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Abstract. A new family of distance-regular graphs is constructed. They
are antipodal 22t−1-fold covers of the complete graph on 22t vertices. The
automorphism groups are determined, and the extended Preparata codes
are reconstructed using walks on these graphs.

There are connections to other interesting structures: the graphs are
equivalent to certain generalized Hadamard matrices; and their underlying
3-class association scheme is formally dual to the scheme of a system of
linked symmetric designs obtained from Kerdock sets of skew matrices in
characteristic two.

1 Introduction

We refer to Brouwer, Cohen and Neumaier [BCN] for the definition and
theory of distance- regular graphs. Such a graph Γ, of diameter d, is said
to be antipodal if all vertices at distance d from any given vertex are at
distance d from each other; cf. [BCN], §4.2. When d equals three, Γ is an
r-fold cover of a complete graph Kn, where n is the number of antipodal
classes (called fibres) and r is the size of each fibre. See Godsil and Hensel
[GH] for an extensive study of this class of graphs. In particular, they show
([GH] lemma 3.1) that an antipodal distance-regular graph of diameter three
can be specified by the triple of parameters (n, r, c2), where n and r are as
above and c2 is the number of common neighbours to any pair of vertices at
distance two. Such a graph is called an (n, r, c2)-cover. Our main result is
the construction of (22t, 22t−1, 2)-covers for every positive integer t. In the
following statement φ denotes Euler’s phi function.

Theorem 1.1 There exist at least 1
2φ(2t − 1) pairwise nonisomorphic

(22t, 22t−1, 2)-covers.
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The description of these graphs follows. Put q = 22t−1 and s = 2e where
gcd(e, 2t−1) = 1. The graph Γ(q, s) has vertex-set GF (q)×GF (2)×GF (q),
and adjacency relation determined by

(a, i, α) ∼ (b, j, β) ⇔ α+ β = asb+ abs + (i+ j)(as+1 + bs+1) ,

where ‘∼’ means ‘is adjacent or equal to’. We will show after Lemma 2.2
that Γ(q, s) is distance-regular. It is clear from the definition that Γ(q, s) is
a q- fold cover of K2q, having as its fibres the point-sets

Va,i = {(a, i, α) : α ∈ GF (q)}, a ∈ GF (q), i ∈ GF (2).

Note that Γ(2, 2) is the familiar 3-cube; the other graphs are new. We
will determine the automorphism groups of these graphs in Section 2. The
result is the following.

Theorem 1.2 For any t ≥ 3 and any e coprime to 2t − 1 , the full
automorphism group of Γ(22t−1, 2e) has order 22t(22t−1 − 1)(2t − 1). It is
generated by the following vertex permutations, where q = 22t−1 and s = 2e:

(i) (a, i, α) 
→ (a, i, α + u), u ∈ GF (q);

(ii) (a, i, α) 
→ (λaτ , i, λs+1ατ ), λ ∈ GF (q)\{0}, τ ∈ Aut(GF (q));

(iii) (a, i, α) 
→ (a, i + 1, α).

This group has just two orbits on vertices, one of which is V0,0 ∪ V0,1.

We remark that Γ(8, 2) is indeed an exceptional graph: Marston Conder
(private communication) has shown that AutΓ(8, 2) is a vertex-transitive
group isomorphic to 2× 23.SL(3, 2) (where the latter extension 23.SL(3, 2)
is non-split), and that the Sylow 2-subgroup acts regularly on Γ(8, 2).

It will be shown in Section 3 that Γ(q, 2e) and Γ(q, 2f ) are isomorphic if
and only if e+f ≡ 0mod(2t−1); this will complete the proof of Theorem 1.1.
The argument will exploit an interesting connection to the Preparata codes:
the latter may be constructed using certain walks in the graphs Γ(q, s), so
that Kantor’s work [K] on the automorphism groups of the codes applies.

