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Abstract

We give examples of infinite projective planes with collineation groups having
differing numbers of orbits on points and on lines, solving a problem posed by
Cameron [9] and attributed to Kantor. Some of our examples are Desarguesian.
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1. Introduction and History

The origin of this problem can be traced to a paper of Brauer [5], where
(in Section 6, Lemma 3) he proves a result, that combined with, for example,
the results of Bose [4], demonstrates that every group of collineations of a finite
projective plane has equally many orbits on points and on lines. (The use of
the incidence matrix goes back at least to Levi [24], but it is unknown to these
authors when the incidence matrix of a finite projective plane was first observed
to be invertible. The modern proof of Fisher’s 1940 inequality for 2-designs [19]
is due to Bose [4], and the modern proof of Baer’s 1946 results [1] on polar-
ities of projective planes is due to Devidé [15]. Certainly, that the incidence
matrix of a finite projective plane is invertible was known already to Bruck
and Ryser [6] and Bose [4].) The result that every group of collineations of a
finite projective plane has equally many orbits on points and on lines was redis-
covered in the more general context of finite symmetric designs by Parker [26],
Hughes [21], Dembowski [14], as the theorem that every automorphism group of
a finite symmetric design has equally many orbits on points and on blocks, and
is therefore sometimes referred to as the Dembowski-Hughes-Parker theorem.
Block [3] showed that every group of automorphisms of a finite 2-design has at
least as many orbits on blocks as on points, from which the Dembowski-Hughes-
Parker theorem for finite symmetric designs follows, so this result is often (at
least implicitly) referred to as Block’s Lemma.
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The question of whether or not every group of collineations of an infinite
projective plane must have equally many orbits on points and on lines seems to
have first been raised in print by Cameron [7], with the same author returning
to the topic seven years later at a conference in Capri in 1991, published in
Cameron [9], where the question is attributed to W.M. Kantor. The related
question of whether or not every automorphism group of an infinite Steiner sys-
tem has at least as many orbits on blocks as on points, also raised in Cameron [7],
has been settled in the negative by Evans [18], with further examples (for designs
rather than Steiner systems) in Camina [11] and Webb [32], who were building
on earlier work of Evans [17]. The question was settled in the affirmative for
infinite Steiner triple systems by Cameron at a conference in Guildford in 1991,
published in Cameron [8], with further results in a positive direction appearing
in Webb [31], with the confusion arising leading to an attempted redefinition of
an infinite design in Cameron and Webb [10]. But, until now, the question for
infinite projective planes has remained open. This paper settles that question
in the negative.

The origin of the first examples we shall present can be traced back to
a question of Emil Artin in the December 1946 Princeton University Bicen-
tennial Conference on Problems in Mathematics. To quote from the review
MR1791874 by John W. Dawson, Jr. in Mathematical Reviews, “Due to lack of
funds, no proceedings of the Princeton Bicentennial Conference on Problems of
Mathematics ever appeared. The only publication to chronicle the event was a
small pamphlet, published the following year, entitled Problems of mathematics,
which listed the eighty-two invited participants, described the ten sessions into
which the congress was subdivided, and gave brief summaries of the discussions
that followed the invited addresses in each session.” Fortunately, this pamphlet
(reviewed as MR0020520) was reprinted by the American Mathematical Soci-
ety [16]. That question (which is referred to on page 312 of the reprint) is,
given an extension of skew fields, whether or not the left and right dimension
must be equal. This problem was solved by Cohn [12], where examples were
given with one dimension finite and the other infinite, and then Schofield [28]
showed that for any finite pair (m, n) of integers, each greater than one, there
is an extension of skew fields with left rank m and right rank n. More explicit
constructions appear in Treur [30]. See also the books by Schofield [29] and
Cohn [13], particularly Theorems 5.9.1 and 5.9.2 in the latter.

The idea to use these extensions of skew fields constructed by Schofield to
solve Kantor’s question was inspired by Salzmann [27], Proposition 1.6. (That
result in turn has its origin in Barlotti [2].) Maier and Stroppel [25] come very
close to these examples, as do Jha and Johnson [22] (see their Theorem 4). Our
construction in Section 2 yields collineation groups of Desarguesian planes with
two point orbits and at least three line orbits; other numbers of point and line
orbits for groups of Desarguesian projective planes may be obtained by the same
method.

