong H / \Xi_{\mu}$ where $H \cong \mathrm{GL}(2, q), \Xi_{\mu} \leq \mathrm{Z}(H),\left|\Xi_{\mu}\right|=\mu$.
(vi) G contains involutions τ_{1}, τ_{2} such that $\mathrm{C}_{G}\left(\tau_{1}\right)^{\prime} \cap \mathrm{C}_{G}\left(\tau_{2}\right)^{\prime} \neq 1,\left\langle\mathrm{C}_{G}\left(\tau_{1}\right)^{\prime}, \mathrm{C}_{G}\left(\tau_{2}\right)^{\prime}\right\rangle=G$.

Figure 4A

Proof of (vi). Let Σ be a Desarguesian plane of order q admitting G as its little projective group, and consider the configuration in Σ shown in Figure 4A. Let $\tau_{i} \in G$ be the involutory $\left(X_{i}, l_{i}\right)$-homology of $\Sigma, i=1,2$. Then $\mathrm{C}_{G}\left(\tau_{1}\right)^{\prime} \cap \mathrm{C}_{G}\left(\tau_{2}\right)^{\prime} \supseteq G\left(X_{0}, l_{0}\right)$ and $\left\langle\mathrm{C}_{G}\left(\tau_{1}\right)^{\prime}, \mathrm{C}_{G}\left(\tau_{2}\right)^{\prime}\right\rangle$ fixes no point or line of Σ, so by $[26]$ we have $\left\langle\mathrm{C}_{G}\left(\tau_{1}\right)^{\prime}, \mathrm{C}_{G}\left(\tau_{2}\right)^{\prime}\right\rangle=G$.
4.2 LEMMA.
(i) $\left\langle P_{0}, P_{1}\right\rangle=G$.
(ii) G has exactly two conjugacy classes of subgroups of index $q^{2}+q+1$, represented by $P_{0} \mathrm{C}_{G}(\tau)$ and $P_{1} \mathrm{C}_{G}(\tau)$. These two classes are interchanged by the transpose-inverse automorphism of G.
(iii) Suppose that $G \leq$ Aut Σ where Σ is a projective plane of order q. Then Σ is Desarguesian. There are two equivalence classes of faithful actions of G on Π. In one such action, $P_{0} \mathrm{C}_{G}(\tau)$ (respectively, $P_{1} \mathrm{C}_{G}(\tau)$) is the stabilizer of a point (resp., a line) of Σ.
(iv) Suppose that $G \leq$ Aut Π where Π is a projective plane, and let X be a point of Π. If the orbit X^{G} has length $q^{2}+q+1$, then its points are either collinear, form an arc, or generate a Desarguesian subplane of order q.

Proof of (iv). It is convenient to let Σ be a Desarguesian plane of order q disjoint from Π, and to let G act on Σ as its little projective group in such a way that G_{X} fixes a point (i.e. rather than a line - see (iii)) of Σ. There exists a bijection θ from X^{G} to the point set of Σ which commutes with the action of G, viz. $X^{\theta g}=X^{g \theta}$ for all $g \in G$.

Now G acts 2-transitively on $\left(X^{\theta}\right)^{G}$ and hence on X^{G}. Therefore X^{G} forms a 2design (see [2]) whose blocks are the members of l^{G}, where l is a given line of Π joining two given points of X^{G}. If l contains exactly two points of X^{G} then X^{G} is an arc. We
may assume that l contains at least three distinct points $X_{1}, X_{2}, X_{3} \in X^{G}$, and l is fixed by $\left\langle G_{X_{i}, X_{j}}: 1 \leq i<j \leq 3\right\rangle$. If $X_{1}^{\theta}, X_{2}^{\theta}, X_{3}^{\theta}$ form a triangle in Σ then $G_{l} \supseteq\left\langle G_{X_{i}^{\theta}, X_{j}^{\theta}}\right.$: $1 \leq i<j \leq 3\rangle=G$ (by [26,pp.239-240], observing that $\left\langle G_{X_{1}, X_{2}}, G_{X_{1}, X_{3}}\right\rangle=G_{X_{1}}$) and so all points in X^{G} lie on l. Otherwise $X_{1}^{\theta}, X_{2}^{\theta}, X_{3}^{\theta}$ all lie on some line l_{1} of $\Sigma, G_{l}=G_{l_{1}}$, l contains exactly $q+1$ points of X^{G} and θ^{-1} is an imbedding of Σ in Π.

Proof of Theorem 1.1. Suppose that $G \leq$ Aut Π where Π is a projective plane of order q^{2}. By [35,Satz 1], G leaves invariant a Desarguesian subplane Π_{0} of order q, and G acts faithfully on Π_{0}. (However, the later proofs of $[35, \S 4]$ contain flaws as pointed out by Lüneburg [24].) By [6,Satz 1], G acts transitively on the set of flags (X, l) of Π such that neither X nor l belongs to Π_{0}. By [24,Thm.2], Π is a Desarguesian or generalized Hughes plane as required. The converse also holds; the full collineation groups of the generalized Hughes planes were determined by Rosati [32], [33] (see also see [24,Cor.5,6]).

Now suppose rather that $G \cong \operatorname{PGL}(3, q)$, where as before q is odd. The above notations still apply, with the following modifications:

$$
\begin{aligned}
Z_{\tau} & =\left\{\operatorname{diag}(1,1, d): d \in F^{\times}\right\}, \\
\mathrm{C}_{G}(\tau) & =\left\{\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right): \begin{array}{c}
a, b, c, d \in F \\
a d-b c \neq 0
\end{array}\right\}
\end{aligned}
$$

where elements of G are now represented by matrices in $\operatorname{GL}(3, q)$, and $|G|=q^{3}\left(q^{3}-1\right) \times$ $\left(q^{2}-1\right)$.
4.3 LEMMA. The above Lemmas $4.1,2$ remain valid with $G \cong \operatorname{PGL}(3, q)$, with the following amendments: 4.1(ii) becomes $\left|\mathrm{C}_{G}(\tau)\right|=q(q+1)(q-1)^{2},\left|Z_{\tau}\right|=q-1$; and 4.1(v) becomes $\mathrm{C}_{G}(\tau) \cong \mathrm{GL}(2, q)$.

5. The Groups $\operatorname{PSU}(3, q), \operatorname{PGU}(3, q)$

In $\S 5$ we again restrict our attention to the case $q=p^{m}$ is odd, and let $F=\operatorname{GF}\left(q^{2}\right), F^{\times}=$ $F \backslash\{0\}$. For $A \in \operatorname{GL}\left(3, q^{2}\right)$ let A^{T} denote its transpose, and let \bar{A} denote the matrix obtained by applying the field automorphism $a \mapsto \bar{a}=a^{q}$ to each entry of A. (We caution the reader that our matrix entries are from $F=\operatorname{GF}\left(q^{2}\right)$ rather than $\operatorname{GF}(q)$, for which reason certain authors have prefered the notation $\operatorname{PGU}\left(3, q^{2}\right)$ to that which we have followed.)

Let $G \cong \operatorname{PGU}(3, q)$, so that $|G|=q^{3}\left(q^{3}+1\right)\left(q^{2}-1\right)$. We shall represent the elements of G as matrices $A \in \mathrm{GL}\left(3, q^{2}\right)$ such that $A W \bar{A}^{\mathrm{T}}=W$, modulo the scalar matrices $\left\{a I: a \in F^{\times}, a \bar{a}=1\right\}$, where $W \in \mathrm{GL}\left(3, q^{2}\right)$ is a suitably chosen hermitian matrix (i.e. $\left.\bar{W}^{\mathrm{T}}=W\right)$. We choose W and name certain elements of G as follows.

$$
\begin{aligned}
W & =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \tau^{\prime}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right), \\
\tau & =\operatorname{diag}(-1,1,-1), \quad Z_{\tau}=\mathrm{Z}\left(\mathrm{C}_{G}(\tau)\right)=\left\{\operatorname{diag}(1, d, 1): d \in F^{\times}, d \bar{d}=1\right\}, \\
\mathrm{C}_{G}(\tau) & =\left\{\left(\begin{array}{lll}
a & 0 & b \\
0 & 1 & 0 \\
c & 0 & d
\end{array}\right): a, b, c, d \in F,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\bar{a} & \bar{c} \\
\bar{b} & \bar{d}
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\}, \\
\mathrm{C}_{G}(\tau)^{\prime} & =\left\{\left(\begin{array}{lll}
a & 0 & b \\
0 & 1 & 0 \\
c & 0 & d
\end{array}\right) \in \mathrm{C}_{G}(\tau): a d-b c=1\right\} \cong \mathrm{SL}(2, q), \\
Q & =\left\{\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & -\bar{a} \\
0 & 0 & 1
\end{array}\right): \begin{array}{c}
a \bar{a}+b+\bar{b}=0
\end{array}\right\} \in \operatorname{Syl}_{p}(G), \\
P & =\left\{\left(\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): b \in F, b+\bar{b}=0\right\}=\mathrm{Z}(Q)=Q^{\prime}, \\
\mathrm{N}_{G}(Q) & =Q \rtimes K, \quad K=\left\{\operatorname{diag}\left(d, 1, d^{-q}\right): d \in F^{\times}\right\} .
\end{aligned}
$$

Likewise define $Z_{\omega}=\mathrm{Z}\left(\mathrm{C}_{G}(\omega)\right)$ for any involution $\omega \in G$.
Let Σ be a Desarguesian plane of order q^{2} with points (resp., lines) represented by F-subspaces of $F^{3}=\{(a, b, c): a, b, c \in F\}$ of dimension 1 (resp., 2). Right-multiplication of elements of G on vectors of F^{3} induces an action of G on Σ, and G commutes with the
hermitian polarity δ, where for a point X of Σ represented by $(a, b, c) \in F^{3} \backslash\{(0,0,0)\}$, we define X^{δ} to be the line

$$
\left\{(x, y, z) \in F^{3}:(x, y, z) W(\bar{a}, b, \bar{c})^{\mathrm{T}}=0\right\} .
$$

Now Σ has $q^{3}+1$ absolute points with respect to δ (i.e. points X such that $X \in X^{\delta}$) and $q^{2}\left(q^{2}-q+1\right)$ nonabsolute lines (i.e. lines l such that $l^{\delta} \notin l$. These together form a $2-\left(q^{3}+1, q+1,1\right)$ design (see [2]) called a hermitial unital (see [5,p.104], [15,p.156]). Note that P consists of all $\left(X, X^{\delta}\right)$-elations of Σ in G, and Z_{τ} consists of all $\left(Y, Y^{\delta}\right)$-homologies of Σ in G, where $X=(0,0,1)$ is absolute and $Y=(0,1,0)$ is nonabsolute.

We state below a few facts concerning G, omitting the proofs of those statements which are well known or which follow readily from [16], [26,p.241], [29].

5.1 LEMMA.

(i) G has a single conjugacy class of involutions, and G acts transitively by conjugation on the set of ordered pairs of commuting distinct involutions. One such pair is $\left\{\tau, \tau^{\prime}\right\}$ where $\tau^{\prime}=\operatorname{diag}(-1,1,-1)$.
(ii) $\left|\mathrm{C}_{G}(\tau)\right|=q(q+1)^{2}(q-1), \quad\left|Z_{\tau}\right|=q+1$.
(iii) $\mathrm{C}_{G}(\tau)=\mathrm{C}_{G}(\tau)^{\prime} \rtimes Z_{\tau^{\prime}}$.
(iv) $\mathrm{C}_{G}(\tau) / Z_{\tau} \cong \operatorname{PGL}(2, q)$.
(v) $\mathrm{C}_{G}(\tau)$ is the unique maximal subgroup of G containing $\mathrm{C}_{G}(\tau)^{\prime}$.
(vi) G contains involutions τ_{1}, τ_{2} such that $\mathrm{C}_{G}\left(\tau_{1}\right)^{\prime} \cap \mathrm{C}_{G}\left(\tau_{2}\right)^{\prime} \neq 1,\left\langle\mathrm{C}_{G}\left(\tau_{1}\right)^{\prime}, \mathrm{C}_{G}\left(\tau_{2}\right)^{\prime}\right\rangle$ $=G$.
(vii) If $e>2$ is an even divisor of $q+1$ then there exists an involution $\tau^{\prime \prime} \in \mathrm{C}_{G}(\tau)$ and elements $x \in Z_{\tau^{\prime}}, y \in Z_{\tau^{\prime \prime}}$ of order e such that $\langle x, y\rangle \supseteq \mathrm{C}_{G}(\tau)^{\prime}$.
(viii) Suppose that $q=3$ and $\omega \in G$ is an involution. Then $\mathrm{O}_{2}\left(\mathrm{C}_{G}(\omega)^{\prime}\right)=\mathrm{O}_{2}\left(\mathrm{C}_{G}(\omega)\right)$ is quaternion. Furthermore if $[\tau, \omega]=1$ then $\left\langle\mathrm{O}_{2}\left(\mathrm{C}_{G}(\tau)\right), \mathrm{O}_{2}\left(\mathrm{C}_{G}(\omega)\right)\right\rangle=\mathrm{N}_{G}(\langle\tau, \omega\rangle)$ of order 96; if $[\tau, \omega] \neq 1$ then $\left\langle\mathrm{O}_{2}\left(\mathrm{C}_{G}(\tau)\right), \mathrm{O}_{2}\left(\mathrm{C}_{G}(\omega)\right)\right\rangle=G$.
(ix) If $q=3$ then there exists an involution $\tau^{\prime \prime} \in \mathrm{C}_{G}(\tau)$ such that $\left[\tau^{\prime}, \tau^{\prime \prime}\right] \neq 1, \tau^{\prime} \tau^{\prime \prime} \in$ $\mathrm{O}_{2}\left(\mathrm{C}_{G}(\tau)\right)$.

