
BRUCK NETS, CODES, AND CHARACTERS OF LOOPS

G. ERIC MOORHOUSE

Abstract. Numerous computational examples suggest that if Nk−1 ⊂ Nk are (k− 1)- and
k-nets of order n, then rankp Nk − rankp Nk−1 ≥ n − k + 1 for any prime p dividing n at
most once. We conjecture that this inequality always holds. Using characters of loops, we
verify the conjecture in case k = 3, proving in fact that if pe

∣∣∣∣n, then rankp N3 ≥ 3n− 2− e,
where equality holds if and only if the loop G coördinatizing N3 has a normal subloop K such
that G/K is an elementary abelian group of order pe. Furthermore if n is squarefree, then
rankp N3 = 3n − 3 for every prime p

∣∣ n, if and only if N3 is cyclic (i.e. N3 is coördinatized
by a cyclic group of order n).

The validity of our conjectured lower bound, would imply that any projective plane of
squarefree order, or of order n ≡ 2 mod 4, is in fact desarguesian of prime order.

Finally, our conjectured lower bound holds with equality in the case of desarguesian
nets (i.e. subnets of AG(2, p)), which leads to an easy description of an explicit basis for the
Fp-code of AG(2, p).

1. INTRODUCTION

A k-net of order n is an incidence structure consisting of n2 points and nk distinguished

subsets called lines, such that

(i) every line has exactly n points;

(ii) parallelism (the property of being either equal or disjoint) is an equivalence relation on

the lines;

(iii) there are k parallel classes, each consisting of n lines, and

(iv) any two non-parallel lines meet exactly once.

(See [2], [3], [5], [8], [11], [16].) Thus an (n+1)-net of order n is the same thing as an affine

plane of order n. For example the 4-net (affine plane, in this case desarguesian) of order 3 is

shown in Figure 1.

FIGURE 1. Affine
plane of order 3
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In Section 2 we shall give a formal description of the Fp-code of such a net, as the span of the

characteristic functions of the line sets. But for this first example we choose a more graphic

approach as follows. The lines of the above net N are represented in an obvious way by the

matrices

M11 =
( 1 1 1
0 0 0
0 0 0

)
, M12 =

( 0 0 0
1 1 1
0 0 0

)
, M13 =

( 0 0 0
0 0 0
1 1 1

)
,

M21 =
( 1 0 0
1 0 0
1 0 0

)
, M22 =

( 0 1 0
0 1 0
0 1 0

)
, M23 =

( 0 0 1
0 0 1
0 0 1

)
,

M31 =
( 1 0 0
0 1 0
0 0 1

)
, M32 =

( 0 0 1
1 0 0
0 1 0

)
, M33 =

( 0 1 0
0 0 1
1 0 0

)
,

M41 =
( 1 0 0
0 0 1
0 1 0

)
, M42 =

( 0 1 0
1 0 0
0 0 1

)
, M43 =

( 0 0 1
0 1 0
1 0 0

)
.

The four parallel classes are represented by {Mr1,Mr2,Mr3}, 1≤ r≤ 4. The F3-code of N
is the F3-span of these twelve matrices, denoted by C3(N ). Its dimension is easily found:

rank3N = dim C3(N ) = 6. We list six independent relations between the matrices Mrs with

coefficients in F3:

M11 +M12 +M13 = M21 +M22 +M23 = M31 +M32 +M33 = M41 +M42 +M43,

M12 −M13 −M22 +M23 = M32 −M33, M12 −M13 +M22 −M23 = M42 −M43,

M12 +M13 −M23 −M32 = M43.

In fact if Nk denotes the k-subnet of N consisting of the first k parallel classes, as represented

by {Mr1,Mr2,Mr3}, 1≤ r≤ k, then the above relations show that

rank3N1 = 3, rank3N2 = 5, rank3N3 = 6.

(A subnet N ′ ⊆ N consists of the same points as N , and some subset of the parallel classes

of N .) There is a pattern here which becomes more apparent if we consider instead ranks of

quotients of codes in the chain

N0 ⊂ N1 ⊂ N2 ⊂ N3 ⊂ N4 = N ;

namely, write

ρk = rank3Nk − rank3Nk−1 = dim
(C3(Nk)

/C3(Nk−1)
)
.