We also construct collineation groups of projective planes with arbitrary
numbers of point and line orbits in Section 3, using ideas inspired by Hughes [20].
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2. The Desarguesian examples

We need the group PGL(3, K) = GL(3, K)/Z(GL(3, K)), for a division ring
K where, for clarity, we point out that Z(GL(3, K)) = {zI : z ∈ Z(K)×},
where Z(K) is the center of K, and Z(K)× = Z(K×) is the multiplicative
group of nonzero elements. We will use homogeneous coordinates for the points
of the Desarguesian projective plane PG(2, K) over K, arising from a three-
dimensional left K vector space, and denoted by (a, b, c), where a, b, c ∈ K, not
all zero. Homogeneity of coordinates means that the triple (λa, λb, λc) represents
the same point as (a, b, c) whenever λ ∈ K×. Lines will be represented as column
vectors (l, m, n)T where l, m, n ∈ K, not all zero; here (lλ, mλ, nλ)T represents
the same line as (l, m, n) whenever λ ∈ K×. The point (a, b, c) lies on the
line (l, m, n)T iff al + bm + cn = 0. We note that PGL(3, K) acts transitively
on both the points and the lines of PG(2, K); the action of A ∈ PGL(3, K)
on points is given by (a, b, c) 7→ (a, b, c)A, and the action on lines is given by
(l, m, n)T 7→ A−1(l, m, n)T = [(l, m, n)A−T ]T .

Now suppose the skew field K is a proper subring of the skew field L, so that
π′ = PG(2, K) is a subplane of π = PG(2, L), and PGL(3, K) is a subgroup of
PGL(3, L), stabilizing π′. We examine the orbits of G = PGL(3, K), first on
the points of π. (By transposing, our arguments yield similarly the orbits on
lines of π.) Consider the G-orbit of a point P = (a, b, c) of π. We may assume
a ∈ K×; otherwise apply a permutation matrix in G to move a nonzero value to
the first coordinate. Using homogeneity of coordinates, we may further assume
a = 1.

If K has right dimension 2 over L, say with basis {1, α}, then P = (1, b1 +
αb2, c1+αc2) for some bi, ci ∈ K. If b2 = c2 = 0 then P lies in π′ and an element
of G exists mapping P 7→ (1, 0, 0). Otherwise, without loss of generality b2 6= 0
and the matrix 


1 −b1b

−1
2 b1b

−1
2 c2−c1

0 b−1
2 −b−1

2 c2

0 0 1





maps P 7→ (1, α, 0). The latter point lies outside π′ and since G preserves π′, G
has two orbits on points of π, those points (a, b, c) in π′ (characterized by the
property that a, b, c span a one-dimensional right K-subspace of L) and those
points (a, b, c) of π outside π′ (for which a, b, c span L as a right vector space
over K).

Theorem 2.1. Let L be a skew field containing the skew field K with the
left dimension of L over K being greater than 2 and the right dimension of
L over K being 2. Let π be the (Desarguesian) projective plane afforded by
a three-dimensional left L vector space, and consider the natural action of
G = PGL(3, K) on π (by right multiplication). Then G has 2 orbits on points
of π, and at least 3 orbits on lines of π.

Proof. G acts transitively on the points and lines of a subplane π′ of π (coor-
dinatized by K). The stabilizer of a line ` of π has two orbits on the points of `,
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since, G`
` is permutationally isomorphic to PGL(2, K) acting on PG(1, L), and,

for any two elements b, c of L−K, right linearly independent over K, {1, b, c} is
right linearly dependent over K. Thus there is an element of PGL(2, K) taking
(1, b) to (1, c), namely

[
s
0

−t
−r

]
, where r, s, t ∈ K with r + sb + tc = 0. Similarly,

if P (a, b, c) is a point of π, then a, b and c are right linearly dependent over K,
so there exist r, s, t ∈ K (not all zero) such that ra + sb + tc = 0; that is, P
lies on the line [r, s, t] of π′. Hence G has two orbits on points on π. Now take
left linearly independent elements r, s, t of L over K. Then [r, s, t] is a line of π
that is disjoint from π′. So G has at least 3 orbits on lines of π, as each of the
(extended) lines of π′, the lines of π meeting π′ in a single point, and the lines
of π disjoint from π′ forms a G-invariant set.

