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Abstract

It is known that a set of k mutually unbiased bases of order d is

unique (to within equivalence) for d ∈ {2,3,4}; in particular this is

true for complete sets of mutually unbiased bases (the case k = d +

1). Here we show this conclusion holds also for d = 5. Our proof

uses Haagerup’s result [4] that any two complex Hadamard matrices

of order 5 are are equivalent. We also use techniques borrowed from

the study of nets of arbitrary prime order.

1 Introduction

Denote by Cd the complex vector space consisting of all column vectors of
length d, endowed with the standard inner product

u∗v =
∑

j

ujvj

whereu, v ∈ Cd. Here, and throughout, the asterisk (∗) denotes the conjugate-
transpose map. A set B = {B1,B2, . . . ,Bk} of k orthonormal bases of Cd is
mutually unbiased if |u∗v| = 1√

d
for all u ∈ Bi and v ∈ Bj with i ≠ j.

It is well known [5, 13] that every such collection B consists of k à d + 1
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members. A complete set of MUB’s (mutually unbiased bases) is a set of
d + 1 MUB’s of order d. The required conditions on the bases Bi depend
only on the corresponding orthonormal frames Fi = {〈u〉 : u ∈ Bi} where
〈u〉 à Cd denotes the C-subspace spanned by u. Let B and B′ be two sets of
k MUB’s in Cd, with corresponding orthonormal frames F = {F1, . . . ,Fk} and
F′ = {F ′

1, . . . ,F ′
k} respectively. An equivalence from B to B′ is a unitary trans-

formation U ∈ Ud(C) mapping F , F′. In Section 3 we restate this definition
of equivalence in terms of matrix representations of the MUB’s B and B′.

Complete sets of MUB’s of order d are known to exist when d is a prime
power; see e.g. [7]. In Section 3 we recall the construction of the known
MUB’s of prime order. No complete sets are known when d is not a prime
power; even in the case d = 6 the question of existence remains open, as no
more than three MUB’s of order 6 have been constructed to date; see [2, 3].
Our main result, which concerns the case d = 5, is

Theorem 1.1 Every complete set of MUB’s of order 5 is equivalent to the

known construction. More generally, every set of MUB’s of order 5 is equiva-

lent to a subset of the known complete set.

In Sections 2 and 3 we outline the connection between MUB’s and com-
plex Hadamard matrices, stating Haagerup’s classification [4] of complex
Hadamard matrices of order 5, upon which our proof of Theorem 1.1 relies.
We also require results from the theory of exponential sums, as found in Sec-
tion 4. This material, motivated largely by Gluck’s result [6] on permutation
polynomials, is valid much more generally than the case p = 5 considered
here. Its emergence in this context further illustrates the ties between the
study of MUB’s and the study of nets, already observed in the literature; see
e.g. [1, 12]. Finally in Section 5 we pull these tools together to prove our
main Theorem 1.1.

2 Complex Hadamard Matrices

A complex Hadamard matrix of order d á 1 is a d×dmatrix H, whose entries
are complex numbers of modulus 1, such that

H∗H = dI.
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As before, the asterisk (∗) denotes the conjugate-transpose map. Every com-
plex Hadamard matrix H of order d gives rise to a unitary matrix A = 1√

d
H ∈

Ud(C).
A matrix M ∈ Ud(C) is (unitary) monomial if it has exactly one nonzero

entry (of modulus 1) in each row and column. The set of all d × d unitary
monomial matrices form a subgroup, denoted here by Md à Ud(C). If H
is complex Hadamard of order d, then so is MHN whenever M,N ∈ Md .
Similarly, if A is a normalized complex Hadamard matrix of order d, then
so is MAN . We say two complex Hadamard matrices H,H′ of order d are
equivalent if H′ = MHN for some M,N ∈ Md . Similarly, two normalized
complex Hadamard matrices A,A′ of order d are equivalent if A′ = MAN for
some M,N ∈Md .