Proof of (vi), (vii), (ix). Let l_{0} be an absolute line of Σ, and let $X_{0}=l_{0}^{\delta}, X_{1}, X_{2}$ be three distinct points of l_{0}. Then (vi) follows as in 4.1(vi).

By 3.2 there exist $x, y \in \mathrm{C}_{G}(\tau)$ such that $\bar{x}, \bar{y} \in \overline{\mathrm{C}_{G}(\tau)}$ are of order e, and $\langle\bar{x}, \bar{y}\rangle \supseteq$ $\overline{\mathrm{C}_{G}(\tau)^{\prime}} \cong \mathrm{PSL}(2, q)$ where the bars indicate the canonical images in $\mathrm{C}_{G}(\tau) / Z_{\tau} \cong \mathrm{PGL}(2, q)$. Now $Z_{\tau^{\prime}}$ contains an element u of order e, and since $Z_{\tau^{\prime}} \cap Z_{\tau}=1$, the image $\bar{u} \in \overline{\mathrm{C}_{G}(\tau)}$ is also of order e. Since $\overline{\mathrm{C}_{G}(\tau)}$ has a single conjugacy class of cyclic subgroups of order e, we may assume that $x \in Z_{\tau^{\prime}}$, and we also have $y \in Z_{\tau^{\prime \prime}}$ for some involution $\tau^{\prime \prime} \in \mathrm{C}_{G}(\tau)$, and x, y have order e.

Now $\langle x, y\rangle Z_{\tau} \supseteq \mathrm{C}_{G}(\tau)^{\prime} Z_{\tau}$ which yields $\langle x, y\rangle \supseteq\left(\mathrm{C}_{G}(\tau)^{\prime}\right)^{\prime}$. If $q>3$ then $\left(\mathrm{C}_{G}(\tau)^{\prime}\right)^{\prime}=$ $\mathrm{C}_{G}(\tau)^{\prime}$ and so we are done. If $q=3$ then $\langle x, y\rangle \supseteq\left(\mathrm{C}_{G}(\tau)^{\prime}\right)^{\prime}$, the latter being quaternion; but also $\langle x, y\rangle$ contains an element of order 3 , so that $\langle x, y\rangle \supseteq \mathrm{C}_{G}(\tau)^{\prime}$ and in any case (vii) holds.

If $q=3$ then

$$
\mathrm{O}_{2}\left(\mathrm{C}_{G}(\tau)\right)=\left\langle\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 1 & 0 \\
i & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & -i \\
0 & 1 & 0 \\
i & 0 & 1
\end{array}\right)\right\rangle
$$

where $i \in F, i^{2}=-1$, and so (ix) follows by taking

$$
\tau^{\prime \prime}=\left(\begin{array}{ccc}
i & 0 & 1 \\
0 & -1 & 0 \\
-1 & 0 & -i
\end{array}\right)
$$

5.2 LEMMA.

(i) K is cyclic of order $q^{2}-1$. For $d \mid q^{2}-1$ let K_{d} be the subgroup of order d in K. Then $Z_{\tau}=K_{q+1}$.
(ii) K acts irreducibly on the vector space Q / P of dimension $2 m$ over $\operatorname{GF}(p)$.
(iii) $\mathrm{C}_{G}(\tau)=\mathrm{C}_{G}(\tau)^{\prime} K$.

5.3 LEMMA.

(i) G has a single conjugacy class of subgroups of index $q^{3}+1$, represented by $\mathrm{N}_{G}(Q)$.
(ii) Suppose that $G \leq$ Aut Π where Π is a projective plane, and let X be a point of Π. If the orbit X^{G} has length $q^{3}+1$, then its points are either collinear, form an arc, or form the point set of a hermitian unital embedded in Π.

Proof of (ii). There exists a bijection θ from X^{G} to the set of absolute points of Σ with respect to δ, such that θ commutes with the action of G, i.e. $X^{\theta g}=X^{g \theta}$ for all $g \in G$. The result follows as in the proof of 4.2 (iv), using instead p. 241 of [26].
5.4 LEMMA. The above Lemmas 5.1-3 remain valid with $G \cong \operatorname{PSU}(3, q)$, with the following amendments: 5.1(ii) becomes $\left|\mathrm{C}_{G}(\tau)\right|=q(q+1)^{2}(q-1) / \mu,\left|Z_{\tau}\right|=(q+1) / \mu$ where $\mu=(q+1,3)$; 5.1(vii) requires the additional hypothesis that $e \mid(q+1) / \mu$ (and in particular $q \neq 5) ;|K|=\left(q^{2}-1\right) / \mu$ and $Z_{\tau}=K_{(q+1) / \mu}$ in 5.2(i).

6. Abelian Planar Collineation Groups

Recall that a collineation group G of a projective plane Π is planar if $\operatorname{Fix}(G)$ is a subplane of Π. That such collineation groups must often be considered is evident from 2.1. Our results concern the simplest such case, in which G is abelian. For example the following is proven in [28].
6.1 THEOREM. If G is a faithful abelian planar collineation group of a projective plane Π of order n, then $|G|<n$.

Suppose now that G is a faithful abelian planar collineation group of a finite projective plane Π, and let $\Pi_{G}=\operatorname{Fix}(G)$. If Π_{1}, Π_{2} are subplanes of Π, then we shall denote by $\left\langle\Pi_{1}, \Pi_{2}\right\rangle$ the subplane generated by Π_{1} and Π_{2}; we shall write $\Pi_{1} \subseteq \Pi_{2}$ if Π_{1} is a subplane of Π_{2}. For any subplane $\Sigma \subseteq \Pi$, let

$$
G_{\Sigma}=\{g \in G: g \text { fixes } \Sigma \text { pointwise }\}, \quad \mathcal{G}=\left\{G_{\Sigma}: \Sigma \subseteq \Pi\right\}
$$

For any subgroup $H \leq G$, let

$$
\Pi_{H}=\operatorname{Fix}(H), \quad \mathcal{P}=\left\{\Pi_{H}: H \leq G\right\} ;
$$

note that \mathcal{P} consists of certain subplanes of Π containing Π_{G}. We consider \mathcal{G}, \mathcal{P} as posets (i.e. partially ordered sets, with respect to inclusion denoted as usual by \subseteq). Let $\mathrm{St}: \mathcal{P} \rightarrow \mathcal{G}$ (abbreviation for 'stabilizer') denote the restriction to \mathcal{P} of the map $\Sigma \mapsto G_{\Sigma}$, and let the restriction $\left.\operatorname{Fix}\right|_{\mathcal{G}}$ also be denoted by Fix, so that Fix: $\mathcal{G} \rightarrow \mathcal{P}$ is the map $H \mapsto \Pi_{H}$. The following properties may be immediately verified.
(i) $\quad \mathcal{G}$ contains both $G=\operatorname{St}\left(\Pi_{G}\right)$ and $1=\operatorname{St}(\Pi)$;
\mathcal{P} contains both $\Pi=\operatorname{Fix}(1)$ and $\Pi_{G}=\operatorname{Fix}(G)$.
(ii) $\quad G$ leaves invariant every member of \mathcal{P} (because G is abelian).
(iii) Fix reverses inclusion, i.e. $\Pi_{H} \subseteq \Pi_{K}$ whenever $H \supseteq K, H, K \in \mathcal{G}$.
(iv) St reverses inclusion, i.e. $G_{\Sigma} \subseteq G_{\Sigma^{\prime}}$ whenever $\Sigma \supseteq \Sigma^{\prime}, \Sigma, \Sigma^{\prime} \in \mathcal{P}$.
(v) \quad Fix $\circ \mathrm{St}=\mathrm{id}_{\mathcal{P}}$, $\mathrm{St} \circ \mathrm{Fix}=\mathrm{id}_{\mathcal{G}}$, so that $\mathrm{St}: \mathcal{P} \rightarrow \mathcal{G}$ and $\mathrm{Fix}: \mathcal{G} \rightarrow \mathcal{P}$ are anti-isomorphisms of posets.
(vi) $\quad G_{\left\langle\Sigma, \Sigma^{\prime}\right\rangle}=G_{\Sigma} \cap G_{\Sigma^{\prime}}$ whenever $\Sigma, \Sigma^{\prime} \in \mathcal{P}$; thus \mathcal{G} is closed under intersection.
(vii) $\quad \Pi_{H \cap K}=\left\langle\Pi_{H}, \Pi_{K}\right\rangle$ whenever $H, K \in \mathcal{G}$; thus $\left\langle\Sigma, \Sigma^{\prime}\right\rangle \in \mathcal{P}$ whenever $\Sigma, \Sigma^{\prime} \in \mathcal{P}$.

We caution the reader that \mathcal{G}, \mathcal{P} need not be lattices: namely if $\Sigma, \Sigma^{\prime} \in \mathcal{P}$ then $\Sigma \cap \Sigma^{\prime} \subseteq \operatorname{Fix}\left\langle G_{\Sigma}, G_{\Sigma^{\prime}}\right\rangle$, and if the latter inclusion is proper then \mathcal{P} is not closed under
the usual intersection. Especially note that our \mathcal{P} is not the lattice of all G-invariant substructures of Π (or even a sublattice thereof) as considered in $[13, \S 4]$.

Applying Theorem 6.1 to the action of G / H on Π_{H} for $H \in \mathcal{G}$, we obtain
(viii) $[G: H]<n_{H}$ for all $H \in \mathcal{G}$, where n_{H} is the order of Π_{H}.

If $H, K \in \mathcal{G}$ (and similarly for members of \mathcal{P}) we shall write $H \prec K$ in case $H \subsetneq K$ and there is no $L \in \mathcal{G}$ satisfying $H \subsetneq L \subsetneq K$. Whenever $H, K \in \mathcal{G}$ we clearly have
(ix) $\quad H \prec K$ if and only if $\Pi_{K} \prec \Pi_{H}$.

Suppose that $H, K \in \mathcal{G}, H \prec K$ and let Π_{H}, Π_{K} have order n_{H}, n_{K} respectively. Let l be a line of Π_{G}, so that l belongs to Π_{H}, Π_{K}. If X is a point of l in Π_{H} outside Π_{K}, then the orbit X^{K} consists of $\left[K: K_{X}\right.$] points of l, all of which are fixed by K_{X} since G is abelian. Thus K_{X} fixes pointwise the subplane $\left\langle\Pi_{K}, X^{K}\right\rangle \subseteq \Pi_{H}$, and since $\Pi_{K} \prec \Pi_{H}$ we obtain $\left\langle\Pi_{K}, X^{K}\right\rangle=\Pi_{H}$. This yields $K_{X}=H$, and since every K-orbit on the points of l in Π_{H} but outside Π_{K} has length $[K: H$], we conclude that
(x) $\quad[K: H] \mid n_{H}-n_{K} \quad$ whenever $H \prec K$, where Π_{H}, Π_{K} has order n_{H}, n_{K} respectively.

Choose a maximal chain in \mathcal{P}, namely

$$
\Pi_{G}=\Pi_{0} \prec \Pi_{1} \prec \cdots \prec \Pi_{k}=\Pi, \quad \Pi_{i} \in \mathcal{P}, i=0,1, \ldots, k
$$

and let n_{i} be the order of $\Pi_{i}, i=0,1, \ldots, k$. Then $n_{i-1}^{2} \leq n_{i}, i=1,2, \ldots, k$ by 2.2 , so that by induction we obtain
(xi) the length k of any chain in $\mathcal{P}($ or in $\mathcal{G})$ satisfies $n_{G}^{2^{k}} \leq n$, where Π, Π_{G} has order n, n_{G} respectively.

We make use of the above concepts in proving the following.
6.2 THEOREM. Suppose that P is an elementary abelian group of order $q=p^{m}, p$ a prime, and that $P \unlhd G$ where the group G acts transitively by conjugation on the cyclic subgroups of P. Suppose furthermore that $G \leq$ Aut Π for some projective plane Π of order q^{2}, such that P fixes pointwise a subplane Π_{P} of order n_{P}. Then one of the following must hold:
(I) Π_{P} is a Baer subplane of Π, or
(II) q is a square, $n_{P}=\sqrt{q}$, and P has a subgroup of order \sqrt{q} fixing pointwise a Baer subplane of Π.

We illustrate 6.2 by listing some known occurrences for $q \leq 4$. If $q=2$ and $G=P \cong \mathrm{C}_{2}$, then case (I) occurs for the unique (Desarguesian) plane of order 4 . If $q=3$ and $G=P \cong$ C_{3} then case (I) occurs for the Hughes plane of order 9 (see [24,Cor.5]); also for the Hall and dual Hall plane of order 9.

For $q=4$ the following translation planes (or their duals) of order 16 (see [8]) admit $G \cong \mathrm{~A}_{4}$ as in Theorem 6.2. If Π is a Hall plane, a derived semifield plane or a Dempwolff plane then case (I) occurs; if Π is a Lorimer-Rahilly plane or a Johnson-Walker plane then case (I) or case (II) may occur.

