Projective Planes of Order 16


Currently there are 13 known projective planes of order 16 up to isomorphism/duality. This list includes 4 self-dual planes plus 9 dual pairs; hence 22 distinct planes up to isomorphism. Since 1997 these planes have appeared on Gordon Royle's website. I have independently verified all data appearing in the table, while retaining Royle's names for the planes, and including some additional information of interest to me concerning subplanes. The list of planes includes

Some limited attempts have been made to construct new planes of order 16 by more general net replacement and other techniques, without success. It has been conjectured that this is in fact the complete list of planes of order 16.

I have made extensive use of Brendan McKay's celebrated software package nauty for computing graph automorphisms; also the computational algebra package GAP (Graphs, Algorithms and Programming) for some of the group computations (e.g. computing conjugacy classes of involutions in groups).

If you are aware of planes which I have overlooked in my list, I would appreciate an email message () from you. For basic definitions and results on the subject of projective planes, please refer to P. Dembowski, Finite Geometries, Springer-Verlag, Berlin, 1968; or D.R. Hughes and F.C. Piper, Projective Planes, Springer-Verlag, New York, 1973.

Following the table is a key to the table and a diagram showing connections between the planes. I have also tabulated a summary of what's known for other small orders.

I am grateful to Stefan Kranich and Martin von Gagern (TU München) for correcting my fingerprint entries in the table below.


Table of Known Projective Planes of Order 16

No. Plane Description 2-rank |Autgp| Point orbit lengths Line orbit lengths Derived Planes Subplanes Fingerprint
1* desarg Desarguesian 82 17108582400 273 273 hall 225459200 470720 24074256256273
2* semi2 Semifield Plane with kernel GF(2) 98 73728 1,16,256 1,16,256 demp 22701824 41344 1623042461440482048608192240272256273
3* semi4 Semifield Plane with kernel GF(4) 98 442368 1,16,256 1,16,256 john, bbs4, dsfp, jowk, lmrh 25110272 410816 1623042461440482048608192240272256273
4 hall, dhall Hall 98 921600 5,12,256 1,80,192 desarg, hall  ;  bbh1, bbh2 25644800 45440 24074256256273  ;  24074256256273
5 jowk, djowk Johnson-Walker 100 258048 3,14,256 1,48,224 semi4  ;  none 25727744 48512 72133129612288120430081445376240272256273  ;  4826889646592120215041444482403024256273
6 demp, ddemp Dempwolff 102 92160 12,15,256 1,162,240 semi2  ;  none 23010560 41888 9661440120102414411520240272256273  ;  4828809653760120153601444802401776256273
7 lmrh, dlmrh Lorimer-Rahilly 106 258048 3,14,256 1,48,224 semi4  ;  none 23211776 43136 24074256256273  ;  24074256256273
8 dsfp, ddsfp Derived Semifield Plane 106 55296 2,3,12,256 1,32,48,192 semi4, dsfp  ;  none 23363840 43040 12061441442560192614402404112256273  ;  489609651201203072014416024037296256273
9 math, dmath Mathon 109 12288 1,16,256 1,16,256 none  ;  none 23442176 42304 2461443261444024576488192561228872921696307212020481442304240272256273  ;  2461443261444024576488192561228872921696307212020481442304240272256273
10* bbh1   110 9216 1,4,12,64,192 1,4,12,64,192 dhall 23091968 4832 011521223040249216322304040230448768642304726144805769630721202048144128240464256273
11 john, djohn Johnson 114 2304 2,3,12,16,48,962 1,8,122,242,192 semi4  ;  none 22976768 4784 0768411528499216370824390432902436192040460844921648547260153664950468230472768847688811529686410419211233612019201282304132768136230414424121609601689601762882081442408256273  ;  846081246081623042411523276836115240230444161284850885211520567488603456641728721152762304968001125761202496124768136384144641521921567682402448256273
12 bbs4, dbbs4   114 3456 2,3,12,16,96,144 1,8,12,24,36,192 semi4  ;  none 22868480 4568 8345612499220691224126723279203634564028844345648331256979264388872768807284115296297610440321129001201152144159616896192105621664240248256273  ;  816128129600247683623044413824481190452691256172864172868115296137611228812028801365761448815615362401464256273
13 bbh2, dbbh2   114 3840 5,12,16,80,160 1,202,40,192 dhall  ;  dbbh2 22866560 4800 048008640169602464036128040192048230405215360605504641120683840722560804008864096736010019201081280144480240512256273  ;  161920209216243840369600403840441920048400060157449612801126401202944144802401952256273

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.

Connections between the planes

The image below illustrates connections between the planes we have listed. Each circle represents a dual pair of planes (or a self-dual plane). Yellow bonds between planes represent the derivability of one plane from another (a symmetric relation). Blue bonds indicate pairs of planes which share a semibiplane (also a symmetric relation).


/ revised May, 2010