Observe that the group of automorphisms of type (i) in Theorem 1.2 fixes
every fibre and acts regularly on each fibre. It follows from a quotienting
construction of [GH], Corollary 6.3, that there exist (22t, 22t−i, 2i)-covers for
1 ≤ i ≤ 2t. Such covers were already known in the range t ≤ i ≤ 2t, cf.
[GH], p.220; the other parameter sets are new.
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2 Automorphisms of the Covers

Let Tr : GF (q) → GF (2) denote the trace map, where as before q = 22t−1.
Note that Tr(1) = 1 since 2t− 1 is odd. Also, if s = 2e is any integer with
e coprime to 2t− 1, then Tr(x) =

∑2t−2
i=0 xsi

.

Lemma 2.1 Given a ∈ GF (q), the equation xs + x + a = 0 has 0 or 2
solutions x ∈ GF (q), according as Tr(a) = 1 or 0.

Proof. If x is a solution, then Tr(a) = Tr(xs+x) = 0. On the other hand,
suppose that Tr(a) = 0. Set θ = x+

∑t−1
i=0 a

s2i
. Then θs = xs +

∑t−1
i=0 a

s2i+1

and therefore θs + θ = xs + x + a + Tr(a) = xs + x + a. Since the fixed
field of the automorphism θ 
→ θs is GF (2), this gives two solutions θ to
the equation θs + θ = 0, and hence exactly two solutions x to the equation
xs + x+ a = 0. ✷

Remark. In what follows we will frequently make use of the fact that
the maps x 
→ xs−1 and x 
→ xs+1 are bijections of the field GF (q). This
follows from the computation gcd(s2 − 1, q − 1) = gcd(22e − 1, 22t−1 − 1) =
2gcd(2e,2t−1) − 1 = 2gcd(e,2t−1) − 1 = 21 − 1 = 1.

Lemma 2.2 Let A = (a, i, α) and B = (b, j, β) be two non-adjacent
vertices of Γ = Γ(q, s) in distinct fibres. Then A and B have exactly two
common neighbours in Γ. Moreover,

(i) If i = j, these two common neighbours lie in the fibres Vc,k and
Va+b+c,k, where k = i + Tr((α + β)/(a + b)s+1), and c is one solu-
tion of

(
c

a+ b

)s

+
c

a+ b
+

(i+ k)(as+1 + bs+1) + α+ β

(a+ b)s+1
= 0.

(ii) If i �= j, these two common neighbours lie in the fibres Vc,k+i where
k = 0, 1, and c satisfies

(c+ a+ b)s+1 = kas+1 + (k + 1)bs+1 + α+ β + (a+ b)s+1.

Proof. If the vertex C = (c, k, γ) is adjacent to both A and B, then

(1) α+ γ = asc+ acs + (i+ k)(as+1 + cs+1), and

(2) β + γ = bsc+ bcs + (j + k)(bs+1 + cs+1).
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Consider first the case i = j. Adding (1) and (2) and rearranging terms
gives the equation for c given in (i) above. By Lemma 2.1, in order for
solutions to exist, we require that

0 = Tr

[
(i+ k)(as+1 + bs+1) + α+ β

(a+ b)s+1

]

= Tr

[
(i+ k)

(
1 +

a

a+ b
+ (

a

a+ b
)s

)
+

α+ β

(a+ b)s+1

]

= i+ k + Tr

[
α+ β

(a+ b)s+1

]
,

which gives the required formula for k. By Lemma 2.1, the resulting equation
for c has exactly two solutions. One may solve uniquely for γ using either
(1) or (2), so that there exist exactly two vertices C satisfying A ∼ C ∼ B.
Since A �∼ B, such vertices C do not coincide with either A or B. Therefore
A and B have exactly two common neighbours, and these lie in the fibres
described in (i).

Now consider the case i �= j. Again adding (1) and (2) and rearranging
gives

(c+ a+ b)s+1 = (i+ k)as+1 + (j + k)bs+1 + α+ β + (a+ b)s+1.