Proof of Theorem 6.2. For $g \in P \backslash 1$, let n_{1} be the order of the subplane $\Pi_{g}=\operatorname{Fix}(g)$. (By the action of G on P, n_{1} is independent of the choice of $g \in P \backslash 1$.) Let l be a line of Π_{P}. Counting in two different ways the number of pairs (X, g) such that X is a point of $l, g \in P$ and $X^{g}=X$, we obtain

$$
q^{2}+1+(q-1)\left(n_{1}+1\right)=w|P|
$$

where w is the number of orbits of P on the points of l (see [30]). This gives $q \mid n_{1}$, and since $n_{1} \leq q$, we have $n_{1}=q$.

Let P_{g} be the kernel of the action of P on Π_{g}, so that

$$
P_{g} \in \mathcal{G}=\left\{P_{\Sigma}: \Sigma \subseteq \Pi\right\}, \quad P_{\Sigma}=\{h \in P: h \text { fixes } \Sigma \text { pointwise }\}
$$

(We follow the notation used under 6.1, except that our abelian planar collineation group is now P in place of G.) Note that \mathcal{G} is invariant under the action of G by conjugation on the subgroups of P.

Clearly $P_{g} \succ 1$, and so for any $H \in \mathcal{G}$ we have $H \cap P_{g}=$ either 1 or P_{g}. This means that any $H \in \mathcal{G}$ is a disjoint union of certain conjugates of P_{g} in G. Writing $\left|P_{g}\right|=p^{r},|H|=p^{s}$, this means that $p^{r}-1 \mid p^{s}-1$, i.e. $r \mid s$ so that $|H|=u^{d}$ for some integer $d \geq 0$ where $u=\left|P_{g}\right|=p^{r}$. In particular $|P|=u^{e}$ for some integer $e \geq 1$.

If $P_{g}=P$ we have case (I); hence we may assume that $P_{g} \subsetneq P, e \geq 2$. If $P_{g} \prec P$ then by (x) we have $u^{e-1}=\left[P: P_{g}\right]\left|u^{e}-n_{P}, u^{e-1}\right| n_{P}$; but $n_{P} \leq \sqrt{n_{1}}=\sqrt{q}=u^{e / 2}$ so that $e=2, n_{P}=\sqrt{q}$ and we have case (II).

Hence we may assume that $1 \prec P_{g} \prec H \subsetneq P$ for some $H \in \mathcal{G},|H|=u^{d}$. By (viii) we have $[P: H]<n_{H} \leq \sqrt{n_{1}}=\sqrt{q}$ where n_{H} is the order of Π_{H}, i.e. $u^{d}=|H|>\sqrt{q}=$ $u^{e / 2}, 2 d>e$. Choose $x \in G$ such that $H^{x} \neq H$; then

$$
H^{x} \cap H \in \mathcal{G}, \quad\left|H^{x} \cap H\right|=\frac{|H|^{2}}{\left|H^{x} H\right|} \geq u^{2 d-e} \geq u
$$

We may assume that $g \in H^{x} \cap H$; otherwise replace g by g^{y} where $y \in G$ is chosen such that $g^{y} \in H^{x} \cap H$. Now $P_{g} \subseteq H^{x} \cap H \subsetneq H$ and so $H^{x} \cap H=P_{g}$ which forces $2 d-e=1, d=\frac{1}{2}(e+1)$ and in particular e is odd, $e \geq 3$.

Suppose that $H \subsetneq K \subsetneq P$ for some $K \in \mathcal{G}$. Choose $z \in G$ such that $K^{z} \nsupseteq H$; then

$$
K^{z} \cap H \in \mathcal{G}, \quad\left|K^{z} \cap H\right|=\frac{\left|K^{z}\right||H|}{\left|K^{z} H\right|}>\frac{|H|^{2}}{\left|K^{z} H\right|} \geq u^{2 d-e}=u
$$

Again we may assume that $g \in K^{z} \cap H$; then $P_{g} \subsetneq K^{z} \cap H \subsetneq H$, a contradiction.
Therefore $1 \prec P_{g} \prec H \prec P$, and so (x) gives $u^{(e-1) / 2}=[P: H] \mid n_{H}-n_{P}, u^{(e-1) / 2}=$ $\left[H: P_{g}\right] \mid u^{e}-n_{H}$ so that $u^{(e-1) / 2} \mid n_{P}$. By (xi) we have $\left(u^{(e-1) / 2}\right)^{8} \leq n_{P}^{8} \leq u^{2 e}, e \leq 2$, a final contradiction.

7. Proof of Theorem 1.8

The result is easily established for $q=3$ (see Prop. 2.7 of [28]) so we may assume that

$$
\begin{equation*}
q>3 \tag{1}
\end{equation*}
$$

We next show that
(2) $\quad G^{\prime}$ acts irreducibly on Π.

Since G^{\prime} induces $G^{\prime} / G^{\prime} \cap K \cong \operatorname{PSL}(2, q)$ on Π, (2) follows by Theorem 1.7 for $q \neq 5,9$.
Suppose that $q=5$ and that G^{\prime} fixes a line l of Π. By Theorem 1.7, G^{\prime} has orbits of length $5,5,6,10$ on the points of l, and G permutes these orbits. Indeed, G has the same four orbits on l, since the G^{\prime}-orbits of length 5 may be represented by X, Y respectively, where $\operatorname{Fix}\left(\tau, \tau^{\prime}\right)$ is given by Figure 7 A for commuting involutions $\tau \neq \tau^{\prime}$ in G^{\prime}, and from the lack of symmetry in X and Y it is apparent that G preserves both $X^{G^{\prime}}$ and $Y^{G^{\prime}}$.

Figure 7A. Exceptional $\operatorname{Fix}\left(\tau, \tau^{\prime}\right)$ for $q=5$

We may write $G=G^{\prime} \rtimes\langle g\rangle$ where g is of order 4 and induces an automorphism of order 4 on $G^{\prime} / G^{\prime} \cap K$ (cf. 4.1(iii)). This automorphism leaves invariant exactly one subgroup of isomorphism type A_{4}, two dihedral subgroups of order 10 , and none of type S_{3} in $G^{\prime} / G^{\prime} \cap K \cong \mathrm{~A}_{5}$. Thus g induces a collineation of Π of order 4 fixing exactly 4 points of l, which is clearly impossible.

Now suppose that $q=9$. Then $|\mathrm{Z}(G)|=8$, and if $K \subsetneq \mathrm{Z}(G)$ then $\mathrm{Z}(G)$ contains an element g inducing an involutory collineation of Π. If g induces a homology of Π then G^{\prime} fixes its centre and axis, contrary to Theorem 1.7. Otherwise $\operatorname{Fix}(g)$ is a subplane of order 9 on which G^{\prime} acts reducibly, contrary to 1.6.

Therefore $K=\mathrm{Z}(G)$, i.e. G induces $\bar{G}=G / \mathrm{Z}(G) \cong \operatorname{PGL}(2,9)$ on Π. By (16) of [28], the lengths of the orbits of $\overline{G^{\prime}} \cong \operatorname{PSL}(2,9)$ on the points of l are given by one of the following cases:
lengths $1,36,45$ (in case (ix) of $[28,(16)]$);
lengths $1,15,30,36$ (in cases (x), (xi));
lengths $1,6,15,60$ (in cases (xii), (xiii)); or
lengths $1,6,15,20,40$ (in cases (xiv), (xv)).
If case (x) or (xi) occurs then the unique $\overline{G^{\prime}}$-orbit of length 30 on l is \bar{G}-invariant. From Table 3D of [28] we see that ρ_{1}, ρ_{2} fix 6,0 points in this orbit, respectively, violating the fact that ρ_{1}, ρ_{2} are conjugate in \bar{G}. We similarly eliminate cases (xii) $-(x v)$ of $[28,(16)]$.

We are left with case (ix), and $\overline{G^{\prime}}$ has three orbits on the points of l, of length 1,45 , 36 respectively, and so each of these three orbits is \bar{G}-invariant. The stabilizers in \bar{G} of point representatives from these orbits are \bar{G}, dihedral of order 16, and dihedral of order 20 respectively. We compute (cf. (9) of [28]) that an involution $\omega \in \bar{G} \backslash \overline{G^{\prime}}$ fixes $1,5,6$ points in these orbits respectively, so that ω fixes exactly 12 points of l, which is clearly impossible. This concludes the proof of (2).

Let

$$
\begin{aligned}
& P=\left\{\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right): a \in \mathrm{GF}(q)\right\} \in \operatorname{Syl}_{p}(G), \quad P<G^{\prime}, \\
& Z=\{\operatorname{diag}(d, d): d \in \mathrm{GF}(q) \backslash\{0\}\}=\mathrm{Z}(G), \\
& C=\{\operatorname{diag}(d, 1): d \in \mathrm{GF}(q) \backslash\{0\}\} \\
& N=\mathrm{N}_{G}(P)=C Z P \\
& \gamma=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \in C, \quad \tau=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

(3) We may assume that $\operatorname{Fix}(N)=\varnothing$.

For otherwise, by duality we may suppose that N fixes a point X of Π. Since N is a maximal subgroup of G, (2) gives $G_{X}=N$. By (2), not all $q+1$ points of X^{G} are collinear, and so [28,Prop.2.9] gives conclusion (i) of 1.8 and we are done. This proves assertion (3).

Since every P-orbit has length either 1 or a multiple of $p, \operatorname{Fix}(P)$ is neither empty nor a triangle. Hence by (3) and 2.1 we conclude that $\operatorname{Fix}(P)$ is a subplane of Π. Since C acts transitively on $P \backslash 1$ by conjugation, Theorem 6.2 yields
$\operatorname{Fix}(P)$ is a subplane of Π of order n_{P}, where $n_{P} \in\{\sqrt{q}, q\}$.

Suppose that X is a point of Π with X^{G} an arc, $\left|X^{G}\right|>q+1$. If $g \in P \backslash 1$ then $\operatorname{Fix}(g)$ is a subplane of order q by the proof of Theorem 6.2. There certainly exists a point of X^{G} outside $\operatorname{Fix}(g)$; thus $X^{h} \notin \operatorname{Fix}(g)$ for some $h \in G$. Since X^{h} lies on a unique line of $\operatorname{Fix}(g)$, this line contains at least $|\langle g\rangle|>2$ points of X^{G}. Thus
(5) for any point X of Π such that $\left|X^{G}\right|>q+1, X^{G}$ is not an arc.

Clearly

the permutation group induced by N on the points of $\operatorname{Fix}(P)$ is abelian of order dividing $\frac{1}{2}(q-1)^{2}$;
namely, the induced permutation group is a homomorphic image of $N / K P \cong C Z / K$.
(7) One of the following must occur:
(I) $n_{P}=q, \gamma$ induces a Baer collineation of $\operatorname{Fix}(P)$ (i.e. $\operatorname{Fix}(P, \gamma)$ is a subplane of order \sqrt{q});
(II) $n_{P}=\sqrt{q}, \gamma$ acts trivially on $\operatorname{Fix}(P)$ (i.e. $\operatorname{Fix}(\gamma) \supsetneq \operatorname{Fix}(P)$); or
(III) $n_{P}=\sqrt{q}, \gamma$ induces a Baer collineation of $\operatorname{Fix}(P)($ i.e. $\operatorname{Fix}(P, \gamma)$ is a subplane of order $\left.q^{1 / 4}\right)$.

To see this, note firstly that γ cannot induce a homology on $\operatorname{Fix}(P)$ (for otherwise its centre would be fixed by N, contrary to (3)). Secondly if $n_{P}=q$, then γ cannot act trivially on $\operatorname{Fix}(P)$ (or else $\operatorname{Fix}(\gamma)=\operatorname{Fix}(P)$, but then since $\gamma^{\tau} \equiv \gamma \bmod K$ we obtain $\operatorname{Fix}\left(P^{\tau}\right)=\operatorname{Fix}\left(\gamma^{\tau}\right)=\operatorname{Fix}(\gamma)=\operatorname{Fix}(P)$, i.e. a Baer subplane of Π is fixed pointwise by $\left\langle P^{\tau}, P\right\rangle=G^{\prime}$, contradicting (2)). This gives (7), and as a corollary,
(8) $\quad q$ is a square; in particular $q \equiv 1 \bmod 8$.

Next we show that
(9) in case (7,II) we have $q \notin\{9,25,121\}$.

For suppose that case (7,II) occurs with $q=121$. Now $\operatorname{Fix}(P)$ is of order 11, and by (6) the group induced by N on $\operatorname{Fix}(P)$ is abelian of order dividing $2^{5} \cdot 3^{2} \cdot 5^{2}$. If $g \in N$ induces an involutory collineation of $\operatorname{Fix}(P)$, then g induces a homology of $\operatorname{Fix}(P)$ whose centre is fixed by N, contrary to (3).