Again, consider an extension K ⊆ L having left degree m and right degree
n, with G = PGL(3, K) acting on π = PG(2, L) as above. Closer inspection
reveals that for (m, n) = (3, 2) we have exactly 2 point orbits and 3 line orbits.
In this case, the orbit of a point (a, b, c) depends just on the dimension (1 or
2) of the right subspace of L spanned by a, b, c over K; and the orbit of a
line [r, s, t] depends just on the dimension (1, 2 or 3) of the left subspace of
L spanned by r, s, t over K. However, for (m, n) = (4, 2), G has two orbits
on points and infinitely many orbits on lines. Does there exist a collineation
group of a Desarguesian plane with exactly two point orbits and four line orbits?
Still more startlingly, does there exist a Desarguesian plane with a group acting
transitively on points but intransitively on lines? These questions we have not
addressed.

The corresponding questions for arbitrary (not necessarily Desarguesian)
projective planes, will be answered in Section 3.

3. Arbitrary numbers of point and line orbits

Fix a group G (multiplicative with identity element 1) with the following
three properties:

(G1) G is a nonabelian infinite group.

(G2) Every conjugacy class in G other than {1} has cardinality |G|.

(G3) Every element of G has at most one square root in G.

For every infinite cardinal number C, there exists such a group of cardinality
C; take, for example, a free group on C generators. (When C is countable, 2
generators suffice.) Observe the following easy consequence of (G3):

(G3′) For all g, h ∈ G, there is at most one x ∈ G satisfying xhx = g.

A projective plane of (infinite) order |G| has point and line sets both of
cardinality |G|, so the number of orbits on points or on lines is at most |G|. We
show that this necessary condition is also sufficient:
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Theorem 3.1. Let A and B be nonempty sets with |A|, |B| ≤ |G| where G
satisfies (G1)–(G3). Then there exists a projective plane π of order |G| with a
group of collineations isomorphic to G, having exactly |A| point orbits and |B|
line orbits.

Fix a pair of nonempty sets A, B with |A|, |B| ≤ |G|. We also require an
indexed family of subsets Da,b ⊂ G for (a, b) ∈ A × B satisfying the following:

(D1) For all b1, b2 ∈ B and g ∈ G, there exists a ∈ A and a pair of elements
d1 ∈ Da,b1

, d2 ∈ Da,b2
such that g = d−1

1 d2. The triple (a, d1, d2) is unique
whenever (b1, g) 6= (b2, 1).

(D2) For all a1, a2 ∈ A and g ∈ G, there exists b ∈ B and a pair of elements
d1 ∈ Da1,b, d2 ∈ Da2,b such that g = d2d

−1
1 . The triple (b, d1, d2) is unique

whenever (a1, g) 6= (a2, 1).

These conditions are slightly redundant, in that the uniqueness in (D2) follows
from the uniqueness in (D1). Indeed, the following consequence of (D1)–(D2)
expresses the ‘uniqueness’ part of both (D1) and (D2):

(D3) Whenever d−1
1 d2 = d−1

3 d4 where d1 ∈ Da,b, d2 ∈ Da,b′ , d3 ∈ Da′,b and
d4 ∈ Da′,b′, we have (a, d1, d2) = (a′, d3, d4) or (b, d1, d3) = (b′, d2, d4).

Assuming such subsets Da,b ⊂ G exist (satisfying (D1)–(D2), and therefore
also (D3)), then a projective plane π as described by Theorem 3.1 is constructed
having the elements of G×A as points, and elements of G×B as lines. (If A and
B are not disjoint, then context will determine whether a pair (g, a) denotes a
point or a line.) Incidence in π is defined as follows: a point (x, a) ∈ G× A lies
on a line (y, b) ∈ G× B iff xy−1 ∈ Da,b. The group G acts on π as follows: the
element g ∈ G permutes points via (x, a) 7→ (xg, a) and lines via (y, b) 7→ (yg, b).
It is a simple exercise to check that π is a projective plane, and that G preserves
incidence in π, so G is a group of collineations of π with |A| regular point orbits
G × {a}, and |B| regular line orbits G× {b}. In order to prove Theorem 3.1, it
suffices to show that such an indexed family of subsets of G exists.

Let S be the collection of all indexed families of subsets Da,b ⊂ G satisfy-
ing (D3). We will obtain the required solution of (D1)–(D2) as the union of a
certain chain in S. The ability to suitably extend solutions of (D3) to obtain
the desired chains, follows from

Proposition 3.2. Consider a family {Da,b : (a, b) ∈ A×B} of subsets of G of
cardinality |Da,b| < |G| satisfying (D3).

