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Abstract. We observe a connection between the problem of lifting semibiplanes to projective planes,
and the 1-cohomology of a related cell complex. Examples are provided using the translation planes of order
16.

1. Lifting ‘quotients’ of planes. Given a projective plane Π with an automorphism
group G ≤ Aut Π, the G-orbits on the points and lines of Π form a tactical decomposition
of Π, and the quotient structure, denoted Π/G, has as its points and blocks, the G-orbits
on the points and lines of Π (see [1]).

In general Aut Π may have more than one conjugacy class of subgroups isomorphic
to G, and we must specify the embedding θ : G → Aut Π, and denote the corresponding
quotient by Π/θ when the expression Π/G is ambiguous. We call two such pairs (Π, θ),
(Π′, θ′) equivalent if there is an isomorphism ψ : Π → Π′ intertwining θ and θ′, i.e.
θ′(g) ◦ ψ = ψ ◦ θ(g) for all g ∈ G. Clearly Π/θ ∼= Π′/θ′ in such a case.

We wish to examine the reverse problem: that of lifting a given object Σ to a projective
plane of given order n with prescribed automorphism group G, such that Π/G ∼= Σ. We
of course assume that Σ satisfies certain necessary (in general not sufficient) conditions for
such a lifting to occur. (These conditions amount to certain dot product relations for the
rows, and columns, of the incidence matrix defining Σ; see [1, p.17].) Furthermore, given
Σ and G, we wish to know how many isomorphism classes of planes are so obtainable as
preimages of Σ; or better yet, how many equivalence classes of pairs (Π, θ : G → Aut Π)
yield Π/θ ∼= Σ. In general this is a very difficult problem. In this paper we consider only
the case |G| is prime.

2. The case |G| = 2. An elation semibiplane of order n (where n is necessar-
ily even) is an incidence structure of points and blocks, whose incidence matrix may be
partitioned in the form

A =



A11 · · · A1n

... . . . ...
An1 · · · Ann




where each Aij is a permutation matrix of order n/2, and for i �= j each row of (Ai1 Ai2

· · · Ain) has dot product 2 with each row of (Aj1 Aj2 · · · Ajn). For instance the unique
elation semibiplane of order 4 has incidence matrix given by Figure 1.
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FIGURE 1. Incidence matrix
of the unique elation
semibiplane Σ of order 4,
with points labelled 1, 2, . . . , 8;
blocks labelled a, b, . . . , h

a b c d e f g h
1
2
3
4
5
6
7
8

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

The motivation for this definition is that if Π is a projective plane of order n with an
involutory elation τ , then the τ -orbits of length 2 on the points and lines of Π, inherit
an incidence structure denoted Π/τ , which is an elation semibiplane of order n as defined
above (see [3]). For instance, the unique projective plane of order 4 has an incidence
matrix given by Figure 2, where the operation which fixes the first five rows (respectively,
columns) and permuting the remaining rows (resp., columns) in consecutive pairs, is an
involutory elation, such that the resulting elation semibiplane is clearly the example of
Fig. 1.

FIGURE 2.
Incidence matrix
of the projective
plane of order 4

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Similar definitions of homology and Baer semibiplanes are possible, where τ is replaced
by an involutory homology or Baer collineation. For the remainder of this Section, Σ
denotes an elation (or homology, or Baer) semibiplane. We wish to determine all (if any)
equivalence classes of pairs (Π, τ) such that Π/τ ∼= Σ.

To accomplish this we define a cell complex Γ = Γ(Σ) of rank 2 (all of whose 2-cells are
squares) as follows. The vertices (0-cells) of Γ are the points and blocks of Σ. The edges
(1-cells) of Γ are the flags of Σ. The faces (2-cells) of Γ are the digons of Σ, i.e. the 4-tuples
(P,Q, L,M) in Σ where the points P �= Q both lie on the blocks L �= M . Incidence in Γ
is naturally induced from Σ. Note that Γ is nothing but the incidence graph of Σ, with
the digons ‘shaded in’. For example the semibiplane of Fig. 1 yields the 2-skeleton of the
tesseract (4-cube), shown in Figure 3 (although for clarity, we have not shaded the faces
of Γ, namely all 4-gons of the figure).
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FIGURE 3.
The cell complex Γ(Σ)
for Σ as in Fig. 1
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Let F = GF(2), and let Ci = Ci(Γ, F ) be the F -space freely spanned by the i-cells of
Γ, and let δ : Ci → Ci+1 be the coboundary operator. Note that each flag of Σ (i.e. edge
of Γ) must ‘lift’ to either