Suppose that $g \in N$ induces a collineation of order 5 on $\operatorname{Fix}(P)$. Since $N=C Z P$, we may assume that $g \in C Z=\mathrm{N}_{G}(P) \cap \mathrm{N}_{G}\left(P^{\tau}\right)$. By (3), Fix (P, g) must be a triangle with vertices X_{0}, X_{1}, X_{2}, say. Since $\operatorname{Fix}(P), \operatorname{Fix}\left(P^{\tau}\right)$ are disjoint Baer subplanes of $\operatorname{Fix}(\gamma)$, there is a unique point Y_{j} of $\operatorname{Fix}\left(P^{\tau}\right)$ on the line $X_{j} X_{j+1}, j=0,1,2$ (subscripts modulo 3). Now g leaves $\operatorname{Fix}\left(P^{\tau}\right)$ invariant and so fixes Y_{0}, Y_{1}, Y_{2}. But g induces a triangular collineation of $\operatorname{Fix}\left(P^{\tau}\right)$ (for otherwise g acts trivially on the subplane generated by $\operatorname{Fix}\left(P^{\tau}\right) \cup\left\{X_{0}, X_{1}, X_{2}\right\}$, i.e. on $\operatorname{Fix}(\gamma)$, contradicting the assumption that g acts nontrivially on $\operatorname{Fix}(P))$. Also, g^{τ} induces a triangular collineation of $\operatorname{Fix}\left(P^{\tau}\right)$; namely, $\operatorname{Fix}\left(P^{\tau}, g^{\tau}\right)$ is the triangle $X_{0}^{\tau} X_{1}^{\tau} X_{2}^{\tau}$. Since the actions of g, g^{τ} on $\operatorname{Fix}\left(P^{\tau}\right)$ commute, we must have $\left\{X_{0}^{\tau}, X_{1}^{\tau}, X_{2}^{\tau}\right\}=\left\{Y_{0}\right.$, $\left.Y_{1}, Y_{2}\right\}$. But this means that the triangle $X_{0}^{\tau} X_{1}^{\tau} X_{2}^{\tau}$ is inscribed in the distinct triangle $X_{0} X_{1} X_{2}$, and by applying τ we see that the triangle $X_{0} X_{1} X_{2}$ is likewise inscribed in $X_{0}^{\tau} X_{1}^{\tau} X_{2}^{\tau}$, which is absurd.

Hence the group induced by N on $\operatorname{Fix}(P)$ has order dividing 9 , and so N fixes at least one of the 133 points of $\operatorname{Fix}(P)$, contradicting (3).

The cases $q=9,25$ are eliminated with much less difficulty, as the reader may verify, and in any case (9) holds.
(10) $\quad N$ has no orbit of length 3 on the points (or lines) of $\operatorname{Fix}(P)$.

For suppose that $\left\{X_{0}, X_{1}, X_{2}\right\}$ are three points of $\operatorname{Fix}(P)$ which form an orbit under N. By (3) these three ponts are not collinear, and hence form a triangle. By (6) these three points have the same stabilizer N_{0} in N. Now $N_{0} \supseteq K P,\left[N: N_{0}\right]=3$ and (6) gives
$p \neq 3$. Since N is the unique maximal subgroup of G containing N_{0}, we have $N_{0}=G_{X_{0}}$, $\left|X_{0}^{G}\right|=3(q+1)$. Let $y \in N \backslash N_{0}$, and by proper choice of subscripts, we may assume that $X_{j}^{y}=X_{j+1}, j=0,1,2$ (subscripts modulo 3). Since $N=C Z P$, we may assume that $y \in C Z=\mathrm{N}_{G}(P) \cap \mathrm{N}_{G}\left(P^{\tau}\right)$. Since $\tau \in \mathrm{N}_{G}(\langle y\rangle),\left\{X_{0}^{\tau}, X_{1}^{\tau}, X_{2}^{\tau}\right\}$ is also a $\langle y\rangle$-orbit forming the vertices of a triangle. We claim that $\left\{X_{0}, X_{1}, X_{2}, X_{0}^{\tau}, X_{1}^{\tau}, X_{2}^{\tau}\right\}$ is an arc. If not then by symmetry, we may suppose that some point of $\left\{X_{0}^{\tau}, X_{1}^{\tau}, X_{2}^{\tau}\right\}$ lies on the line $X_{0} X_{1}$, and the action of y shows that the triangle $X_{0}^{\tau} X_{1}^{\tau} X_{2}^{\tau}$ is inscribed in the triangle $X_{0} X_{1} X_{2}$. But then an application of τ shows that $X_{0} X_{1} X_{2}$ is likewise inscribed in $X_{0}^{\tau} X_{1}^{\tau} X_{2}^{\tau}$, which is absurd. Hence $\left\{X_{0}, X_{1}, X_{2}, X_{0}^{\tau}, X_{1}^{\tau}, X_{2}^{\tau}\right\}$ is a 6 -arc as claimed.

By (5) we may choose three distinct collinear points $Y_{0}, Y_{1}, Y_{2} \in X_{0}^{G}$. Let P_{j} be the (unique) Sylow p-subgroup of G fixing $Y_{j}, j=0,1,2$. The previous paragraph shows that we cannot have $P_{0}=P_{1} \neq P_{2}$. Of course we cannot have $P_{0}=P_{1}=P_{2}$ (since the three points of X_{0}^{G} belonging to $\operatorname{Fix}\left(P_{0}\right)$ form a triangle). Hence P_{0}, P_{1}, P_{2} are distinct. We may assume that $P_{0}=P, Y_{0}=X_{0}, P_{1}=P^{\tau}$. For every $g \in N$ whose order is not divisible by 3 , (6) yields $g \in N_{0}$. Choosing involutions $\tau_{j} \in\left(\mathrm{~N}_{G^{\prime}}\left(P_{j}\right) \cap \mathrm{N}_{G^{\prime}}\left(P_{j+1}\right)\right) \backslash Z$, $j=0,1,2$ (subscripts modulo 3), this means that $Y_{j}^{\tau_{j}}=Y_{j}, Y_{j+1}^{\tau_{j}}=Y_{j+1}$. (Note that (8) guarantees the existence of such involutions τ_{j}.) Therefore the line l joining Y_{0}, Y_{1}, Y_{2} is fixed by $\tau_{j} \tau_{j+1} \in P_{j+1} \backslash 1, j=0,1,2$ (note that τ_{j}, τ_{j+1} both invert each element of P_{j+1}, so that $\left.\tau_{j} \tau_{j+1} \in \mathrm{C}_{G^{\prime}}\left(P_{j+1}\right)=P_{j+1}\right)$. We have the stabilizers $\left(P_{0}\right)_{l} \neq 1$, $\left(P_{1}\right)_{l} \neq 1$; however $\left(P_{0}\right)_{l} \subsetneq P_{0}$ and $\left(P_{1}\right)_{l} \subsetneq P_{1}$, for otherwise l is fixed by G^{\prime}, contradicting (2). Hence either case (I) or (II) of (7) occurs, and $\left|\left(P_{0}\right)_{l}\right|=\left|\left(P_{1}\right)_{l}\right|=\sqrt{q}$. Writing $S=\left\langle\left(P_{0}\right)_{l},\left(P_{1}\right)_{l}\right\rangle \subseteq G_{l}$, we have $S \subsetneq G^{\prime} \cong \mathrm{SL}(2, q)$ and so the classification of subgroups of $\operatorname{SL}(2, q)$ (see [34]) gives $S \cong \mathrm{SL}(2, \sqrt{q})$. The stabilizer $\left(P_{0}\right)_{Y_{1}}=1$; for otherwise Y_{1} is fixed by $\left\langle P_{1},\left(P_{0}\right)_{Y_{1}}\right\rangle=G^{\prime}$, contrary to (2). Hence l contains at least $\sqrt{q}+1$ members of X_{0}^{G}, namely $\left\{Y_{0}\right\} \cup\left\{Y_{1}^{g}: g \in\left(P_{0}\right)_{l}\right\}$. On the other hand, if $Y_{3} \in X_{0}^{G}$ lies on l, and P_{3} is the unique Sylow p-subgroup of G fixing Y_{3}, then the previous argument shows that $\left|\left(P_{3}\right)_{l}\right|=\sqrt{q}$ and $\left(P_{3}\right)_{l} \in \operatorname{Syl}_{p}(S)$. Since S has only $\sqrt{q}+1$ Sylow p-subgroups, this means that l carries exactly $\sqrt{q}+1$ points of X_{0}^{G}.

Now consider the lines $l_{j}=X_{0} X_{j}^{\tau}, j=0,1,2$. Let k_{j} be the number of points of X_{0}^{G} on l_{j}, and let r_{j} be the number of lines of l_{j}^{G} through X_{0}. We have seen that
$k_{j} \in\{2, \sqrt{q}+1\}$ for $j=0,1,2$ and that at least one of k_{0}, k_{1}, k_{2} equals $\sqrt{q}+1$. There are three cases to consider:
(a) $l_{0}^{G}=l_{1}^{G}=l_{2}^{G}$;
(b) $l_{0}^{G}, l_{1}^{G}, l_{2}^{G}$ are mutually distinct; or
(c) two of $l_{0}^{G}, l_{1}^{G}, l_{2}^{G}$ coincide and the third is distinct.

We shall examine each of these cases in turn, by counting in two different ways each of the quantities

$$
\begin{aligned}
& n_{1}=\left|\left\{(X, l) \in X_{0}^{G} \times l_{j}^{G}: X \in l_{j}\right\}\right| \\
& n_{2}=\left|\left\{(X, Y) \in X_{0}^{G} \times X_{0}^{G}: X \neq Y, X Y \in l_{j}^{G}\right\}\right|
\end{aligned}
$$

where we now fix a subscript j such that $k_{j}=\sqrt{q}+1$. In case (a), $k_{0}=k_{1}=k_{2}=\sqrt{q}+1$ and we obtain

$$
\begin{aligned}
& n_{1}=3(q+1) r_{0}=\left|l_{0}^{G}\right| k_{0} \\
& n_{2}=3(q+1) \cdot 3 q=\left|l_{0}^{G}\right| k_{0}\left(k_{0}-1\right)
\end{aligned}
$$

hence $r_{0}=3 \sqrt{q}$ and our expression for n_{1} yields $\sqrt{q}+1 \mid 9 \sqrt{q}(q+1)$ so that $\sqrt{q}+1 \mid 18$ which yields $q=25$, contrary to (9).

In case (b) we obtain

$$
\begin{aligned}
& n_{1}=3(q+1) r_{j}=\left|l_{j}^{G}\right| k_{j}, \\
& n_{2}=3(q+1) q=\left|l_{j}^{G}\right| k_{j}\left(k_{j}-1\right) ;
\end{aligned}
$$

hence $r_{j}=\sqrt{q}, \sqrt{q}+1 \mid 3 \sqrt{q}(q+1)$ which leads to a contradiction as in (a).
In case (c) we may assume that l_{j}^{G} coincides with precisely one of l_{j+1}^{G}, l_{j+2}^{G} (subscripts modulo 3); for otherwise $l_{j}^{G} \neq l_{j+1}^{G}=l_{j+2}^{G}$ and so n_{1}, n_{2} are precisely as in (b), a contradiction. Therefore we have

$$
\begin{aligned}
& n_{1}=3(q+1) r_{j}=\left|l_{j}^{G}\right| k_{j} \\
& n_{2}=3(q+1) \cdot 2 q=\left|l_{j}^{G}\right| k_{j}\left(k_{j}-1\right)
\end{aligned}
$$

hence $r_{j}=2 \sqrt{q}, \sqrt{q}+1 \mid 6 \sqrt{q}(q+1)$ so that $\sqrt{q}+1 \mid 12, q \in\{9,25,121\}$, again contradicting (9). This completes the proof of (10).

By (7), N acts on a subplane Π_{1} of order \sqrt{q} : in case $(7, \mathrm{I})$ we let $\Pi_{1}=\operatorname{Fix}(P, \gamma)$; in cases (II), (III) of (7) let $\Pi_{1}=\operatorname{Fix}(P)$. By (3), (6), (10) we conclude that no subgroup of N fixes precisely a triangle of Π_{1}. By 2.1 this means that
(11) for any $H \leq N, \operatorname{Fix}_{\Pi_{1}}(H)$ is either empty or a (not necessarily proper) subplane of Π_{1}.
(Here $\operatorname{Fix}_{\Pi_{1}}(H)$ denotes $\Pi_{1} \cap \operatorname{Fix}(H)$.) Letting D_{r} be the Sylow r-subgroup of $C Z$ for each prime $r \mid q-1$, we have
(12) $\quad D_{r}$ fixes pointwise a (not necessarily proper) subplane of Π_{1} for $r \neq 3$.

The order k_{r} of this subplane satisfies $r \mid k_{r} \pm 1$ according as $r \mid \sqrt{q} \pm 1$.

If $\operatorname{Fix}_{\Pi_{1}}\left(D_{r}\right)=\emptyset$, then $\left|D_{r}\right| \mid(q-1, q+\sqrt{q}+1)$, i.e. $\left|D_{r}\right| \in\{1,3\}$, contrary to assumption. Hence by (11), $\operatorname{Fix}_{\Pi_{1}}\left(D_{r}\right)$ is a subplane of Π_{1}. If k_{r} is its order, we clearly have $r \mid \sqrt{q}-k_{r}$ from which (12) follows.

We may factorise $N=C Z P, C Z=D_{0} D_{1} D_{3}$ where D_{1} is the product of the Sylow r subgroups of $C Z$ as r ranges over all primes $r \mid q-1$ such that $r \equiv 1 \bmod 3, r^{2}-r+2 \leq \sqrt{q}$; and $D_{0} \cap D_{1} D_{3}=1$. We claim that

$$
\begin{equation*}
\operatorname{Fix}_{\Pi_{1}}\left(D_{1}\right)=\emptyset \tag{13}
\end{equation*}
$$

If $\operatorname{Fix}_{\Pi_{1}}\left(D_{0} D_{1}\right) \neq \varnothing$ then (11) implies that $\operatorname{Fix}_{\Pi_{1}}\left(D_{0} D_{1}\right)$ is a subplane of Π_{1}, of order k, say. By (3) every point orbit of D_{3} on $\operatorname{Fix}_{\Pi_{1}}\left(D_{0} D_{1}\right)$ has length 3^{e} for some $e \geq 1$. But $9 \nmid k^{2}+k+1$, so D_{3} has at least one point orbit of length 3 on $\operatorname{Fix}_{\Pi_{1}}\left(D_{0} D_{1}\right)$, contrary to (10). Therefore $\operatorname{Fix}_{\Pi_{1}}\left(D_{0} D_{1}\right)=\emptyset$.