Then (ρ1, ρ2, ρ3, ρ4) = (3, 2, 1, 0), a decreasing arithmetic progression. We show in Sec-

tion 6 that this arithmetic progression is typical of desarguesian nets. Numerous examples
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of nets gathered from the literature (see Section 3) suggest that when p2 � ∣∣ n, the value

ρk = rankp Nk − rankp Nk−1 is minimized in the case of desarguesian nets, which leads us to

the following conjecture.

1.1 Conjecture. Let Nk be any k-net of order n, and let Nk−1 be any (k− 1)-subnet thereof.

If p is any prime such that p2 � ∣∣ n, then

rankp Nk − rankp Nk−1 ≥ n− k + 1.

It is easily shown (see Proposition 2.1) that for k ≥ 2 the upper bound ρk = rankp Nk −
rankp Nk−1 ≤ n − 1 is attained whenever p � ∣∣ n, so in scrutinizing Conjecture 1.1 we may

assume that p
∣∣∣∣ n, i.e. p divides n exactly once. Conjecture 1.1 holds trivially for k ≤ 2,

and its validity for k = 3 is one conclusion of Theorem 4.2. Moreover we show that cyclic

3-nets (those coördinatized by cyclic groups) may be characterized by their p-ranks in special

cases, namely when n is squarefree, or when the coördinatizing loop is a nilpotent group; see

Corollaries 4.5–7.

Our main interest in this investigation is that Conjecture 1.1 implies that any projective

plane of order n ≡ 2 mod 4, or of squarefree order n (i.e. n is a product of distinct primes)

is in fact desarguesian of prime order (see Theorem 5.1). To date, the only criterion for non-

existence of a projective plane of a given order (aside from the recent computer-dependent

result of C. Lam and J. McKay which announces the non-existence of a plane of order 10), is

the celebrated Bruck-Ryser Theorem [6]. Furthermore for primes p > 7, no proof currently

exists that every projective plane of order p is desarguesian.

It perhaps should be pointed out that our notion (see Section 2) of the code of a net

N , is equivalent to the usual notion of the row space of an incidence matrix of N over Fp,

as quite distinct from the orthogonal array codes found in [8,p.355], [14,p.328], which are (in

general) nonlinear n-ary codes.

It is well known (see eg. [13]) that any (p+1)-net (i.e. affine plane) of prime order p

has p-rank equal to 1
2
p(p + 1). We show (Theorem 6.1) that Conjecture 1.1 holds with

equality, in the case of subnets of the desarguesian affine plane Np+1 = AG(2, p), i.e. for

arbitrary desarguesian nets of prime order. Moreover the arguments following the proof

of Theorem 6.1 show how to construct an explicit basis for the code of Np+1: take all p lines

in some parallel class, plus any p − 1 lines from some other parallel class, plus any p − 2
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lines from yet another parallel class, and so on, finally taking 0 lines from the last remaining

parallel class. Altogether this gives p + (p− 1) + (p− 2) + . . . + 1 + 0 = 1
2p(p + 1) lines as

required.

We stress that Conjecture 1.1 is posed for any net N , regardless of whether N is com-

pletable to an affine plane. Indeed, among the examples offered in Section 3 in support of

the Conjecture, the nets of orders 14, 26, 33 and 38 do not even fulfill the Bruck-Ryser cri-

terion for completability. The question of whether a given net may be completed (or even

extended), so predominant in much of the literature on nets, is not relevant to an assessment

of the veracity of Conjecture 1.1. The reader is challenged to verify Conjecture 1.1 at least

for 4-nets, which after all “just” correspond to two orthogonal Latin squares!

The author is grateful to D. Jungnickel for numerous suggestions which were helpful in

revising the original manuscript.

2. DEFINING THE CODE

Let N be a k-net of order n, with point set P and parallel classes {�rs : 1≤ s≤n}, 1 ≤ r ≤ k,

and let p be a prime. To each line �rs of N there corresponds the characteristic function

χrs : P → Fp, χrs(P ) =
{
1, P ∈ �rs;
0, P /∈ �rs.

The set F
P
p of all functions P → Fp is an n2-dimensional vector space over Fp, and we define

the Fp-code of N as

Cp(N ) =
k∑

r=1

n∑
s=1

Fpχrs,

which is the subspace of F
P
p spanned by the characteristic functions of the line sets of N .

The p-rank of N is

rankp N = dim Cp(N ).