(
1 0
0 1

)
or

(
0 1
1 0

)
in the incidence matrix of Π. The lifting from Σ to

Π is completely determined by specifying those flags of Σ which ‘lift’ to
(
0 1
1 0

)
, and this list

of flags of Σ corresponds to an element α ∈ C1. For the example of Figures 1 and 2, we
have

α = 3c + 3h + 4d + 4g + 5d + 5e + 6c + 6f + 7f + 7g + 8e + 8h ∈ C1.

Clearly not every α ∈ C1 lifts Σ to a plane. We say that α ∈ C1 is admissible if δα = σ,
where σ ∈ C2 is defined by σ =

∑{S : S is a face of Γ} ∈ C2. It is not hard to see that

PROPOSITION 1. ‘Liftings’ from Σ to planes, correspond bijectively to admissible ele-
ments of C1.

(Here a subtle point is that a plane Π with involutory collineation τ , is uniquely determined
by the incidences between those of its points and lines which are not fixed by τ . This is
why in this case we may safely deviate from the definition of Σ in Section 1 by disregarding
the point and line orbits of size 1.)

Next observe that if α, β ∈ C1 are admissible, then δ(α+ β) = σ + σ = 0. Thus

PROPOSITION 2. The set of admissible elements of C1 is either empty, or a coset of
Z1 = ker δ|C1 : C1 → C2.

For admissible α ∈ C1, let Σα denote the corresponding plane obtained by lifting Σ.
Clearly it is possible that Σβ ∼= Σα for admissible β �= α. Indeed in the above example,
switching rows 6 and 7 of Fig. 2 corresponds to replacing α by α+ 1a + 1c + 1e + 1g ∈ C1.
More generally, we have:
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PROPOSITION 3. Let α, β ∈ C1 be admissible. If α ≡ β mod B1 = δC0 ≤ C1 then
Σα ∼= Σβ.

PROPOSITION 4. Given Σ, the equivalence classes of pairs (Π, τ) such that Π/τ ∼= Σ
are in bijective correspondence with the orbits of Aut Σ on {α ∈ C1 : α admissible}/B1.

Note regarding this notation: In view of Prop. 2, {α ∈ C1 : α admissible}/B1 is either
empty, or a coset of Z1/B1 in C1/B1. In the latter case, we warn the reader that although
{α ∈ C1 : α admissible}/B1 and H1 = Z1/B1 have the same size and are both stable
under Aut Σ, the representation of Aut Σ on H1 may not be equivalent to the action on
{α ∈ C1 : α admissible}/B1.

COROLLARY. If H1(Γ, F ) = 0 then there is at most one equivalence class of pairs (Π, τ)
such that Π/τ ∼= Σ.

The proof of the main result of [4] shows the following.

THEOREM. If Σ ∼= Π/τ where Π is Desarguesian of prime order, and τ is an involutory
collineation, and Γ = Γ(Σ), thenH1(Γ, F ) = 0. Thus Σ lifts uniquely to within equivalence.

We expect that our new interpretation of the lifting problem involving the cell complex
Γ will lead to a generalization of this Theorem to all prime powers, and to other similar
lifting results.

3. Translation planes of order 16. Using computer, we have produced all elation
semibiplanes arising from the eight translation planes of order 16 (classified by Dempwolff
and Reifart [2]) and their duals; checked this list of semibiplanes for duplications (isomor-
phisms and dualities); and lifted each semibiplane in our list, verifying that each projective
plane so obtained is a translation plane or dual translation plane, and so (according to the
classification [2]) is not a new plane. (Note: we did not classify all elation semibiplanes of
order 16.) The results are as follows.