We complete the proof of (13) by induction on the number of prime divisors of $\left|D_{0}\right|$. Accordingly, suppose that $\operatorname{Fix}_{\Pi_{1}}\left(D_{r} D^{*}\right)=\emptyset$ where $D^{*} \leq C Z$ and r is some prime divisor of $q-1$ such that $r \equiv 2 \bmod 3$, or $r \equiv 1 \bmod 3$ and $r^{2}-r+2>\sqrt{q}$. We must show that $\operatorname{Fix}_{\Pi_{1}}\left(D^{*}\right)=\emptyset$. If not, then (11) implies that $\operatorname{Fix}_{\Pi_{1}}\left(D^{*}\right)$ is a subplane of Π_{1}, of order k,
say. Now D_{r} acts on $\operatorname{Fix}_{\Pi_{1}}\left(D^{*}\right)$ without fixing any point, so that $r \mid k^{2}+k+1$. Since $r \neq 3$ this means that $\mathrm{GF}(r)$ contains a nontrivial cube root of 1 . Hence $r \equiv 1 \bmod 3$ and $r^{2}-2+2>\sqrt{q}$. Also since D_{r} acts nontrivially on Π_{1}, (12) implies that $\mathrm{Fix}_{\Pi_{1}}\left(D_{r}\right)$ is a proper subplane of Π_{1}, i.e. its order $k_{r}<\sqrt{q}$, and $r \mid \sqrt{q}-k_{r}$. If $k_{r}^{2}=\sqrt{q}$ then $r \mid\left(q^{1 / 2}-q^{1 / 4}, q-1\right)$ so that $r \leq q^{1 / 4}-1$, violating $r^{2}-r+2>\sqrt{q}$. Otherwise by 2.3 we have $k_{r}^{2}+k_{r}+2 \leq \sqrt{q}$. By (12) we have $r-1 \leq k_{r}$ so that $(r-1)^{2}+(r-1)+2 \leq \sqrt{q}$, again a contradiction. This completes the induction step, and (13) follows. Combining (12) and (13), we obtain

$$
\begin{align*}
& \left|\mathcal{P}_{q}\right| \geq 2, \text { where } \mathcal{P}_{q} \text { is the set of primes } r \mid q-1 \text { such that } r \equiv 1 \bmod 3 \tag{14}\\
& \text { and } r^{2}-r+2 \leq \sqrt{q} .
\end{align*}
$$

Denying conclusion (iii) of 1.8, we assume for the remainder of the proof that $q<10^{6}$. From factor tables (eg. [1,pp.844,845]) we quickly see that the only values of $q<10^{6}$ satisfying (8), (14) are as listed in Table 7B. (Checking is facilitated by the fact that the factorizations of $\sqrt{q}-1, \sqrt{q}, \sqrt{q}+1$ occupy adjacent entries in the factor tables.)

q	\mathcal{P}_{q}	q	\mathcal{P}_{q}
181^{2}	7,13	701^{2}	7,13
337^{2}	7,13	3^{12}	7,13
379^{2}	7,19	797^{2}	7,19
419^{2}	7,19	883^{2}	7,13
547^{2}	7,13	911^{2}	$7,13,19$
571^{2}	13,19	937^{2}	7,13

Table 7B

Suppose first that $q=883^{2}$. Then (12), (13) imply that $\operatorname{Fix}_{\Pi_{1}}\left(D_{7}\right), \operatorname{Fix}_{\Pi_{1}}\left(D_{13}\right)$ are disjoint proper subplanes of Π_{1}. Hence $k_{7}, k_{13} \leq \sqrt{883}$; furthermore (12) gives $k_{7} \equiv 1$ $\bmod 7, k_{13} \equiv 12 \bmod 13 ; 13\left|\left(k_{7}^{2}+k_{7}+1\right), 7\right|\left(k_{13}^{2}+k_{13}+1\right)$ implies $k_{7} \equiv 3$ or 9 $\bmod 13, k_{13} \equiv 2$ or $4 \bmod 7$. Since $k_{7} \neq 22$ by the Bruck-Ryser Theorem, we must have $k_{7}=29, k_{13}=25$. Note that $D_{7}^{\tau}=D_{7}$, so that $\operatorname{Fix}_{\Pi_{1}}\left(D_{7}\right), \operatorname{Fix}_{\Pi_{1}^{\tau}}\left(D_{7}\right)$ are two subplanes of order 29 interchanged by τ; they are disjoint, since they are fixed pointwise by P, P^{τ} respectively. Let Π_{7} be the subplane generated by $\operatorname{Fix}_{\Pi_{1}}\left(D_{7}\right)$, $\operatorname{Fix}_{\Pi_{1}^{\tau}}\left(D_{7}\right)$. Now Π_{7} does not meet $\operatorname{Fix}_{\Pi_{1}}\left(D_{13}\right)$, and so Π_{7} is a proper subplane of $\operatorname{Fix}(\gamma)$. Therefore its order m_{7} satisfies $29^{2} \leq m_{7} \leq 883$. In particular Π_{7} is a maximal subplane of $\operatorname{Fix}(\gamma)$, and since Π_{7} is fixed pointwise by D_{7} while $\operatorname{Fix}(\gamma)$ is not, we have $\operatorname{Fix}\left(D_{7}, \gamma\right)=\Pi_{7}$. This yields $7 \mid 883^{2}-m_{7}$, from which we obtain $m_{7} \neq 29^{2}$, and so $m_{7} \geq 29^{2}+29, m_{7} \in\{875,882\}$. But τ induces an involutory collineation of Π_{7}, and so $m_{7} \not \equiv 2 \bmod 4$ by [17,Thm.3.2]. Thus $m_{7}=875$ is a non-square, and so τ induces a homology on Π_{7} with centre X and axis l, say, both of which are fixed by D_{13}. Let $X_{0}, X_{1}, \ldots, X_{875}$ be the points of l in Π_{7}, and let $l_{0}, l_{1}, \ldots, l_{870}$ be the lines of $\operatorname{Fix}_{\Pi_{1}}\left(D_{7}\right)$. None of $X_{0}, X_{1}, \ldots, X_{875}$ belongs to $\operatorname{Fix}_{\Pi_{1}}\left(D_{7}\right)$; for instance if $X_{0} \in \operatorname{Fix}_{\Pi_{1}}\left(D_{7}\right)$, then because $X_{0}^{\tau}=X_{0}$ we would have X_{0} in both $\operatorname{Fix}_{\Pi_{1}}\left(D_{7}\right)$ and $\operatorname{Fix}_{\Pi_{1}^{\tau}}\left(D_{7}\right)$, which is impossible. Therefore $l_{0}, l_{1}, \ldots, l_{870}$ pass through distinct points of l in Π_{7}, so we may assume that $l_{j} \cap l=X_{j}, j=0,1, \ldots, 870$. Since D_{13} acts on $\operatorname{Fix}_{\Pi_{1}}\left(D_{7}\right)$ without fixing any line, it follows that D_{13} acts on $\left\{X_{0}\right.$, $\left.X_{1}, \ldots, X_{870}\right\}$ without fixing any point. Now D_{13} fixes $X, X_{871}, X_{872}, \ldots, X_{875}$, so that $\operatorname{Fix}_{\Pi_{7}}\left(D_{13}\right)$ is a subplane of order 4 . From the action of τ on Π_{7}, we deduce that τ also induces a homology on $\operatorname{Fix}_{\Pi_{7}}\left(D_{13}\right)$, contradicting the fact that $\operatorname{Fix}_{\Pi_{7}}\left(D_{13}\right)$ has even order. Therefore $q \neq 883^{2}$.

Suppose that $q=911^{2}$. Then D_{19} acts nontrivially on Π_{1} (for otherwise $k_{13} \leq \sqrt{911}$, $k_{13} \equiv 1 \bmod 13$, and $k_{13} \equiv 2$ or $4 \bmod 7$; this is impossible). Likewise D_{13} acts nontrivially on $\Pi_{1}\left(\right.$ for otherwise $k_{7} \leq \sqrt{911}, k_{7} \equiv 1 \bmod 7$, and $k_{7} \equiv 7$ or $11 \bmod 19$; this is impossible). Then $k_{19} \leq \sqrt{911}, k_{19} \equiv 18 \bmod 19$, and $k_{19} \equiv 3$ or $9 \bmod 13 ;$ impossible. Hence $q \neq 911^{2}$.

The remaining ten cases in Table 7B are eliminated much more quickly: for some $r \in \mathcal{P}_{q}$, the necessary conditions on k_{r} prove to be inconsistent.

8. Proof of Theorem 1.9

Suppose that we are given a counterexample. Consider the following subgroups and elements of G, as represented by matrices in $\mathrm{SL}(2, q)$:

$$
\begin{aligned}
P & =\left\{\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right): a \in \operatorname{GF}(q)\right\} \in \operatorname{Syl}_{p}(G), \\
\tau & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \\
D & =\left\{\operatorname{diag}\left(d, d^{-1}\right): d \in \operatorname{GF}(q) \backslash\{0\}\right\}, \quad|D|=\frac{1}{2}(q-1), \\
N & =\mathrm{N}_{G}(P)=P D, \quad N^{\tau}=\mathrm{N}_{G}\left(P^{\tau}\right)=P^{\tau} D .
\end{aligned}
$$

Mimicking the proof of 1.8 , we obtain
$\left(1^{\prime}\right) \quad q>3 ;$
$\left(2^{\prime}\right) \quad G$ acts irreducibly on Π;
$\left(3^{\prime}\right) \quad \operatorname{Fix}(P D)=\varnothing$;
$\left(4^{\prime}\right) \quad \operatorname{Fix}(P)$ is a subplane of order q.

Note that Theorem 6.2 applies in view of Lemma 3.1(ii).
$\left(6^{\prime}\right) \quad D$ acts faithfully on $\operatorname{Fix}(P)$.

For if $g \in D \backslash 1$ acts trivially on $\operatorname{Fix}(P)$ then $\left\langle g^{\tau}\right\rangle=\langle g\rangle$ implies $\operatorname{Fix}(P)=\operatorname{Fix}(g)=$ $\operatorname{Fix}\left(g^{\tau}\right)=\operatorname{Fix}\left(P^{\tau}\right)$, contrary to $\left(2^{\prime}\right)$.
($\left.8^{\prime}\right) \quad q \equiv 3 \bmod 4$.

For otherwise D contains an involution γ and we conclude as in (7) that q is a square.
$\left(10^{\prime}\right) \quad D$ has no orbit of length 3 on the points (or lines) of $\operatorname{Fix}(P)$.

The proof of $\left(10^{\prime}\right)$ is a much shorter variation of the proof of (10), since q is not a square.
$\left(7^{\prime}\right) \quad \tau$ is a Baer collineation of Π.

For suppose that τ is a homology of Π. If $g \in D \backslash 1$ then $g=g \tau \cdot \tau$ is the product of two involutions, so by $2.6, g$ is a generalized perspectivity of Π, and in fact a generalized homology since $|\langle g\rangle| \left\lvert\, \frac{1}{2}(q-1)\right.$. But by $\left(3^{\prime}\right),\left(10^{\prime}\right)$ and 2.1 we have $\operatorname{Fix}(P, g)=\varnothing$. Thus D acts semiregularly on the points of $\operatorname{Fix}(P)$ and $\left.|D|=\frac{1}{2}(q-1) \right\rvert\, q^{2}+q+1$ so that $q \in\{3$, $7\},|D| \in\{1,3\}$ contrary to $\left(3^{\prime}\right),\left(10^{\prime}\right)$. This gives $\left(7^{\prime}\right)$.

$$
\left(8^{\prime \prime}\right) \quad q \equiv 3 \bmod 8
$$

For otherwise (8^{\prime}) gives $q \equiv 7 \bmod 8$ and G contains an element g such that $g^{2}=\tau$, violating Lemma 2.5(ii) of [28].

Again as in the proof of 1.8 we obtain
(11') If $1 \neq H \leq D$ then $\operatorname{Fix}(P H)$ is either empty or a proper subplane of $\operatorname{Fix}(P)$.

Let D_{r} be the Sylow r-subgroup of D, for each prime $r \left\lvert\, \frac{1}{2}(q-1)\right.$.
$\operatorname{Fix}\left(P D_{r}\right)$ is a proper subplane of $\operatorname{Fix}(P)$ whenever $3 \neq r \left\lvert\, \frac{1}{2}(q-1)\right.$. The order k_{r} of this subplane satisfies $r \mid k_{r}-1$.