Replacing k by i+ k gives the equation for c given in conclusion (ii). Since
x 
→ xs+1 is bijective, each value of k ∈ {0, 1} gives a unique solution for c.
The result follows as before. ✷

By Lemma 3.1 of [GH], we immediately obtain that Γ(q, s) is a (2q, q, 2)-
cover, for any s = 2e with gcd(e, 2t − 1) = 1. This yields φ(2t − 1) distinct
graphs; but it is easy to check that the map (a, i, α) 
→ (a, i, αs) is an
isomorphism from Γ(q, q/s) to Γ(q, s). We will show after Theorem 3.3 that
we have in fact 1

2φ(2t− 1) nonisomorphic graphs.
We call a set of four fibres of Γ = Γ(q, s) a quad if their union contains an

isometrically embedded copy of the 3-cube. Clearly this can only happen if
opposite vertices of the cube are in the same fibre. Figures 1 and 2 illustrate
two types of quads that occur in Γ. There we use the abbreviation a ∗ b :=
asb+abs. Note that in these figures a, b and c are distinct elements of GF (q).

(insert Figures 1 and 2 here)
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Lemma 2.3 The quads are the sets of the form

(i) {Va,i, Vb,i, Vc,i, Va+b+c,i} where a, b, c ∈ GF (q) are distinct, and
i ∈ GF (2), and

(ii) {Va,0, Va,1, Vb,0, Vb,1} where a, b ∈ GF (q) are distinct.

Proof. Figures 1 and 2 show that sets of the form (i) and (ii) are quads.
We proceed to prove the converse.

Let us say that the fibre Va,i is of type i. If a quad consists of four fibres
Va,i, Vb,i, Vc,i, Vd,i of the same type, then it is clear from Lemma 2.2(i) that
a+ b+ c+ d = 0, and so conclusion (i) holds.

Otherwise, it is clear from Lemma 2.2 that we have two fibres of each
type, say Va,0, Vb,1, Vc,0, Vd,1. Again by Lemma 2.2(i) we have a+b+c+d = 0.
But by Lemma 2.2(ii), we have (c+a+ b)s+1 +(d+a+ b)s+1 = as+1 + bs+1,
i.e.

0 = as+1 + bs+1 + cs+1 + (a+ b+ c)s+1

= asb+ abs + asc+ acs + bsc+ bcs

= (a+ b)(a+ c)[(a+ b)s−1 + (a+ c)s−1].

But a �= b and x 
→ xs−1 is bijective, so either a = c and b = d, or b = c and
a = d, so that conclusion (ii) holds. ✷

The collection of fibres forms a system of imprimitivity for the action
of G = Aut(Γ) on the vertices, because the fibres are equivalence classes
for the antipodal relation. Let N be the elementary abelian subgroup
of G consisting of all automorphisms of the form (a, i, α) 
→ (a, i, α + u),
u ∈ GF (q). Clearly N fixes each fibre, and acts regularly on the vertices in
each fibre. By [GH, Lemma 7.3], N is the full kernel of the action of G on
the set of fibres, which proves the following.

Lemma 2.4 The action of G on the set of fibres is given by G = G/N .

Corollary 2.5 Suppose q > 2. Then the permutation group G is im-
primitive. Two systems of imprimitivity are given by

(i) {{Va,0 : a ∈ GF (q)}, {Va,1 : a ∈ GF (q)}}, and

(ii) {{Va,0, Va,1} : a ∈ GF (q)}.
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Proof. If Si := {Va,i : a ∈ GF (q)}, i ∈ {0, 1}, then by Lemma 2.3, any
three fibres in Si are contained in a quad in Si; moreover S0 and S1 are
the only q-sets of fibres with this property. It follows that (i) is a system of
imprimitivity for G. Similarly, the system (ii) can be recognized via Lemma
2.3, by the property that any pair {Va,0, Va,1}, together with an arbitrary
third fibre, is contained in a unique quad. ✷

Once again we use the abbreviation a ∗ b := asb + abs = (a + b)s+1 +
as+1 + bs+1, which is an alternating GF (2)-bilinear form on GF (q).

Lemma 2.6 If q > 2, then the automorphisms of Γ are the trans-
formations of the form (a, i, α) 
→ (aρ + c, i + k, απ + c ∗ aρ + γ) where
c, γ ∈ GF (q), k ∈ GF (2), and ρ, π : GF (q) → GF (q) are additive (i.e.
GF (2)-linear) bijections such that (xs+1)π = (xρ + c)s+1 + cs+1 for all
x ∈ GF (q).