Exactly 56 isomorphism classes of elation semibiplanes were thus obtained, namely Σ1,
Σ2,. . . ,Σ31, and Σ∗

7, Σ∗
8,. . . ,Σ∗

31, where ∗ indicates dual (Σ1, Σ2,. . . ,Σ6 are self-dual). We
found dimH1(Γ(Σi), F ) = 4 for i = 1; 2 for i = 2; 1 for i ∈ {3, 4, 7, 8}; and 0 for i ∈ {5,
6, 9, 10, 11,. . . , 31}.
(i) The automorphism group of the Desarguesian plane of order 16 has a single conjugacy

class of involutory elations, yielding the elation semibiplane Σ5, which lifts uniquely
(to within isomorphism).

(ii) The automorphism group of the Hall plane of order 16 has three conjugacy classes
of involutory elations, consisting of 75 translations, 180 translations, and 5 shears,
respectively. These yield the semibiplanes Σ9, Σ10 and Σ11 resp., each of which lifts
uniquely (i.e. to within isomorphism).
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(iii) The semifield plane of order 16 with kernel GF(4) has six classes of involutory elations,
consisting of 6 translations, 9 translations, 96 translations, 144 translations, 6 shears,
and 9 shears. These yield the semibiplanes Σ2, Σ3, Σ12, Σ13, Σ∗

12, Σ∗
13 resp. Each of

these lifts uniquely, with the exception of Σ2, which also lifts to the semifield plane
with kernel GF(2).

(iv) The semifield plane of order 16 with kernel GF(2) has nine classes of involutory ela-
tions, consisting of 3 translations, 3 translations, 9 translations, 48 translations, 48
translations, 144 translations, 3 shears, 3 shears, and 9 shears. These yield Σ2, Σ6, Σ4,
Σ14, Σ15, Σ16, Σ∗

14, Σ∗
15 and Σ∗

16 resp. All of these lift uniquely, except Σ2 (see (iii)
above).

(v) The derived semifield plane has six classes of involutory elations, of size 6, 9, 24, 36,
72 and 108 (all consisting of translations). These yield Σ17, Σ7, Σ18, Σ19, Σ20 and Σ21

resp. Each of these lifts uniquely, except Σ7, which also lifts to the Lorimer-Rahilly
plane.

(vi) The Lorimer-Rahilly plane has five classes of involutory elations: 3 translations, 42
translations, 42 translations, 168 translations and 3 shears. These yield Σ1, Σ7, Σ22,
Σ23 and Σ24 resp. The latter three semibiplanes lift uniquely, while Σ1 lifts to both Σ1

and its dual; and Σ7 lifts to both the Lorimer-Rahilly plane and the derived semifield
plane.

(vii) The Johnson-Walker plane has five classes of involutory elations: 21 translations, 24
translations, 42 translations, 168 translations and 3 shears. These yield Σ25, Σ26,
Σ8, Σ27 and Σ28 resp. Each of these lifts uniquely, except Σ8, which also lifts to the
Dempwolff plane.

(vii) The Dempwolff plane has four classes of involutory elations, of size 15, 15, 45 and 180
(all consisting of translations). These yield Σ8, Σ29, Σ30 and Σ31 resp. Each of these
lifts uniquely, except Σ8 (see (vii) above).

4. The case |G| = p is an odd prime. Suppose that G is generated by a quasiper-
spectivity (i.e. perspectivity or Baer collineation) of odd prime order p. Again we may ask
which semisymmetric designs Σ occur as quotients of planes by such collineation groups.
Define Γ = Γ(Σ) just as before, using digons as 2-cells. Let F = GF(p) and define
Ci = Ci(Γ, F ) and δ as before. The obvious analogues of Propositions 3 and 4 are valid.
The analogue of Prop. 1 holds only if we redefine α ∈ C1 as admissible if δα has maximal
weight in C2, i.e. if each face of Γ occurs in δα with nonzero coefficient. It is not clear
how to utilize this condition; Prop. 2 and the Corollary have no direct analogue for this
situation. We have not found an interpretation for H1(Γ, F ) which is relevant to the lifting
problem in this case.
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