For every d á 1, there exists a complex Hadamard matrix of order d; for
example, consider the character table of any abelian group of order d. In
particular, the cyclic group of order d has character table H =

(

ζjk
)

with
row and column indices j, k ∈ Z/dZ, where ζ is a primitive complex d-th
root of 1. We call this construction the standard complex Hadamard matrix

of order d. (This construction appears in the literature under other names,
including the generalized Sylvester matrix or Fourier matrix of order d.) For
d ∈ {1,2,3,5}, every complex Hadamard matrix of order d is equivalent to
the standard one. For d = 5, this result is due to Haagerup [4]:

Theorem 2.1 [Haagerup [4]] Every complex Hadamard matrix of order 5 is

equivalent to the standard example H5 =
(

ζij
)

i,j∈Z/5Z where ζ is a complex

primitive fifth root of 1.

For a survey of known complex Hadamard matrices of other small orders,
see [13].

In the study of complex Hadamard matrices, one sometimes uses a coarser
equivalence relation, by allowing transposes, and possibly also field auto-
morphisms (applied to matrix entries) as equivalences. This issue will not
concern us here, since for d ∈ {1,2,3,5}, any two complex Hadamard ma-
trices of order d are already equivalent under the group Md ×Md acting on
the left and right.

A complex Hadamard matrix H is normalized if its first row and column
consist of 1’s. It is clear that every complex Hadamard matrix is equivalent to
one in normalized form. In Section 5 we will use the following consequence
of 2.1, whose proof is left as an easy exercise:
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Corollary 2.1 Let H =
(

hi,j
)

i,j∈F5
be a normalized complex Hadamard ma-

trix of order 5. Then all entries of H are complex fifth roots of 1. Moreover in

any given row or column of H, the product of all five entries is 1.

3 Matrix Representations of MUB’s

Let B = {B1, . . . ,Bk} be a set of MUB’s in C
d. For each i ∈ {1,2, . . . , k},

let Ai be a d × d matrix with columns given by the members of the or-
thonormal basis Bi. Since Bi is an orthonormal basis, we have A∗i Ai = I;
and since B is mutually unbiased, every entry of A∗i Aj has modulus 1√

d
for

i ≠ j. We call {A1, A2, . . . , Ak} a matrix representation of B. We similarly
take {A′1, A′2, . . . , A′k} to be a matrix representation of B′. Then B and B′ are
equivalent (as defined above) iff there exists a unitary matrix U ∈ Un(C), and
monomial unitary matrices Mi ∈Md such that

{A′1, A′2, . . . , A′k} = {UA1M1, UA2M2, . . . , UAkMk}.

Note that the k matrices may be listed in a different order in the two sets.
Also note that the monomial matrixMi permutes the vectors of Bi and scales
them by complex numbers of modulus 1, while preserving the corresponding
frame Fi .

Now let B = {B1, . . . ,Bk} be a set of k á 2 MUB’s, with matrix repre-
sentation A = {A1, A2, . . . , Ak}. Without loss of generality, A1 = I and B1

is the standard basis of Cd; otherwise left-multiply all matrices in A by the
unitary matrix A∗1 to obtain an equivalent set whose matrix representation
contains I. Thus A = {I,A2, . . . , Ak} where each of the matrices A2, . . . , Ak is
complex Hadamard; moreover whenever 2 à i < j à k, every entry of A∗i Aj
has modulus 1√

d
.

The standard construction of a complete set of MUB’s of odd prime order
p is as follows, described in terms of its matrix representation. We take
A∞ = I and for each i ∈ Fp , we set

Ai = 1
√
p

(

ζij
2+kj)

j,k∈Fp . (1)

This is a special case of the standard construction of a complete set of MUB’s
of order q for every prime power q; see e.g. [7].
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4 Exponential Sums

Our proof of Theorem 1.1, which follows in Section 5, makes use of the
following results. Here Fp is a finite field of prime order p, and ζ is a com-
plex primitive p-th root of 1. We define the exponential sum of an arbitrary
function f : Fp → Fp by

Sf =
∑

x∈Fp

ζf (x) ∈ Z[ζ].

The following result is inspired by Gluck’s proof [6] that a transitive affine
plane of prime order is necessarily classical (i.e. isomorphic to AG2(Fp)).

Theorem 4.1 A function f : Fp → Fp is represented by a quadratic polyno-

mial in Fp[x], iff |Sf (x)+cx | =
√
p for all c ∈ Fp .