Proof. It is straightforward to check that all transformations of the latter
form are isomorphisms of Γ, and we leave this as an exercise.

Conversely, let θ ∈ G. We may suppose that θ maps type-0 fibres to
type-0 fibres; otherwise, by Corollary 2.5(i), θ maps type-0 fibres to type-1
fibres, and we may replace θ by θ ◦ φ, where φ : (a, i, α) 
→ (a, i + 1, α).
Let Vc,0 = V θ

0,0. Then θ induces a permutation on the type-0 fibres given by
V θ

a,0 = Vaρ+c,0 where ρ : GF (q) → GF (q) is some permutation fixing 0. Also,
there exists a bijection π : GF (q) → GF (q) satisfying (0, 0, α)θ = (c, 0, απ).
Since translations (a, i, α) 
→ (a, i, α+u) are automorphisms, there is no loss
of generality in assuming 0π = 0. It is now easy to see that the pair of permu-
tations (ρ, π) completely determines θ. Indeed, note that (a, 0, α) ∼ (0, 0, α),
and therefore (a, 0, α)θ = (aρ+c, 0, απ+c∗aρ), since this is the unique vertex
in Vaρ+c,0 adjacent/equal to (0, 0, α)θ = (c, 0, απ). Furthermore, by Corol-
lary 2.5(ii), we have V θ

a,1 = Vaρ+c,1, and since (a, 0, α) ∼ (a, 1, α), we have

(a, i, α)θ = (aρ + c, i, απ + c ∗ aρ)

for every vertex (a, i, α). Now (a, 0, α) ∼ (b, 1, α + (a + b)s+1), so applying
θ gives (aρ + c, 0, απ + c ∗ aρ) ∼ (bρ + c, 1, [α + (a+ b)s+1]π + c ∗ bρ), i.e.

[α+ (a+ b)s+1]π = απ + c ∗ (aρ + bρ) + (aρ + bρ)s+1(3)
= απ + (aρ + bρ + c)s+1 + cs+1
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for all a, b, β ∈ GF (q). The special case b = 0 gives (α + as+1)π =
απ+(aρ+c)s+1+cs+1 since 0ρ = 0. Specializing further to the case α = b = 0
gives

(as+1)π = (aρ + c)s+1 + cs+1(4)

since 0π = 0. Combining this with the previous relation, we obtain
(α+as+1)π = απ +(as+1)π. However, every element of GF (q) is expressible
in the form as+1, so the latter identity implies that π : GF (q) → GF (q) is
additive. Returning to (3), this implies that ((a + b)s+1)π = (aρ + bρ +
c)s+1 + cs+1. Applying (4) to the left side of the latter identity yields
((a + b)ρ + c)s+1 + cs+1 = (aρ + bρ + c)s+1 + cs+1. Since x 
→ xs+1 is
bijective, this implies that (a+ b)ρ = aρ + bρ for all a, b ∈ GF (q). ✷

At this point it is convenient to recall the Baker-van Lint-Wilson gener-
alization [BLW] (see also [CL], p.185) of the Preparata code. The extended
Preparata code P(q, s) is the set of all pairs (X,Y ) such that X,Y ⊆ GF (q)
satisfy the conditions

(i) | X | and | Y | are both even;

(ii)
∑

x∈X x =
∑

y∈Y y; and

(iii)
∑

x∈X xs+1 + (
∑

x∈X x)s+1 =
∑

y∈Y ys+1.

Note that we may identify X and Y with their characteristic vectors, so that
P(q, s) is a binary code of length 2q.