(i) Let g ∈ G, a1 ∈ A and b1, b2 ∈ B where b1 6= b2. Suppose there is no triple
(a, d1, d2) with a ∈ A, di ∈ Da,bi

satisfying g = d−1
1 d2. Then there exists

x ∈ G such that the family of subsets

D̃a,b =






Da1,b1
∪ {x}, if (a, b) = (a1, b1);

Da1,b2
∪ {xg}, if (a, b) = (a1, b2);

Da,b, otherwise
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satisfies (D3), and yields the missing expression g = x−1(xg).

(ii) Let g ∈ G, a1 ∈ A and b1 ∈ B. Suppose there is no triple (a, d1, d2) with
a ∈ A, di ∈ Da,b1

satisfying g = d−1
1 d2. Then there exists x ∈ G such that

the family of subsets

D̃a,b =

{
Da1,b1

∪ {x, xg}, if (a, b) = (a1, b1);
Da,b, otherwise

satisfies (D3), and yields the missing expression g = x−1(xg).

(iii) Let g ∈ G, a1, a2 ∈ A where a1 6= a2, and b1 ∈ B. Suppose there is no
triple (b, d1, d2) with b ∈ B, di ∈ Dai,b satisfying g = d2d

−1
1 . Then there

exists x ∈ G such that the family of subsets

D̃a,b =





Da1,b1
∪ {x}, if (a, b) = (a1, b1);

Da2,b1
∪ {gx}, if (a, b) = (a2, b1);

Da,b, otherwise

satisfies (D3), and yields the missing expression g = (gx)x−1.

(iv) Let g ∈ G, a1 ∈ A and b1 ∈ B. Suppose there is no triple (b, d1, d2) with
b ∈ B, di ∈ Dai,b satisfying g = d2d

−1
1 . Then there exists x ∈ G such that

the family of subsets

D̃a,b =

{
Da1,b1

∪ {x, gx}, if (a, b) = (a1, b1);
Da,b, otherwise

satisfies (D3), and yields the missing expression g = (gx)x−1.

Proof. Assume the hypotheses of (i). In order that the sets D̃a,b satisfy (D3),
it suffices to choose x ∈ G such that for all (a, b) ∈ A × B and d1 ∈ Da,b,
d2 ∈ Da,b1

, d′

2 ∈ Da,b2
, d3 ∈ Da1,b, d4, d5 ∈ Da1,b1

, d′

4, d
′

5 ∈ Da1,b2
,






x 6= d1, d1g
−1, d3d

−1
1 d2, d3d

−1
1 d′

2g
−1;

xd−1
4 x 6= d5, d′

4g
−1;

xg(d′

4)
−1x 6= d′

5.

By (G1) and (G3′), and the condition |Da,b| < |G|, each of these restrictions
excludes fewer than |G| of the elements of G, so such an element x ∈ G can
be found. (In the general case, we require the Axiom of Choice. As usual, in
the countable case an explicit enumeration of G is available so x is found by
finite search as the least feasible element of G, thereby avoiding the Axiom of
Choice.) We freely use the fact that for any sets X and Y , not both finite,
|X × Y | = |X ∪ Y | = max{|X|, |Y |}; see e.g. [23, p.40]. The conclusions of (i)
follow.

Next, assume the hypotheses of (ii). In order that the sets D̃a,b satisfy (D3),
it suffices to choose x ∈ G such that for all (a, b) ∈ A × B and d1 ∈ Da,b,
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d2 ∈ Da,b1
, d3 ∈ Da1,b, d4, d5 ∈ Da1,b1

,






x 6= d1, d1g
−1, d3d

−1
1 d2, d3d

−1
1 d2g

−1;
xgx−1 6= d5d

−1
4 ;

xd−1
4 x 6= d5;

xgd−1
4 x 6= d5, d5g

−1.

First observe that there are |G| choices of x ∈ G satisfying xgx−1 /∈ {d5d
−1
4 :

d4, d5 ∈ Da1,b1
}. (This condition holds trivially if Da1,b1

= ∅. Otherwise g 6= 1
by the hypotheses of (ii), so by (G2) the conjugacy class of g has size |G|,
whereas |{d5d

−1
4 : d4, d5 ∈ Da1,b1

}| < |G|.) As in (i), the remaining conditions
exclude fewer than |G| possible choices of x, so such an x ∈ G exists.