If $\operatorname{Fix}\left(P D_{p_{1}} D_{p_{2}} \cdots D_{p_{e}}\right) \neq \varnothing$ for some distinct primes $p_{1}, p_{2}, \ldots, p_{e}$ dividing $\frac{1}{2}(q-1)$ then $\operatorname{Fix}\left(P D_{p_{1}} D_{p_{2}} \cdots D_{p_{e}}\right)$ is a subplane which we call $\Pi_{p_{1}, p_{2}, \ldots, p_{e}}$ of order $k_{p_{1}, p_{2}, \ldots, p_{e}}$. We factorise $D=D_{0} D_{1} D_{3}$ where

$$
\begin{aligned}
D_{1} & =\prod_{r \in \mathcal{P}_{q}} D_{r}, \quad D_{0} \cap D_{1} D_{3}=1 \\
\mathcal{P}_{q} & =\left\{r \left\lvert\, \frac{1}{2}(q-1)\right.: r \text { is a prime, } r \equiv 1 \bmod 3, r^{2}-r+2 \leq q\right\}
\end{aligned}
$$

Once again imitating the proof of 1.8 we have

$$
\begin{align*}
& \operatorname{Fix}\left(P D_{1}\right)=\varnothing \\
& \left|\mathcal{P}_{q}\right| \geq 2
\end{align*}
$$

By $\left(14^{\prime}\right),\left(8^{\prime \prime}\right)$ and $[1, p p .844-853], q$ is one of $547,11^{3}=1331,1483,2003,2731,3011,3907$, 4219, 4523, 4691. In each case $\left|\mathcal{P}_{q}\right|=2$ and so $r\left|k_{s}^{2}+k_{s}+1 \leq q-1, s\right| k_{r}^{2}+k_{r}+1 \leq q-1$, $r\left|k_{r}-1, s\right| k_{s}-1$ where $\mathcal{P}_{q}=\{r, s\}$. This narrows the possibilities to those given in Table 8 A .

q	$\frac{1}{2}(q-1)$	r	k_{r}	s	k_{s}
3011	$5 \cdot 7 \cdot 43$	7	36	43	44
3907	$3^{2} \cdot 7 \cdot 31$	7	36	31	32
4523	$7 \cdot 17 \cdot 19$	7	64	19	39 or 58

Table 8A

If $q=3011$ then $5 \nmid k_{7}^{2}+k_{7}+1$ and so $\operatorname{Fix}\left(P D_{7} D_{5}\right) \neq \emptyset, 5 \mid k_{7}-k_{5,7}, k_{5,7} \neq 6$ so that $\Pi_{5,7}=\Pi_{7}$. But D_{5} also fixes some point of Π_{43} so that $\Pi_{7} \subsetneq \Pi_{5}, 36^{2} \leq k_{5}<\sqrt{3011}$, a contradiction.

If $q=3907$ then $3 \nmid k_{7}^{2}+k_{7}+1$ and so $\operatorname{Fix}\left(P D_{7} D_{3}\right) \neq \emptyset ; 31\left|k_{3,7}^{2}+k_{3,7}+1,3\right| k_{7}-k_{3,7}$ yields $k_{3,7}=36, \Pi_{7} \subseteq \Pi_{3}$. Since $k_{7}^{2}>\sqrt{q}$ we have $\Pi_{7}=\Pi_{3}$; but D_{17} fixes some point of Π_{31}, a contradiction. The same argument eliminates the case $q=4523$.

9. Proof of Theorems $1.3,5$

The following assertions, (15) through (17), pertain to the proofs of Theorems 1.3 and 1.5(a),(b). Let $\tau, \tau^{\prime}, Z_{\tau}, \mu, Q, P$ be as in $\S 4$ for $G \cong \operatorname{PSL}(3, q)$, or as in $\S 5$ for $G \cong$ $\operatorname{PSU}(3, q)$.

We first suppose that τ is a homology of Π. If τ, τ^{\prime} have the same centre X and axis l, then (X, l) is invariant under $\left\langle\mathrm{C}_{G}(\tau), \mathrm{C}_{G}\left(\tau^{\prime}\right)\right\rangle=G$ and so G consists of (X, l)-homologies of Π. Since $|G| \nmid q^{4}-1$ this cannot occur. However τ and τ^{\prime} commute, so they must have distinct centres and axes (see Prop. 2.4(i) of [28]). By [23,Thm.C(i),(iii)] the remaining conclusions follow. Therefore we may assume that

$$
\begin{equation*}
\operatorname{Fix}(\tau) \text { is a subplane of order } q^{2} \tag{15}
\end{equation*}
$$

and derive a contradiction. Let K_{τ} denote the kernel of the action of $\mathrm{C}_{G}(\tau)$ on $\operatorname{Fix}(\tau)$, and for $H \leq \mathrm{C}_{G}(\tau)$ let \bar{H} denote its image in $\overline{\mathrm{C}_{G}(\tau)}=\mathrm{C}_{G}(\tau) / K_{\tau}$, so that \bar{H} is the collineation group induced by H on $\operatorname{Fix}(\tau)$. By $\operatorname{Fix}(\bar{H})$ we shall mean the substructure consisting of all points and lines of $\operatorname{Fix}(\tau)$ which are fixed by \bar{H}, i.e. $\operatorname{Fix}(\bar{H})=\operatorname{Fix}(\tau, H)$. We show that

$$
\begin{equation*}
K_{\tau} \cap \mathrm{C}_{G}(\tau)^{\prime}=\langle\tau\rangle \text {, i.e. }\langle\tau\rangle \subseteq K_{\tau} \subseteq Z_{\tau} ; \text { and } \tag{16}
\end{equation*}
$$

G acts irreducibly on Π.
(Observe the equivalence of the two formulations of (16): if $K_{\tau} \cap \mathrm{C}_{G}(\tau)^{\prime}=\langle\tau\rangle$ then by considering quotients in $\mathrm{C}_{G}(\tau) / Z_{\tau} \cong \operatorname{PGL}(2, q)$ we obtain $K_{\tau} \subseteq Z_{\tau}$. The converse is immediate.)

Assume first that $q>3$. We suppose that (16) fails. Since $\langle\tau\rangle \subsetneq K_{\tau} \cap \mathrm{C}_{G}(\tau)^{\prime} \unlhd$ $\mathrm{C}_{G}(\tau)^{\prime}$ and $\mathrm{C}_{G}(\tau)^{\prime} /\langle\tau\rangle \cong \operatorname{PSL}(2, q)$ is simple, we have $K_{\tau} \supseteq \mathrm{C}_{G}(\tau)^{\prime}$. By 4.1(vi), 5.1(vi), 5.4 there exist involutions $\tau_{1}, \tau_{2} \in G$ such that $\left\langle\mathrm{C}_{G}\left(\tau_{1}\right)^{\prime}, \mathrm{C}_{G}\left(\tau_{2}\right)^{\prime}\right\rangle=G$ and $\mathrm{C}_{G}\left(\tau_{1}\right)^{\prime} \cap$ $\mathrm{C}_{G}\left(\tau_{2}\right)^{\prime}$ contains some $g \neq 1$. Now $\operatorname{Fix}(g)$ is a Baer subplane of Π fixed pointwise by $\left\langle\mathrm{C}_{G}\left(\tau_{1}\right)^{\prime}, \mathrm{C}_{G}\left(\tau_{2}\right)^{\prime}\right\rangle=G$, contrary to 2.4. This gives (16). If $G \cong \operatorname{PSL}(3, q)$ then $\mathrm{C}_{G}(\tau)$ acts irreducibly on $\operatorname{Fix}(\tau)$ by $4.1(v)$ and Theorem 1.8 , which yields (17). If $G \cong \operatorname{PSU}(3, q)$, $q \neq 5,9$ then $\overline{\mathrm{C}_{G}(\tau)^{\prime}} \cong \operatorname{PSL}(2, q)$ acts irreducibly on $\operatorname{Fix}(\tau)$ by Theorem 1.7, again yielding (17). For $G \cong \operatorname{PSU}(3,5)$ or $\operatorname{PSU}(3,9)$ we have $\left|\overline{Z_{\tau}}\right|$ divides $(q+1) / 2 \mu, \mu=(q+1,3)$; but if $\overline{Z_{\tau}}=1$ then $\overline{\mathrm{C}_{G}(\tau)} \cong \mathrm{PGL}(2, q)$ acts irreducibly on $\operatorname{Fix}(\tau)$ by Theorem 1.8, which yields (17). We may therefore assume that $G \cong \operatorname{PSU}(3,9),\left|\overline{Z_{\tau}}\right|=5$, and note that $\operatorname{Fix}\left(\overline{Z_{\tau}}\right)$
is invariant under $\overline{\mathrm{C}_{G}(\tau)}$. If $\operatorname{Fix}\left(\overline{Z_{\tau}}\right)$ is a subplane of $\operatorname{Fix}(\tau)$ (necessarily proper since $\overline{Z_{\tau}} \leq$ Aut $\left.\operatorname{Fix}(\tau)\right)$ then $\operatorname{Fix}\left(\overline{Z_{\tau}}\right)$ is of order 4 or 9 by Theorem 3.3, which is impossible since $5 \nmid 9^{2}-4,5 \nmid 9^{2}-9$. Otherwise $\overline{Z_{\tau}}$ induces a generalized homology group of order 5 on $\operatorname{Fix}(\tau)$ and $\overline{\mathrm{C}_{G}(\tau)^{\prime}}$ fixes an antiflag in $\operatorname{Fix}(\tau)$, contrary to Theorem 1.7.

Now suppose that $q=3$. Since (17) is included in the hypothesis for $G \cong \operatorname{PSL}(3,3)$, we prove (17) for $G \cong \operatorname{PSU}(3,3)$. If G fixes a line l of Π then let w be the number of orbits of G on the points of l and let $G_{1}, G_{2}, \ldots, G_{w}$ be the respective stabilizers of point representatives from these orbits. Using (9) of [28] we compute $F_{\nu}(\tau)$, the number of points of l fixed by τ in the ν-th orbit, $\nu=1,2, \ldots, w$. Since $\left[G: G_{\nu}\right] \leq 82$, Mitchell's list [26,p.241] restricts such G_{ν} to be among the types listed in Table 9A.

	Type in Mitchell's list	$\left\|G_{\nu}\right\|$	$\left[G: G_{\nu}\right]$	$F_{\nu}(\tau)$	G_{ν}
1	-	6048	1	1	G
2	2	96	63	7	$\mathrm{C}_{G}(\tau)$
3	3	96	63	3	$\mathrm{~N}_{G}\left(\left\langle\tau, \tau^{\prime}\right\rangle\right)$
4	9	168	36	12	$\operatorname{PSL}^{2}(2,7)$
5	1	216	28	4	$\mathrm{~N}_{G}(Q)$
6	-	108	56	8	${\operatorname{subgroup~of~} \mathrm{~N}_{G}(Q)}^{2}$

Table 9A

If l contains n_{i} point orbits of type $i, i=1,2, \ldots, 6$ then

$$
\begin{gathered}
\sum_{\nu=1}^{w}\left[G: G_{\nu}\right]=n_{1}+63\left(n_{2}+n_{3}\right)+36 n_{4}+28\left(n_{5}+2 n_{6}\right)=82 \\
\sum_{\nu=1}^{w} F_{\nu}(\tau)=n_{1}+7 n_{2}+3 n_{3}+12 n_{4}+4\left(n_{5}+2 n_{6}\right)=10
\end{gathered}
$$

which has no simultaneous solution in non-negative integers $\left\{n_{i}\right\}$. By contradiction, this proves (17).

Suppose that (16) fails for $q=3$. Then $K_{\tau} \supseteq \mathrm{O}_{2}\left(\mathrm{C}_{G}(\tau)\right)$, a quaternion group of order 8. Now τ^{\prime} induces a collineation of order at most 2 on $\operatorname{Fix}(\tau)$, so τ^{\prime} fixes a point X of $\operatorname{Fix}(\tau)$. By 5.1(ix) we may choose an involution $\tau^{\prime \prime} \in \mathrm{C}_{G}(\tau)$ such that $\tau^{\prime} \tau^{\prime \prime} \in \mathrm{O}_{2}\left(\mathrm{C}_{G}(\tau)\right)$, $\left[\tau^{\prime}, \tau^{\prime \prime}\right] \neq 1$ so that $\tau^{\prime \prime}$ also fixes X. But then X is fixed by $\left\langle\mathrm{O}_{2}\left(\mathrm{C}_{G}\left(\tau^{\prime}\right)\right), \mathrm{O}_{2}\left(\mathrm{C}_{G}\left(\tau^{\prime \prime}\right)\right)\right\rangle=G$ by 5.1 (viii), contrary to (17). This completes the proof of (16).

Proof of Theorem 1.3 (concluded), in which $G \cong \operatorname{PSL}(3, q)$. We may suppose that τ, P_{0}, P_{1} are as in $\S 4$.

$$
\begin{equation*}
\operatorname{Fix}\left(\mathrm{C}_{G}(\tau) P_{0}\right), \operatorname{Fix}\left(\mathrm{C}_{G}(\tau) P_{1}\right) \text { are not both empty. } \tag{18}
\end{equation*}
$$

For suppose that $\operatorname{Fix}\left(\mathrm{C}_{G}(\tau) P_{0}\right)=\operatorname{Fix}\left(\mathrm{C}_{G}(\tau) P_{1}\right)=\emptyset$. Clearly $\operatorname{Fix}\left(P_{i}\right)$ is neither empty nor a triangle, so by $2.1, P_{i}$ is planar, $i=0,1$. Now τ does not induce a homology on $\operatorname{Fix}\left(P_{i}\right)$; otherwise (since $\left.P_{i}\langle\tau\rangle \triangleleft \mathrm{C}_{G}(\tau) P_{i}\right)$ its centre would be fixed by $\mathrm{C}_{G}(\tau) P_{i}$. Hence $\operatorname{Fix}\left(\tau, P_{i}\right)$ is a subplane, $i=0,1$. By (16), $\mathrm{C}_{G}(\tau)^{\prime}$ induces $\operatorname{PSL}(2, q)$ on $\operatorname{Fix}(\tau)$, leaving invariant the subplanes $\operatorname{Fix}\left(\tau, P_{0}\right), \operatorname{Fix}\left(\tau, P_{1}\right)$. If $q \notin\{5,9\}$ then the latter two subplanes of $\operatorname{Fix}(\tau)$ are disjoint by $4.2(\mathrm{i})$, violating Corollary $5.2(\mathrm{iv})$ of [28]. Indeed the same contradiction is obtained for $q \in\{5,9\}$. (Clearly the orders of $\operatorname{Fix}\left(P_{0}\right), \operatorname{Fix}\left(\tau, P_{0}\right)$ are divisible by p; in particular $\operatorname{Fix}\left(\tau, P_{0}\right)$ is not of order 4. By Theorem 3.3, the additional hypothesis required in [28,Cor.5.2] is satisfied.) This gives (18).