Proof of Theorem 1.2. Let θ be any automorphism of Γ, with the as-
sociated permutations π, ρ : GF (q) → GF (q) in the notation of Lemma
2.6. We will prove that θ induces an automorphism θ̃ of P(q, s), so that we
may appeal to Kantor [K]. For S ⊆ GF (q), define Sρ := {xρ : x ∈ S} and
S + d := {x+ d : x ∈ S}. Suppose that (X,Y ) ∈ P(q, s); we will show that
(X,Y )θ̃ := (Xρ, Y ρ + c), where c is as in the statement of Lemma 2.6, also
belongs to P(q, s). The conditions (i) and (ii) defining the codes are very
easy to verify, since | Xρ |=| X | and | Y ρ + c |=| Y | are both even and also∑

x∈X

xρ = (
∑
x∈X

x)ρ = (
∑
y∈Y

y)ρ =
∑
y∈Y

yρ =
∑
y∈Y

(yρ + c),

the last equation holding since | Y | is even. To verify the third Preparata
condition, we use the identity (xs+1)π = (xρ +c)s+1+cs+1 = (xρ)s+1+c∗xρ

to compute that
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∑
x∈X

(xρ)s+1 + (
∑
x∈X

xρ)s+1 =
∑
x∈X

[(xs+1)π + c ∗ xρ] + ((
∑
x∈X

x)ρ)s+1

= (
∑
x∈X

xs+1)π + c ∗ (
∑
x∈X

x)ρ + ((
∑
x∈X

x)s+1)π + c ∗ (
∑
x∈X

x)ρ

= [
∑
x∈X

xs+1 + (
∑
x∈X

x)s+1]π = (
∑
y∈Y

ys+1)π

=
∑
y∈Y

(ys+1)π =
∑
y∈Y

[(yρ + c)s+1 + cs+1] =
∑
y∈Y

(yρ + c)s+1.

Thus θ̃ is an automorphism of P(q, s). When q ≥ 32, Theorem 3 of [K]
implies that c = 0 and that xρ = λxτ , xπ = λs+1xτ for some λ ∈ GF (q)\{0}
and τ ∈ AutGF (q). ✷

3 Construction of the Extended Preparata Codes
from the Graphs

In this section, we construct a code C using walks on the graph Γ = Γ(q, s).
Recall that a walk is a sequence of adjacent vertices, with possibly repeated
vertices. Although it is possible to describe this code C in terms of Γ using
our previous coördinatization by GF (q) × GF (2) × GF (q), we instead use
new notation in order to make clear that C is an isomorphism invariant of
Γ. Using our previous coördinatization we will show that C is equivalent to
the extended Preparata code P(q, s).

Let us start by distinguishing one vertex O as the origin of Γ. For q ≥ 25,
we choose O to be any vertex in the smaller orbit of Aut(Γ). In view of the
action of Aut(Γ) we may suppose that O = (0, 0, 0). For q = 8, Γ is vertex
transitive, so O can be chosen arbitrarily, but again, we will suppose that
O = (0, 0, 0). Let VO be the fibre containing O, and let V ′

O be its matched
fibre, as in Corollary 2.5(ii). These are the fibres previously coördinatized
as V0,0 and V0,1.

Next, we define a relation on the vertices of each fibre. For A and B in
the same fibre, we write A ≈ B if there exist vertices C0 ∈ VO and C1 ∈ V ′

O

such that A ∼ C0 ∼ C1 ∼ B. The proof of the following is left as an exercise.
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Lemma 3.1 We have (a, i, α) ≈ (a, i, β) if and only if α + β = as+1.
Therefore the relation ≈ is symmetric. On the fibres VO and V ′

O, the relation
≈ means ’=’. On the fibres Va,i with a �= 0, the relation ≈ is irreflexive and
induces a pairing of the vertices.

We will say that the vertex (a, i, α), and the fibre Va,i, are of type i.
Note that the partition of fibres (or vertices) into two types is isomorphism-
invariant by Corollary 2.5, and by Theorem 1.2(iii), it matters not which
type we call type 0. Next, consider the matching between fibres of opposite
type, given by Corollary 2.5(ii). We colour these pairs of matched fibres
using q arbitrary but distinct colours, COL = {Ca : a ∈ GF (q)}, where Ca

is the colour of the matched pair {Va,0, Va,1}. We are going to label the edges
of mixed type (i.e. edges between type 0 and 1 vertices) using this same set
of colours. Let A and B be adjacent vertices of type 0 and 1 respectively. By
Lemma 2.2, there exist unique vertices C and D of type 0 and 1 respectively,
such that C ∈ VO and we have a 4-cycle A ∼ B ∼ C ∼ D ∼ A. Then we
assign the colour Cd to the edge (A,B), where Cd is the colour of the fibre
containing D. The next result follows easily from Lemma 2.2(i); the details
are left as an exercise.