Two k-nets Nk, N ′
k are isomorphic (and we write Nk

∼= N ′
k) if there exists a bijection of

the respective point sets, say θ : P → P ′, taking the lines of Nk to those of N ′
k. (Here we

deviate from other authors, eg. [1] and [16], in that we do not distinguish the parallel classes

of Nk and N ′
k with labels 1, 2, . . . , k, requiring θ to preserve the labels on the parallel classes.)

Clearly rankp Nk = rankp N ′
k whenever Nk

∼= N ′
k.
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The following gives an upper bound for p-ranks of nets, which in general is the best

possible. It also indicates that the only primes of interest are those dividing n.

2.1 Proposition. Let N be a k-net of order n, and let p be a prime. Then

rankp N ≤ (n− 1)k + 1,

in which equality holds if p � ∣∣ n.

Proof. Define γ ∈ F
P
p by γ(P ) = 1 for all P ∈ P. Then

γ =
n∑

s=1
χ1s =

n∑
s=1

χ2s = . . . =
n∑

s=1
χks,

and so Cp(N ) is spanned by

{γ} ∪ {χrs : 1≤ r≤ k, 2≤ s≤n},

which proves that rankp N ≤ (n − 1)k + 1. Now suppose that p � ∣∣ n. Let α ∈ Fp such that

nα = 1 ∈ Fp. Define a symmetric bilinear form on F
P
p by

(χ, ψ) = α
∑

P∈P
χ(P )ψ(P ), χ, ψ ∈ F

P
p .

Then (χrs, χr′s′) = α
∣∣�rs ∩ �r′s′

∣∣, and so

(
χrs , χr′s′−χr′1

)
= δrr′δss′(

γ , χr′s′−χr′1

)
= 0(

χrs , χ11+χ21+ . . .+χk1+α(1−k)γ
)
= 0(

γ , χ11+χ21+ . . .+χk1+α(1−k)γ
)
= 1




1 ≤ r, r′ ≤ k, 2 ≤ s, s′ ≤ n.

This shows that our original set of size (n− 1)k + 1 is a basis for Cp(N ), and at the same

time provides a dual basis with respect to our bilinear form.

3. COMPUTATIONAL EXAMPLES

Let N be a k-net of order n, and choose a maximal chain of subnets

N0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ Nk−1 ⊂ Nk = N
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where Ni is an i-subnet of order n. For each prime p
∣∣n we have a sequence

(ρ1, ρ2, . . . , ρk), ρi = rankp Ni − rankpNi−1, 1 ≤ i ≤ k.

This sequence depends not only on the choice of prime p
∣∣n, but also on the choice of chain

of subnets. A given k-net N has exactly k! such maximal chains of subnets, each chain being

determined by one of the k! possible orderings of the k parallel classes within N . In general,

distinct chains may yield distinct sequences (ρ1, ρ2, . . . , ρk), yet ρ1+ ρ2+ . . .+ ρk = rankp N
is independent of the choice of chain {Ni} in N .

For selected k-nets found in the literature, we have listed in Tables 1–3 all k! sequences

(ρ1, ρ2, . . . , ρk) which occur, as we have determined by computer. (Most of the nets listed in

these Tables, are presented in [2] and [11], although we have referred to the primary source

in most cases.) For example, for the 4-net N 7b of order 7, the sequences (7, 6, 5, 5) and

(7, 6, 6, 4) occur 18 and 6 times respectively, where 18 + 6 = 24 = 4!. Note how closely these

examples corroborate Conjecture 1.1: ρi ≥ n− i+1, with equality in several cases. Actually,

all the nets listed in Tables 1–3 are constructed (or constructible) from difference matrices

over finite groups. Such nets are special in that they admit a group of order n consisting of

central translations with a common direction (see [10], [11]), and this apparently accounts

for their low rank.

We also tested a variety of nets not admitting such a group of central translations. These

cases, listed in Table 4, most with p
∣∣∣∣ n, attain the upper bound of Proposition 2.1, which

perhaps makes such examples less interesting for our purpose. Most of the examples of nets

listed in Table 4 are constructed using quasi-difference matrices (see [2]). A given quasi-

difference matrix, however, determines not always a unique net, but often a large number of

possible nets, of which we sampled only a few at random due to computer time limitations.

Our random choices always yielded the rank sequence (n, n−1, n−1, . . . , n−1); nevertheless
in Table 4 we do not assert that every net obtained from the indicated source yields the same

rank sequence.