Proof. It is well-known that |Sf (x)+cx| =
√
p for all c ∈ Fp . To prove the

converse, assume that |Sf (x)+cx | =
√
p for all c ∈ Fp . This implies that for

all c ∈ Fp , the function x , f (x) + cx assumes no value more than twice
as x ranges over Fp ; see [6]. In the classical projective plane PG2(Fp), we
consider the point set

O = {(x, f (x),1) : x ∈ Fp} ∪ {(0,1,0)}.

Note that |O| = p+1. We will show that no three points of O are collinear. Let
(X, Y , Z) be homogeneous coordinates for the plane, and suppose that three
points of O lie on a line aX +bY + cZ = 0 where the coefficients a,b,c ∈ Fp
are not all zero. We cannot have b = 0, since the line aX+cZ = 0 meets O in
just two points, including (0,1,0). We may therefore assume that b = 1 and
the line aX +Y + cZ = 0 meets O in three points (xi, f (xi),1) for i = 1,2,3.
This means that f (x) + ax attains the value −c ∈ Fp at least three times, a
contradiction.

Thus no three points of O are collinear. By Segre’s Theorem [10], O is a
conic: its points are the solutions of a homogeneous polynomial equation of
degree 2. From this it is not hard to see that f is itself given by a polynomial
of degree 2.

The following technical result will also be used.
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Lemma 4.1 Let f : Fp → Fp and let a ∈ Fp be a nonzero constant. Suppose

that |Sax2+bx+cf (x)| =
√
p for all b, c ∈ Fp . Then f (x) = mx + d for some

m,d ∈ Fp .

Proof. The hypothesis implies that

p =
∣

∣

∣

∣

∑

x∈Fp

ζax
2+bx+cf (x)

∣

∣

∣

∣

2

=
∑

x,y∈Fp

ζa(x
2−y2)+b(x−y)+c(f (x)−f (y))

=
∑

y,t∈Fp

ζ2aty+at2+bt+c(f (y+t)−f (y))

for all b, c ∈ Fp . Multiply both sides by ζ−b and sum over b ∈ Fp to obtain
∑

y∈Fp

ζ2ay+a+c(f (y+1)−f (y)) = 0 (2)

for all c ∈ Fp . Now suppose the desired conclusion fails, i.e. f is not repre-
sentable as a polynomial of degree à 1; we seek a contradiction. Then the
first-order difference of f is not constant, so there exists x ∈ Fp such that

f (x + 1)− f (x) ≠m

where m = f (1)− f (0). Clearly x ≠ 0. Set

c = 2ax

m− [f (x + 1)− f (x)]
and check that the general term in (2) takes the same value for y = 0 and for
y = x. However the only way for the exponential sum (2) to vanish is for the
exponent to have distinct values as y varies over Fp , which is the desired
contradiction.

5 Order d = 5

We proceed to prove Theorem 1.1. Consider a set B of k MUB’s of order
d = 5, with k á 2. Rather than indexing the members of B using {1,2, . . . , k}
as in Section 3, it is convenient to use subscripts {∞,0,1,2, . . . , k−2}. Let
ζ be a primitive complex fifth root of 1, and denote H5 =

(

ζij
)

i,j∈F5
as in

Theorem 2.1.
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Lemma 5.1 To within equivalence, B = {B∞,B0,B1, . . . ,Bk−2} has matrix rep-

resentation of the form

A∞ = I, Ai = 1√
5
LiH5

where Li ∈ M5 for i = 0,1, . . . , k−2. Moreover we may assume that L0 = I
and each of the matrices L0, L1, . . . , Lk−2 has 1 as the nonzero entry in its first

column.

Proof. As explained in Section 3, we may assume that A∞ = I. By Theo-
rem 2.1, we have Ai = 1√

5
LiH5Ri for some Li, Ri ∈ M5 . We may in fact

assume that Ai = 1√
5
LiH5 where Li ∈ M5 for i = 0,1, . . . , k−2 and L0 = I;

otherwise replace A by the equivalent set of matrices

{

L∗0A∞L0=I, L∗0A0R
∗
0= 1√

5
H5 ,

L∗0AiR
∗
i =

1√
5
(L∗0Li)H5 , 1 à i à k− 2

}

.