Lemma 3.2 Each edge between Va,0 and Vb,1 is coloured Ca+b. Each
vertex of Γ shares exactly q coloured (mixed-type) edges, one of each colour.
The unique edge of colour Cx from (a, i, α) leads to (a+ x, i+1, α+ xs+1).

Given a subset X ⊆ COL (or the corresponding subset X ⊂ GF (q),
X = {x ∈ GF (q) : Cx ∈ X}) such that | X | is even, a walk of colour X
from a vertex A, is a walk of length | X | on Γ, starting at A and using one
edge of colour Cx for each element Cx ∈ X . Note that for | X |≥ 2, there is
more than one walk of colour X starting at any given vertex A. However,
by Lemma 3.2, any walk of colour X starting at (a, i, α) will always end up
at WX (a, i, α) := (a+

∑
x∈X x, i, α+

∑
x∈X xs+1), independent of the order

of colours chosen from X . The condition that | X | is even, ensures that the
walk ends up at a vertex of the same type as it starts.

Now define C to be the set of all pairs (X ,Y) such that X ,Y ⊆ COL,
with | X | and | Y | both even, such that WX (O) ≈ WY(O). In particular,
note that the walks of colours X and Y starting at O, are required to both
end up at the same fibre of type 0. Identifying X ⊆ COL with X ⊆ GF (q),
and Y ⊆ COL with Y ⊆ GF (q) similarly, we have the following.
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Theorem 3.3 C = P(q, s).
Proof. Since WX (O) = (

∑
x∈X x, 0,

∑
x∈X xs+1) and WY(O) =

(
∑

y∈Y y, 0,
∑

y∈Y ys+1), the result follows from Lemma 3.1 and the defi-
nition of the generalized Preparata codes. ✷

We may now easily complete the proof of Theorem 1.1. Our construction
of C from Γ(q, s) is isomorphism invariant. Thus if Γ(q, 2e) � Γ(q, 2f ) then
P(q, 2e) � P(q, 2f ); and Theorem 2 of [K] implies that e+f ≡ 0mod(2t−1).
Hence we have 1

2φ(2t− 1) nonisomorphic graphs, as desired.

4 Generalized Hadamard Matrices

Since the graphs Γ(q, s) are regular covers in the sense of Godsil and Hensel
([GH], §7), they are associated to certain generalized Hadamard matrices.
Recall that a GHM(n,G) is an n× n matrix H, with entries from an addi-
tively written group G, such that the rows of H are formally orthogonal, i.e.
for any pair i, j of distinct row indices the differences hik−hjk (k = 1, 2, ..., n)
represent each element of G the same number of times, namely n

r where
r =| G |. If H is formally skew, i.e. hij = −hji for i �= j and hii = 0 for
all i, then one can construct an (n, r, n

r )-cover from H, as follows. Replace
each diagonal entry by an r×r block of zeroes; and for i �= j replace hij = g
by the r× r permutation matrix corresponding to g in the regular represen-
tation of G. This yields the adjacency matrix of a distance-regular cover of
Kn; see [GH], §7-9, for more details.

Theorem 4.1
For each t ≥ 1 there exists a formally skew GHM(22t, EA(22t−1)).

Proof. Here EA(22t−1) denotes the elementary abelian 2-group of rank
2t − 1, i.e. the additive group of GF (22t−1). Fix e coprime to 2t − 1, and
set s = 2e. Now define a matrix H of order 22t, with indices represented as
pairs ai ∈ GF (22t−1)×GF (2), as follows:

hai,bj := asb+ abs + (i+ j)(as+1 + bs+1)

It is not hard to show that H has all the desired properties; indeed, from
the equivalence proven in [GH], Theorem 7.4, this follows from our earlier
work. ✷

We remark that Jungnickel [J] has constructed GHM(22t, EA(22t−1)),
but his examples are not formally skew.