By 4.2 (ii),(iii) we may assume that X is a point of Π such that $G_{X}=\mathrm{C}_{G}(\tau) P_{0}$, $\left|X^{G}\right|=q^{2}+q+1$. By (17) the points of X^{G} are not collinear.

$$
\begin{equation*}
X^{G} \text { is not an arc. } \tag{19}
\end{equation*}
$$

For suppose that X^{G} is an arc. Clearly P_{0} fixes $q+1$ points of X^{G}. (This is evident from the proof of $4.2(\mathrm{iv})$, in which P_{0} fixes exactly $q+1$ points of Σ.) Therefore P_{0} is planar, and since $\mathrm{C}_{G}(\tau)$ acts transitively on $P_{0} \backslash 1$ by conjugation, Theorem 6.2 shows that $\mathrm{Fix}(g)$ is a Baer subplane, given any $g \in P_{0} \backslash 1$. But $\operatorname{Fix}(g)$ contains only $q+1$ points of X^{G}, so
let $Y \in X^{G}$ be outside $\operatorname{Fix}(g)$ and let l be the unique line of $\operatorname{Fix}(g)$ containing Y. Then l carries $p \geq 3$ points of X^{G}, which gives (19). Therefore 4.2 (iv) yields
G leaves invariant a Desarguesian subplane Π_{0} of order q, on which G acts faithfully.

If X is the centre of the homology induced by τ on Π_{0}, then $\mathrm{C}_{G}(\tau)$ acts on $\operatorname{Fix}(\tau)$, fixing X, contrary to $4.1(\mathrm{v})$ and Theorem 1.8.

Proof of Theorem 1.5(a) concluded,, in which $G \cong \operatorname{PSU}(3, q), q \neq 5,11$. We have $\operatorname{Fix}(\bar{g})=$ $\operatorname{Fix}\left(\overline{\tau^{\prime}}\right)$ for all $g \in K_{\tau^{\prime}} \backslash 1$, since $\operatorname{Fix}(g)=\operatorname{Fix}\left(\tau^{\prime}\right)$. Also since $Z_{\tau^{\prime}} \cap K_{\tau} \subseteq Z_{\tau^{\prime}} \cap Z_{\tau}=1$ by (16), we have $\overline{Z_{\tau^{\prime}}} \cong Z_{\tau^{\prime}} \cong Z_{\tau}$ is cyclic of order $(q+1) / \mu$, and $\overline{K_{\tau^{\prime}}} \cong K_{\tau^{\prime}} \cong K_{\tau}$. In particular $\overline{\tau^{\prime}} \neq 1$.
(21) $\quad K_{\tau}=\langle\tau\rangle, \quad\left|\overline{Z_{\tau}}\right|=\frac{q+1}{2 \mu}>1$.

If $\overline{\tau^{\prime}}$ is a Baer involution of $\operatorname{Fix}(\tau)$ then using 2.4 and (16), $\left|\overline{K_{\tau^{\prime}}}\right|=\left|K_{\tau^{\prime}}\right|=\left|K_{\tau}\right|$ divides $(q(q-1),(q+1) / \mu)=2$, which yields (21).

Otherwise $\overline{\tau^{\prime}}$ is a homology of $\operatorname{Fix}(\tau)$. Let $e=\left|K_{\tau}\right|$ and suppose that $e>2$. By 5.1(vii) we may suppose that $\tau^{\prime}, \tau^{\prime \prime} \in \mathrm{C}_{G}(\tau)$ are involutions such that $\left\langle K_{\tau^{\prime}}, K_{\tau^{\prime \prime}}\right\rangle \supseteq \mathrm{C}_{G}(\tau)^{\prime}$. Now a point X of $\operatorname{Fix}(\tau)$ common to the axes of $\overline{\tau^{\prime}}, \overline{\tau^{\prime \prime}}$ is fixed by $\left\langle\overline{K_{\tau^{\prime}}}, \overline{K_{\tau^{\prime \prime}}}\right\rangle \supseteq \overline{\mathrm{C}_{G}(\tau)^{\prime}} \cong$ $\operatorname{PSL}(2, q)$, contrary to Theorem 1.7. (Recall that the exceptional cases (iii), (iv) of 1.7 do not occur if $\operatorname{PSL}(2, q)$ contains involutory homologies.) This concludes the proof of (21).
(22) $\quad \operatorname{Fix}(\bar{g})$ is not a subplane of $\operatorname{Fix}(\tau)$, for any $\bar{g} \in \overline{Z_{\tau}} \backslash 1$.

For suppose that $\operatorname{Fix}(\bar{g})$ is a (necessarily proper) subplane of $\operatorname{Fix}(\tau)$ for some $\bar{g} \in \overline{Z_{\tau}} \backslash 1$. Since $\operatorname{Fix}(\bar{g})$ is invariant under $\overline{\mathrm{C}_{G}(\tau)}$, Corollary $5.2(\mathrm{v})$ of $[28]$ implies that $\left|\overline{Z_{\tau}}\right|=(q+1) / 2 \mu$ divides $q(q-1)$, i.e. $q \in\{3,5,11\}$. (If $q=9$ then $\left|\overline{Z_{\tau}}\right|=5 \nmid 81-4$ so that $\operatorname{Fix}(\bar{g})$ is not
of order 4; by Theorem 3.3, the additional hypothesis required in [28,Cor.5.2] is satisfied.) By hypothesis this means that $q=3, \overline{\mathrm{C}_{G}(\tau)^{\prime}} \cong \mathrm{A}_{4}, \operatorname{Fix}(\tau)$ is either Desarguesian or a Hughes plane of order 9 (see Prop. 2.7 of [28]), and $\overline{\mathrm{C}_{G}(\tau)}$ leaves invariant an oval \mathcal{O} (i.e. quadrangle) of the subplane $\operatorname{Fix}\left(\overline{Z_{\tau}}\right)$ of order 3 . The group of all collineations of $\operatorname{Fix}(\tau)$ leaving \mathcal{O} invariant is isomorphic to $\mathrm{S}_{4} \times H$, where H fixes $\operatorname{Fix}(\bar{g})$ pointwise and $H \cong \mathrm{C}_{2}$ or S_{3} according as $\operatorname{Fix}(\tau)$ is Desarguesian or Hughes. (See [32], [24,Cor.5,6] for the collineation groups of the Hughes planes.) In neither case does $\mathrm{S}_{4} \times H$ contain a subgroup isomorphic to $\overline{\mathrm{C}_{G}(\tau)}=\mathrm{C}_{G}(\tau) /\langle\tau\rangle$. (Lemma 5.1(iii) yields $\overline{\mathrm{C}_{G}(\tau)} \cong \mathrm{A}_{4} \rtimes\langle\theta\rangle$ where θ is an automorphism of A_{4} of order 4. Any subgroup of $\mathrm{S}_{4} \times H$ of order 48 is isomorphic to $\mathrm{S}_{4} \times \mathrm{C}_{2}$ or $\mathrm{D}_{8} \times \mathrm{S}_{3}$, where D_{8} is dihedral of order 8. However, since θ permutes regularly the four Sylow 3 -subgroups of A_{4}, it is easily seen that $\overline{\mathrm{C}_{G}(\tau)}$ has no subgroup isomorphic to S_{3}.)
(23) $\overline{Z_{\tau}}$ acts semiregularly on the points and lines of $\operatorname{Fix}(\tau)$.

For if $q=9,(21)$ gives $\left|\overline{Z_{\tau}}\right|=5$ and by (22) it is clear that $\overline{Z_{\tau}}$ is a generalized homology group of the subplane $\operatorname{Fix}(\tau)$ of order 81 . Since $\overline{\mathrm{C}_{G}(\tau)^{\prime}}$ leaves invariant $\operatorname{Fix}\left(\overline{Z_{\tau}}\right)$, it fixes at least an antiflag in $\operatorname{Fix}(\tau)$, contrary to Theorem 1.7.

Otherwise $q \neq 5,9$ and Theorem 1.7 implies that $\overline{\mathrm{C}_{G}(\tau)^{\prime}}$ fixes no point or line of $\operatorname{Fix}(\tau)$. If (23) is false then by (22) and $2.1, \operatorname{Fix}(\bar{g})$ is a triangle invariant under $\overline{\mathrm{C}_{G}(\tau)^{\prime}}$, for some $\bar{g} \in \overline{Z_{\tau}} \backslash 1$. But then Theorem 1.7 gives $q=3$, and (21) gives $\left|\overline{Z_{\tau}}\right|=2$ so that \bar{g} is an involution, which can never be triangular. Therefore (23) must hold.

Now $\left|\overline{Z_{\tau}}\right|=(q+1) / 2 \mu$ divides $q^{4}+q^{2}+1=\left(q^{2}-1\right)\left(q^{2}+2\right)+3$, and since $q \neq 5$ by hypothesis, we have $q=17$. By Theorem 1.9 and duality, we may assume that $\overline{\mathrm{C}_{G}(\tau)^{\prime}}$ has a point orbit $\mathcal{O} \subset \operatorname{Fix}(\tau)$ which is an 18-arc. Let $\bar{h} \in \overline{\mathrm{C}_{G}(\tau)^{\prime}}$ have order 17, and let $X \in \mathcal{O}$ be the unique point of \mathcal{O} fixed by \bar{h}. We have $\overline{Z_{\tau}}=\langle\bar{g}\rangle \cong \mathrm{C}_{3}$, and (23) implies that $\left\{X, X^{\bar{g}}, X^{\bar{g}^{2}}\right\}$ is a triangle. But \bar{h} fixes $X, X^{\bar{g}}, X^{\bar{g}^{2}}$ and so \bar{h} is a Baer collineation of $\operatorname{Fix}(\tau)$. But \bar{h} acts transitively on $\mathcal{O} \backslash\{X\}$ which is a 17 -arc in $\operatorname{Fix}(\tau)$, whereas any point orbit of a Baer collineation consists of collinear points, a contradiction.

Proof of Theorem 1.5(b) concluded,, in which $G \cong \operatorname{PSU}(3, q), q \in\{5,11\}$. We have

$$
\begin{equation*}
\operatorname{Fix}\left(\mathrm{N}_{G}(Q)\right) \neq \varnothing \tag{24}
\end{equation*}
$$

For suppose that $\operatorname{Fix}\left(\mathrm{N}_{G}(Q)\right)=\emptyset$. Clearly $\operatorname{Fix}(Q)$ is neither empty nor a triangle, so by 2.1, $\operatorname{Fix}(Q)$ is a subplane of Π. By Theorem 6.1, $\left[Q: Q_{0}\right]<n_{P} \leq q^{2}$ where n_{P} is the order of $\Pi_{P}=\operatorname{Fix}(P)$ and Q_{0} is the kernel of the action of Q on Π_{P}. Thus $P \subsetneq Q_{0} \triangleleft \mathrm{~N}_{G}(Q)$, so by 5.2 (ii) we have $Q_{0}=Q$, i.e. $\operatorname{Fix}(Q)=\Pi_{P}$. Let $y \in Q \backslash P$, and let n_{P}, n_{y} be the respective orders of the subplanes $\Pi_{P}, \operatorname{Fix}(y)$. Since q is prime, P acts semiregularly on the set of points of l outside Π_{P}, where l is a given line of Π_{P}, so that $q \mid q^{4}-n_{P}$, i.e. $q \mid n_{P}$. If $n_{y}=n_{P}$ then Q acts semiregularly on the points of l outside Π_{P}, and $q^{3} \mid q^{4}-n_{P}$, contradicting $n_{P} \leq q^{2}$. Hence $q^{2} \leq n_{P}^{2} \leq n_{y} \leq q^{2}$, and we have equality: $n_{P}=q, n_{y}=q^{2}$.

Since Q acts trivially on Π_{P}, and by $5.2(\mathrm{i}), 5.4$, the collineation group \bar{N} (say) induced by $\mathrm{N}_{G}(Q)$ on Π_{P} is cyclic of order dividing $\left(q^{2}-1\right) / \mu$. If $q=5$ then $|\bar{N}| \mid 8$ and clearly \bar{N} fixes a point of Π_{P}. Hence we may assume that $q=11,|\bar{N}| \mid 40$. If $2||\bar{N}|$ then \bar{N} contains a homology of Π_{P}, whose centre is fixed by \bar{N}. Otherwise $|\bar{N}| \mid 5$ and \bar{N} fixes at least 3 of the $11^{2}+11+1$ points of Π_{P}. This proves (24).