As an ‘experimental control’, in Table 5 we list rank sequences using primes p such that

p2
∣∣n. Whereas the seven examples N 24a, N 24b, . . . , N 24g yielded the same rank sequences

for p=3 (see Table 3), for p=2 only N 24b, N 24d and N 24f yielded the same rank sequences

(not shown). In particular at least five of N 24a, N 24b, . . . , N 24g are nonisomorphic.
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TABLE 1: Rank sequences (ρ1, ρ2, . . . , ρk) with p
∣∣∣∣n

Net Source n k p (ρ1, ρ2, . . . , ρk)

N 3 affine plane of order 3 3 4 3 (3,2,1,0) 24×
N 5 affine plane of order 5 5 6 5 (5,4,3,2,1,0) 720×
N 7a affine plane of order 7 7 8 7 (7,6,5,4,3,2,1,0) 40320×
N 7b Jungnickel and 7 4 7 (7,6,5,5) 18×

Grams [12] (7,6,6,4) 6×
N 12a Wallis and Zhu [21] 12 6 3 (12,11,10,10,10,10) 360×

(12,11,11, 9,10,10) 120×
(12,11,11,11, 8,10) 120×
(12,11,11,11,11, 7) 120×

N 12b Johnson, Dulmage 12 7 3 (12,11,10,10,10,10,10) 2160×
and Mendelsohn [9] (12,11,11, 9,10,10,10) 720×

(12,11,11,11, 8,10,10) 720×
(12,11,11,11,11, 7,10) 720×
(12,11,11,11,11,11, 6) 720×

N 15 Schellenberg, van Rees 15 6 3 (15,14,13,13,13,13) 360×
and Vanstone [18] (15,14,14,12,13,13) 120×

(15,14,14,14,11,13) 120×
(15,14,14,14,14,10) 120×

N 15 ” 15 6 5 (15,14,13,13,12,12) 324×
(15,14,14,13,13,10) 108×
(15,14,14,13,11,12) 108×
(15,14,14,12,12,12) 108×
(15,14,13,12,13,12) 48×
(15,14,13,14,13,10) 12×
(15,14,13,14,11,12) 12×
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TABLE 2: More rank sequences (ρ1, ρ2, . . . , ρk) with p
∣∣∣∣n

Net Source n k p (ρ1, ρ2, . . . , ρk)

N 13a Todorov [20] 13 8 13 (13,12,11,11,10, 9, 8, 6) 8352×
(13,12,12,11,10, 9, 7, 6) 5568×
(13,12,11,10,11, 9, 8, 6) 3072×
(13,12,12,10,10, 9, 8, 6) 2784×
(13,12,12,11, 9, 9, 8, 6) 2784×
(13,12,12,11,10, 8, 8, 6) 2784×
(13,12,11,10, 9,11, 8, 6) 2400×
(13,12,11,12,10, 9, 7, 6) 1536×
(13,12,11,10, 9, 8,11, 6) 1440×
(13,12,11,11,10, 8, 9, 6) 1152×
(13,12,11,10,12, 9, 7, 6) 960×
(13,12,11,11, 9,10, 8, 6) 864×
(13,12,12,11, 9,10, 7, 6) 768×
(13,12,12,11, 9, 8, 9, 6) 768×
(13,12,11,12,10, 8, 8, 6) 768×
(13,12,11,12, 9, 9, 8, 6) 768×
(13,12,12,10,11, 9, 7, 6) 576×
(13,12,12,10, 9,10, 8, 6) 576×
(13,12,11,10,12, 8, 8, 6) 480×
(13,12,11,10, 9,12, 7, 6) 480×
(13,12,11,10,11, 8, 9, 6) 384×
(13,12,12,10,10, 8, 9, 6) 384×
(13,12,12,10,11, 8, 8, 6) 288×
(13,12,11,12, 9,10, 7, 6) 192×
(13,12,11,12, 9, 8, 9, 6) 192×

N 13b

N 13c

}
” 13 8 13

rank distributions similar (but not
identical) to those of N 13a above

N 21 Schellenberg, 21 6 3 (21,20,19,19,19,19) 360×
van Rees and (21,20,20,18,19,19) 120×
Vanstone [18] (21,20,20,20,17,19) 120×