Cases (iii) and (iv) are similar to (i) and (ii).

We now prove Theorem 3.1 by transfinite induction; see e.g. [23, pp.161–163]
for the requisite background on transfinite induction and recursion. The steps
in this induction will be labeled by the set of triples

STEPS = (A × A × G) ∪ (B × B × G)

(here we assume that A ∩ B = ∅). Well-order the set of steps as

STEPS = {STEP(α) : α < C}

where C = |STEPS| = max{|A|, |B|, |G|} = |G|; see e.g. [23, p.40]. Here C is
a cardinal number, namely the least ordinal of cardinality |G|; and the index α
ranges over all ordinals less than C. An important consequence of this particular
choice of well ordering is that for all α < C, the subset {STEP(β) : β < α} ⊂
STEPS has cardinality |α| < C. For each (a, b) ∈ A × B, we define the subsets
Da,b(α) ⊂ G recursively for α < C. We will show that for each α < C the
family of subsets {Da,b(α) : (a, b) ∈ A × B} satisfies (D3), and moreover

(0) Da,b(β) ⊆ Da,b(α) whenever β ≤ α < C; also |Da,b(α)| ≤ 2|α| < |G|.

(1) For every β < α such that STEP(β) = (b1, b2, g) ∈ B × B × G, there
exists a ∈ A and a pair of elements d1 ∈ Da,b1

(α), d2 ∈ Da,b2
(α) such that

g = d−1
1 d2.

(2) For every β < α such that STEP(β) = (a1, a2, g) ∈ A × A × G, there
exists b ∈ B and a pair of elements d1 ∈ Da1,b(α), d2 ∈ Da2,b(α) such that
g = d2d

−1
1 .

For the smallest index α = 0, we take Da,b(0) = ∅ which vacuously satisfies
(D3) and (0)–(2).

Next, suppose the ordinal α < C is a successor ordinal, say α = β + 1. We
obtain the family of extended subsets Da,b(α) ⊇ Da,b(β) by adjoining at most
two more elements, as follows. Recall that STEP(β) = (a1, a2, g) or (b1, b2, g);
we consider only the case STEP(β) = (b1, b2, g) ∈ B × B × G, since the other
case is similar. We consider three subcases:
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(i) Suppose g = d−1
1 d2 for some di ∈ Da,bi

(β) and a ∈ A. In this case, add
nothing: simply define Da,b(α) = Da,b(β) for all a, b.

(ii) If (i) fails and b1 6= b2, we first choose a1 ∈ A arbitrarily. We then
obtain the subsets Da,b(α) ⊇ Da,b(β) by adjoining one new element for
(a, b) ∈ {(a1, b1), (a1, b2)} according to Proposition 3.2(i), and adding no
elements for each of the remaining pairs (a, b).

(iii) If (i) fails and b1 = b2, we first choose a1 ∈ A arbitrarily. We then
obtain the subsets Da,b(α) ⊇ Da,b(β) by adjoining two new elements for
(a, b) = (a1, b1), and leaving all other subsets the same, according to
Proposition 3.2(ii).

Since at most two new elements are adjoined, (0) still holds.
Finally if α < C is a limit ordinal, we set Da,b(α) =

⋃
β<α Da,b(β), which

also satisfies (D3) and (0)–(2). Here the bound |Da,b(α)| ≤ 2|α| < |G| follows
from the fact that by our construction, Da,b(α) is formed from Da,b(0) = ∅ by
adjoining at most 2|α| elements (at most two new elements at each recursive
step).

This verifies that the subsets Da,b(α) have the required properties for all
α < C. Finally, we set Da,b =

⋃
α<C Da,b(α) for all (a, b) ∈ A× B. This family

of subsets of G satisfies (D1)–(D2) by construction, thus completing the proof
of Theorem 3.1.

As in the proof of Proposition 3.2, in the countable case the transfinite
induction reduces to ordinary induction, using an explicit enumeration of G.

A final remark: We have not addressed the question of conditions on the
subsets Da,b under which the group G of Theorem 3.1 may be expected to
be the full collineation group of the resulting plane π. There is such freedom
in choosing the subsets Da,b ⊂ G that one might hope to be able to force
this property to either hold or fail, as desired; this feature is lacking in the
Desarguesian construction of Section 2. We leave this as an open project for
future investigation.
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