By (24) and duality we may assume that G has a point orbit \mathcal{O} of length $q^{3}+1$. By 5.3 (ii) and (17), \mathcal{O} is either an oval or a unital embedded in Π. But if \mathcal{O} is a unital then τ fixes exactly $q+1$ collinear points of \mathcal{O}, whose common line is fixed by $\mathrm{C}_{G}(\tau)$, and so $\mathrm{C}_{G}(\tau)^{\prime}$ acts reducibly on the subplane $\operatorname{Fix}(\tau)$, and by 1.7 we have $q \neq 11$ in this case. \square

Proof of Theorem 1.5(c), in which $G \cong \operatorname{PGU}(3, q)$. Mimicking the proof of $1.5(\mathrm{a})$, it is clear that

$$
K_{\tau}=\langle\tau\rangle, \quad\left|\overline{Z_{\tau}}\right|=\frac{1}{2}(q+1)>1
$$

and that (22) holds. If $q \neq 5$ then (23) holds and $\left|\overline{Z_{\tau}}\right|=\frac{1}{2}(q+1)$ divides $q^{4}+q^{2}+1$, a contradiction as before. For the remainder of the proof we may therefore assume that
$q=5,\left|\overline{Z_{\tau}}\right|=3$. Consider the action of $\overline{\mathrm{C}_{G}(\tau)^{\prime}} \cong \operatorname{PSL}(2,5)$ on the subplane $\operatorname{Fix}(\tau)$ of order 25.

Suppose that $\overline{\mathrm{C}_{G}(\tau)^{\prime}}$ acts reducibly on $\operatorname{Fix}(\tau)$. By Theorem 1.7, $\overline{\mathrm{C}_{G}(\tau)^{\prime}}$ fixes an antiflag (X, l) and has orbits $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{4}$ of length $5,5,6,10$ on l, respectively. Now $\overline{Z_{\tau}}$ fixes all 26 points of l in $\operatorname{Fix}(\tau)$. (For $\overline{Z_{\tau}}$ cannot interchange \mathcal{O}_{1} and \mathcal{O}_{2} since $\left|\overline{Z_{\tau}}\right|=3$. Thus $\overline{Z_{\tau}}$ leaves each \mathcal{O}_{i} invariant, $i=1,2,3,4$. If $Y \in \mathcal{O}_{i}$ then Y is the unique point of \mathcal{O}_{i} fixed by $\overline{\mathrm{C}_{G}(\tau)^{\prime}}$, so that $\overline{Z_{\tau}}$ fixes Y as claimed.) Let $\bar{g} \in \overline{\mathrm{C}_{G}(\tau)^{\prime}}$ be an involution. Then \bar{g} fixes $1,1,2,2$ points of $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{4}$ respectively, so that $\operatorname{Fix}(\bar{g})$ is a subplane of order 5 on which $\overline{Z_{\tau}}$ induces an (X, l)-homology group, contradicting $\left|\overline{Z_{\tau}}\right|=3$.

Hence $\overline{\mathrm{C}_{G}(\tau)^{\prime}}$ acts irreducibly on $\operatorname{Fix}(\tau)$, and by duality we may assume by Theorem 1.9 that $\overline{\mathrm{C}_{G}(\tau)^{\prime}}$ has a point orbit \mathcal{O} which is a 6 -arc. This leads to a contradiction just as in the case $\operatorname{PSU}(3,17)$ treated above.

10. The Case PSL(3,3)

We indicate here what happens when the additional hypothesis in Theorem 1.3 for $q=3$ is removed. Suppose that Π is a projective plane of order 81 admitting a reducible collineation group $G \cong \operatorname{PGL}(3,3)=\operatorname{PSL}(3,3)$. We claim that $\operatorname{Fix}(G)$ is a subplane of order 3. To see this, suppose that G fixes a line l, and let n_{1} be the number of points of l fixed by G. For every maximal subgroup H of G satisfying $[G: H] \leq 82$ we have $[G: H]=13$ (type 1 or 2 in the list of Mitchell [26,p.241]) so that $82 \equiv n_{1} \bmod 13$. However $n_{1} \leq 10$ by (15), and so $n_{1}=4$. Dually, every point of Π fixed by G lies on exactly 4 fixed lines. Hence $\operatorname{Fix}(G)$ is a subplane of order 3 as claimed.

For the remainder of this paper we assume that Π is a projective plane of order q^{4} admitting $G \cong \operatorname{PGL}(3, q)$ fixing pointwise a subplane Π_{0} of order q; having $q^{2}+q+1$ point orbits of length $q^{4}-q$ (those points outside Π_{0} but on some line of Π_{0}); and with the remaining $q^{3}\left(q^{3}-1\right)\left(q^{2}-1\right)$ points of Π forming a regular G-orbit. These conditions are satisfied by the Lorimer-Rahilly translation plane in case $q=2$. By Theorem 1.3 (see
assertion (17), which is also implicit in the statement of Theorem 1.3) the only permissible odd value of q is 3 . The case $q=3$ cannot yield a translation plane by [20] or [21,Lemma 4.6]; nevertheless to settle this exceptional possibility is a very interesting problem in which the case $q=2$ provides some inspiration. We proceed with the highlights, omitting the details.

In any case by our hypothesis there exist flags $(X, l),(Y, m)$ such that the stabilizers $G_{X}=G_{l}=1$, and $G_{Y}=G_{m}$ of order $q^{2}\left(q^{2}-1\right)$. Then G_{Y} acts tangentially transitively on Π relative to the Baer subplane $\operatorname{Fix}\left(G_{Y}\right)$ (in a slight and obvious extension of the terminology of Jha [20]). Furthermore $\mathrm{N}_{G}\left(G_{Y}\right) / G_{Y}$ is a group of order $q(q-1)$ acting faithfully on $\operatorname{Fix}\left(G_{Y}\right)$, tangentially transitively relative to $\Pi_{0}=\operatorname{Fix}(G)$. If $\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ is a set of $m=q^{2}+q+1$ representatives of the distinct right cosets of $\mathrm{N}_{G}\left(G_{Y}\right)$ in G, then we may express G as the disjoint union

$$
G=\{1\} \cup\left(G_{Y}^{g_{1}} \backslash 1\right) \cup\left(G_{Y}^{g_{2}} \backslash 1\right) \cup \cdots \cup\left(G_{Y}^{g_{m}} \backslash 1\right) \cup T
$$

where T is a normal subset of size $q\left(q^{3}-q-1\right)\left[q\left(q^{3}-q-1\right)-1\right]$. If $S=\left\{g \in G: X^{g} \in l\right\}$ then $|S|=q\left(q^{3}-q-1\right)$ and every element $t \in T$ is representable uniquely as $t=s_{1} s_{2}^{-1}$ with $s_{1}, s_{2} \in S$. Also every $t \in T$ is representable uniquely as $t=s_{3}^{-1} s_{4}$ with $s_{3}, s_{4} \in S$. (Thus S is a sort of 'partial difference set'.)

In case $q=2$ with the Lorimer-Rahilly plane, we may identify $G \cong \operatorname{PGL}(3,2)$ with the permutation group $\langle(1234567),(12)(36)\rangle<\mathrm{A}_{7}$, and then (X, l) may be chosen such that $S=\{(1),(1264735),(1274653),(1367425),(1576423),(14)(3756),(16)(2437),(17)(2456)$, (34)(1752), (45)(1632) $\}$. In this case $G_{Y} \cong \mathrm{~A}_{4}$ and T is the union of the conjugacy classes of types $4 \mathrm{~A}, 7 \mathrm{~A}$ and 7 B in the notation of the Atlas [3,p.3].

In case $q=3$ we have $G_{Y} \cong 3^{2}: \mathrm{Q}_{8}$ where Q_{8} is quaternion of order 8. Also $\mathrm{N}_{G}\left(G_{Y}\right) / G_{Y} \cong \mathrm{~S}_{3}$, so that $\operatorname{Fix}\left(G_{Y}\right)$ is a Hughes, Hall or dual Hall plane of order 9 (as in the comments following Theorem 6.2). In the Atlas notation [3,p.13], T is the union of the conjugacy classes of types $3 \mathrm{~B}, 6 \mathrm{~A}, 8 \mathrm{~A}, 8 \mathrm{~B}, 13 \mathrm{~A}, 13 \mathrm{~B}, 13 \mathrm{C}, 13 \mathrm{D}$. A crucial step in the construction of such an exceptional plane of order 81 appears to be finding a subset $S \subset G$ of size 69 satisfying the above 'partial difference set' condition, which remains an open problem.

REFERENCES

1. Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 9th printing, Dover, 1970.
2. Beth, T., Jungnickel, D. and Lenz, H., Design Theory, Bibliographisches Institut, Zürich, 1985, p.29.
3. Conway, J. H. et al, Atlas of Finite Groups, Oxford Univ. Press, 1985.
4. Dembowski, P., 'Gruppentheoretische Kennzeichnungen der endlichen desarguesschen Ebenen', Abh. Math. Sem. Univ. Hamburg 29 (1965), 92-106.
5. —, Finite Geometries, Springer-Verlag, Berlin, 1968.
6. \quad, 'Zur Geometrie der Gruppen $\mathrm{PSL}_{3}(q)$ ', Math. Z. 117 (1970), 125-134.
7. Dempwolff, U., 'PSL $(3, q)$ on projective planes of order q^{3}, Geom. Ded. 18 (1985), 101-112.
8. Dempwolff, U. and Reifart, R., 'The classification of translation planes of order 16, I', Geom. Ded. 15 No. 2 (1983), 137-153.
9. Dickson, L. E., Linear Groups with an Exposition of the Galois Field Theory, Dover, New York, 1958.
10. Figueroa, R., 'A family of not (V, l)-transitive projective planes of order $q^{3}, q \not \equiv 1$ $(\bmod 3)$ and $q>2$ ', Math. Z. 181 (1982), 471-479.
11. Gorenstein, D., Finite Groups, Harper \& Row, New York, 1968.
12. Hartley, R., 'Determination of the ternary collineation groups whose coefficients lie in the $\operatorname{GF}\left(2^{n}\right)^{\prime}$, Ann. Math. 27 (1926), 140-158.
13. Hering, C., 'On the structure of collineation groups of finite projective planes', Abh. Math. Sem. Univ. Hamburg 49 (1979), 155-182.
14. Hering, C. and Schäffer, H. J., 'On the new projective planes of R. Figueroa', in: Combinatorial Theory, Springer-Verlag Lecture Notes in Mathematics No. 969, 1982, 187-190.
15. Hering, C. and Walker, M., 'Perspectivities in irreducible collineation groups of projective planes. II', J. Stat. Plan. Inf. 3 (1979), 151-177.
16. Hoffer, A. R., 'On unitary collineation groups', J. Alg. 22 (1972), 211-218.
17. Hughes, D. R., 'Generalized incidence matrices over group algebras', Ill. J. Math. 1 (1957), 545-551.
18. Hughes, D. R. and Piper, F. C., Projective Planes, Springer-Verlag, New York, 1973.
19. Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin, 1967, pp. 191-214.
20. Jha, V., 'On tangentially transitive translation planes and related systems', Geom. Ded. 4 (1975), 457-483.
21. Jha, V. and Kallaher, M. J., 'On the Lorimer-Rahilly and Johnson-Walker translation planes', Pac. J. Math. 103 No. 2 (1982), 409-427.
22. Johnson, N. L. and Ostrom, T. G., 'The translation planes of order 16 that admit PSL(2, 7)', J. Comb. Theory Ser. A 26 (1979), 127-134.
23. Kantor, W. M., 'On the structure of collineation groups of finite projective planes', Proc. Lond. Math. Soc. (3) 32 (1976), 385-402.
24. Lüneburg, H., 'Characterizations of the generalized Hughes planes', Can. J. Math. 28 No. 2 (1976), 376-402.
25. —, Translation Planes, Springer-Verlag, Berlin, 1980, pp. 193-203.
26. Mitchell, H. H., 'Determination of the ordinary and modular ternary linear groups', Trans. Amer. Math. Soc. 12 (1911), 207-242.
27. Moorhouse, G. E., 'Unitary and other linear groups acting on finite projective planes', doctoral thesis, University of Toronto, 1987.
28. -, ' $\operatorname{PSL}(2, q)$ as a collineation group of projective planes of small order', submitted.
29. O'Nan, M. E., 'Automorphisms of unitary block designs', J. Alg. 20 (1972), 495-511.
30. Passman, D. S., Permutation Groups, W. A. Benjamin, N. Y., 1968, p.13.
31. Robinson, D. J. S., A Course in the Theory of Groups, Springer-Verlag, N. Y., 1982, p. 27.
32. Rosati, L. A., 'I gruppi di collineazioni dei piani di Hughes', Boll. Un. Mat. Ital. 13 (1958), 505-513.
33. ——, 'Sui piani di Hughes generalizzati e i loro derivati', Le Matematiche 22 (1967), 289-302.
34. Suzuki, M., Group Theory I, Springer-Verlag, Berlin, 1982, pp. 392-416.
35. Unkelbach, H., 'Eine Charakterisierung der endlichen Hughes-Ebenen', Geom. Ded. 1 (1973), 148-159.

Author's address (after 1989)
G. Eric Moorhouse,

Department of Mathematics, University of Wyoming, Laramie, WY 82071-3036, U.S.A.

[^0]: ${ }^{1}$ Supported by NSERC of Canada under a Postdoctoral Fellowship.