(21,20,20,20,20,16) 120×
N 21 ” 21 6 7 (21,20,19,19,19,19) 360×

(21,20,20,18,19,19) 120×
(21,20,20,20,17,19) 120×
(21,20,20,20,20,16) 120×
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TABLE 3: More rank sequences (ρ1, ρ2, . . . , ρk) with p
∣∣∣∣n

Net Source n k p (ρ1, ρ2, . . . , ρk)

N 24a Roth and Peters [17] 24 6 3 (24,23,22,22,22,22) 360×
(24,23,23,21,22,22) 120×
(24,23,23,23,20,22) 120×
(24,23,23,23,23,19) 120×

N 24b

N 24c

N 24d

N 24e

N 24f

N 24g




” 24 6 3
same rank distributions

as N 24a above

N 33 Schellenberg, van Rees 33 5 3 (33,32,31,31,31) 72×
and Vanstone [18] (33,32,32,32,29) 24×

(33,32,32,30,31) 24×
N 33 ” 33 5 11 (33,32,31,31,30) 54×

(33,32,31,30,31) 24×
(33,32,32,30,30) 18×
(33,32,32,31,29) 18×
(33,32,31,32,29) 6×

N 39 Schellenberg, van Rees 39 5 3 (39,38,37,37,37) 72×
and Vanstone [18] (39,38,38,38,35) 24×

(39,38,38,36,37) 24×
N 39 ” 39 5 13 (39,38,37,37,36) 54×

(39,38,37,36,37) 24×
(39,38,38,36,36) 18×
(39,38,38,37,35) 18×
(39,38,37,38,35) 6×
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TABLE 4: Rank sequences (ρ1, ρ2, . . . , ρk) achieving the upper bound for ρi

Net Source n k p (ρ1, ρ2, . . . , ρk)

N 10 Parker [15] 10 4 2 (10, 9, 9, 9) 24×
N 10 ” 10 4 5 (10, 9, 9, 9) 24×
N 14a Zhu [23,p.2] 14 4 2 (14,13,13,13) 24×
N 14a ” 14 4 7 (14,13,13,13) 24×
N 14b Zhu [23,p.3] 14 4 2 (14,13,13,13) 24×
N 14b ” 14 4 7 (14,13,13,13) 24×
N 14c Todorov [19] 14 5 2 (14,13,13,13,13) 120×
N 14c ” 14 5 7 (14,13,13,13,13) 120×
N 14d

N 14e

}
” 14 5 2,7

same rank distribution

as N 14c above

N 18 Wang [22]; [2,p.402] 18 5 2 (18,17,17,17,17) 120×
N 22 Wang [22]; [2,p.403] 22 5 2 (22,21,21,21,21) 120×
N 22 ” 22 5 11 (22,21,21,21,21) 120×
N 26 Wang [22]; [2,p.404] 26 5 2 (26,25,25,25,25) 120×
N 26 ” 26 5 13 (26,25,25,25,25) 120×
N 30 Wang [22]; [2,p.404] 30 5 2 (30,29,29,29,29) 120×
N 30 ” 30 5 3 (30,29,29,29,29) 120×
N 30 ” 30 5 5 (30,29,29,29,29) 120×
N 38 Todorov [20] 38 6 2 (38,37,37,37,37,37) 720×
N 38 ” 38 6 19 (38,37,37,37,37,37) 720×
N 44 Todorov [20] 44 6 2 (44,43,43,43,43,43) 720×
N 44 ” 44 6 11 (44,43,43,43,43,43) 720×
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TABLE 5: Rank sequences (ρ1, ρ2, . . . , ρk) with p2
∣∣n

Net Source n k p (ρ1, ρ2, . . . , ρk)

N 12a Wallis and Zhu [21] 12 6 2 (12,11, 9, 9, 9, 5) 300×
(12,11,11, 7, 9, 5) 108×
(12,11,11,11, 5, 5) 144×
(12,11,11, 9, 7, 5) 36×
(12,11, 9, 9, 7, 7) 84×
(12,11,11, 7, 7, 7) 36×
(12,11, 9,11, 7, 5) 12×

N 12b Johnson, Dulmage and 12 7 2 (12,11, 9, 9, 9, 9, 3) 1464×
Mendelsohn [9] (12,11, 9, 9, 9, 5, 7) 600×