10



5 Maximum Cocliques

A simple counting argument shows that in any (22t, 22t−1, 2)-cover a1 = 0,
i.e. the graph is triangle-free. Gardiner [G] has studied such graphs; in
particular he showed that the only feasible parameter sets for triangle-free
(n, r, 2)-covers must have n = 4k2 and r = 2k2 for some integer k. Thus our
Theorem 1.1 settles the existence question when k is a power of two.

Let α = α(Γ) denote the size of a largest coclique (independent set) in
the graph Γ. A deep theorem of Ajtai, Komlós and Szemerédi (see e.g. [B],
Ch.XII.3) implies that there is an absolute positive constant c such that,
for every r-regular triangle-free Γ on v vertices, α(Γ) > c v r−1 ln r. It is
an open question whether this estimate is asymptotically best possible. If Γ
is a (22t, 22t−1, 2)-cover, we thus have that α(Γ) > d t 22t for some absolute
d > 0. It appears difficult to verify this estimate for our graphs Γ(q, s) in a
constructive manner. We note the following upper bound.

Theorem 5.1 For any (22t, 22t−1, 2)-cover, α ≤ 23t−1.
Proof. One can easily compute (cf. [GH]) that the smallest eigenvalue

is τ = −2t − 1. Hoffman’s upper bound (cf. [BCN], Prop. 1.3.2(i)) is

α ≤ v · −τ
d− τ

(where d = valency)

= 24t−1 · (2t + 1)
(22t − 1) + (2t + 1)

= 23t−1.

✷

Note that when t = 1, i.e. the 3-cube, this upper bound is tight. For
any (16,8,2)-cover we get α ≤ 32. A computer check showed that in fact
Γ(8, 2) has α = 29. The structure of cocliques of size 29 is interesting: there
are exactly 128 of them, and the point-coclique incidence matrix is a square
partially balanced incomplete block design.
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6 Formal Duality with Respect to Systems of Linked
Square Designs

An (n, r, c2)-cover has four eigenvalues; in the notation of [GH] they are
n − 1,−1, θ and τ , with θ > 0 > τ . The eigenmatrix of the underlying
3-class association scheme B is

P =




1 (n − 1) (n− 1)(r − 1) (r − 1)
1 −1 −(r − 1) (r − 1)
1 θ −θ −1
1 τ −τ −1




and the dual eigenmatrix (satisfying PQ = nrI) is

Q =




1 n − 1 − τn(r−1)
a

θn(r−1)
a

1 −1 n(r−1)
a

−n(r−1)
a

1 −1 −n
a

n
a

1 n − 1 τn
a

−θn
a




where a is the square root of (n− 2− rc2)2 + 4(n− 1).
It may happen that some other 3-class association scheme B∗ has eigen-

matrix equal to Q and dual eigenmatrix equal to P ; when this happens B
and B∗ are said to be formally dual to each other. See [BCN], p.49, for a
brief introduction to this notion. One should stress that B and B∗ need not
be structurally related; formal duality is on the face of it just a question of
parameters.

Now in the case of (22t, 22t−1, 2)-covers, there is a formally dual ob-
ject, namely a system of 22t−1 linked square (v, k, λ)-designs with v = 22t,
k = 22t−1 −2t−1 and λ = 22t−2 −2t−1. See [M] and [CL], p.148, for informa-
tion on linked square designs. One may readily check (cf. the eigenmatrices
on p.133 of [M]) that the underlying 3-class scheme of linked designs with the
above parameters is indeed formally dual to the scheme of a (22t, 22t−1, 2)-
cover. Furthermore, the known construction of linked designs uses Kerdock
sets of skew matrices in even characteristic. Thus, intriguingly, there is
a parallel between the present formal duality (between covers and linked
designs) and the formal duality, via the MacWilliams transform, between
Kerdock codes and Preparata codes; cf. [CL], especially p.144 and p.187.
In important recent work, Hammons et al [HKCSS] have constructed new
Preparata-like codes that are dual over Z4 to the classical Kerdock codes.
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This prompted the use of the word “classical” in the title of the present
paper.
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