Now
Li =

(

λi,jδσi(j),`
)

j,`∈F5
for i = 0,1, . . . , k−2

where λi,j ∈ C with |λi,j| = 1, λ0,j = 1 and σi ∈ SymF5 with σ0 = id. Finally,
we may assume that λi,0 = 1 for i = 0,1, . . . , k−2; otherwise we again replace
the current matrix representation by the equivalent set

{

A∞=I, A0= 1√
5
H5 ,

Ai(λi,0I)= 1√
5
(λi,0Li)H5 , 1 à i à k−2

}

which has the desired form.

As in the proof of 5.1, we write

Li =
(

λi,jδσi(j),`
)

j,`∈F5
(3)

for i = 0,1, . . . , k−2, where |λi,j| = 1, λi,0 = λ0,j = 1, and σi ∈ SymF5 , and
σ0 = id. The (r , s)-entry of A∗i Aj has modulus

1

5

∣

∣

∣

∣

∑

x∈F5

λi,xλj,xζ
sσj(x)−rσi(x)

∣

∣

∣

∣

= 1√
5

(4)
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for all r , s ∈ F5 and distinct i, j ∈ {0,1, . . . , k−2}. In particular for r = 0, we
have

∣

∣

∣

∣

∑

x∈F5

λi,xλj,xζ
sσj (x)

∣

∣

∣

∣

=
√

5. (5)

Specializing further to the case j = 0 ≠ i, and using the fact that σ0 = id ∈
SymF5 and λi,0 = 1, we have

∑

a,x∈F5

λi,xλi,x−aζ
sa =

∑

x,y∈F5
λi,xλi,yζ

s(x−y)

=
∣

∣

∣

∣

∑

x∈F5
λi,xζ

sx

∣

∣

∣

∣

2

= 5. (6)

Now multiply both sides of (6) by ζsu where s,u ∈ F5, and sum over s ∈ F5

to obtain
∑

x∈F5

λi,xλi,x+u = 5δu,0 .

This means that the matrix
(

λi,x+y
)

x,y∈F5
is complex Hadamard. It is a rou-

tine matter to normalize this matrix (see Section 2) and apply Corollary 5.1,
together with the fact that λi,0 = 1, to conclude that each of the values λi,j is
a complex fifth root of unity. In (6) we write λi,x = ζfi(x) for some function
fi : F5 → F5 to obtain

∣

∣

∣

∣

∑

x∈F5

ζfi(x)+sx
∣

∣

∣

∣

=
√

5

for all s ∈ F5 . By Theorem 4.1, the function fi : F5 → F5 is quadratic. We
have

fi(x) = aix2 + bix
for some ai, bi ∈ F5 with ai ≠ 0; the constant term of fi is zero since ζfi(0) =
λi,0 = 1. Substitute into (4) with j = 0 to obtain

∣

∣

∣

∣

∑

x∈F5

ζaix
2+(bi+s)x−rσi(x)

∣

∣

∣

∣

=
√

5

for all r , s ∈ F5 . By Lemma 4.1, we have σi(x) =mix+di for some mi, di ∈
F5 . Note that mi ≠ 0 since σi : F5 → F5 is a permutation. Now

Ai = 1√
5
LiH[0] = 1√

5
H[−ai]Ri

where the complex Hadamard matrix

H[a] =
(

ζaj
2+`j

)

j,`∈Fp
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arises from the standard construction (1), and the monomial matrices Li and
Ri are given by

Li =
(

λi,jδσi(j),`
)

j,`∈F5
=
(

δmij+di,`ζ
−aij2−bij

)

j,`∈F5
;

Ri =
(

δj,mi`−biζ
di`
)

j,`∈F5
.

The monomial matrices Ri disappear after replacing the matrices Ai with yet
another equivalent set, and so we obtain

A∞ = I, Ai = 1√
5
H[−ai]

for i = 0,1, . . . , k−2 where a0=0, a1, . . . , ak−2 ∈ F5 are distinct. This con-
cludes the proof of Theorem 1.1.
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