(12,11, 9, 9, 7, 7, 7) 168×
(12,11,11, 7, 9, 9, 3) 504×
(12,11,11,11, 5, 9, 3) 576×
(12,11,11,11,11, 3, 3) 720×
(12,11,11,11, 9, 5, 3) 144×
(12,11,11, 7, 9, 5, 7) 216×
(12,11,11,11, 5, 5, 7) 288×
(12,11,11, 9, 7, 9, 3) 72×
(12,11,11, 9, 7, 5, 7) 72×
(12,11,11, 9,11, 5, 3) 72×
(12,11,11, 7, 7, 7, 7) 72×
(12,11, 9,11, 7, 9, 3) 24×
(12,11, 9,11, 7, 5, 7) 24×
(12,11, 9,11,11, 5, 3) 24×

N 16 Example 3.1 16 5 2 (16,15,11,11, 5) 72×
(16,15,15,11, 1) 24×
(16,15,15, 7, 5) 24×

N 24a Roth and Peters [17] 24 6 2 (24,23,20,20,20,20) 360×
(24,23,23,17,20,20) 96×
(24,23,23,22,15,20) 72×
(24,23,23,22,22,13) 72×
(24,23,23,23,14,20) 24×
(24,23,23,23,21,13) 24×
(24,23,22,18,20,20) 24×
(24,23,22,23,15,20) 24×
(24,23,22,23,22,13) 24×

N 24b

...
N 24g


 ” 24 6 2

rank distributions similar (but not
identical) to those of N 24a above
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In Table 5 we also include the following example, noteworthy for attaining the particu-

larly small value ρ5=1:

3.1 Example. N 16 is the 5-net of order 16 constructed as in [2] from the difference matrix


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4 15 10 14 11 2 1 9 5 8 12 3 6 13 7
0 5 13 9 10 14 4 6 1 12 2 7 15 11 3 8




over the elementary abelian group of order 16. Here the group elements 0, 1, 2, . . . , 15 are

added by first converting to binary representation, then adding ‘without carrying’.

This example refutes any hope of extending Conjecture 1.1 to rankp Nk − rankp Nk−1 ≥
n−(k− 2)e−1 in case k≥ 2, pe

∣∣∣∣n, as might well have been suggested by the other examples

of Table 5, as well as by Theorem 4.2.

The computer programs we used in producing Tables 1–5 would first convert each exam-

ple (whether defined by an explicitly printed list of orthogonal Latin squares, or by difference

matrices, or by orthomorphisms, or by quasi-difference matrices) to the matrix representation

of a net. These nets were then uniformly checked by a common program to ensure that they

satisfied the defining properties of a net, in order to screen for input errors, before computing

rank sequences.

4. LOOPS, 3-NETS AND THEIR RANKS

A loop is a set G together with a binary operation ∗ : G×G → G such that

(i) for all a, c ∈ G the equation a ∗ x = c has a unique solution x ∈ G;

(ii) for all b, c ∈ G the equation x ∗ b = c has a unique solution x ∈ G; and

(iii) G contains a two-sided identity element, i.e. there exists 1 ∈ G such that 1∗x = x∗1 = x

for all x ∈ G.

The order of a loop G is |G|. We proceed to review the correspondence between 3-nets of

order n and loops of order n. (For more details see [1], [3] or [16].)

Given a loop G of order n, we define a 3-net N = N (G) of order n on the points

G×G = {(x, y) : x, y ∈ G} by choosing the following three parallel classes of lines:

�1g = {(g, y) : y ∈ G}, g ∈ G;

�2g = {(x, g) : x ∈ G}, g ∈ G;

�3g = {(x, y) : x ∗ y = g}, g ∈ G.
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(Here we deviate slightly from the notation of Section 2 by using subscripts from G rather

than 1, 2, . . . , n.)

Conversely, given a 3-net N of order n with parallel classes {�rs : 1 ≤ s ≤ n}, 1≤ r≤ 3,

we may construct (although not uniquely) a loop G of order n such that N (G) ∼= N , as

follows. Arbitrarily label the three parallel classes of N as classes 1, 2 and 3. Arbitrarily

choose a point (1, 1) of N as the ‘origin’, and let (1, 1) = �11 ∩ �21 where �11 and �21 are

lines of class 1 and 2 respectively. Arbitrarily label the remaining points of �11 as (1, 2),

(1, 3), . . . , (1, n). Let �2i (resp. �3i) be the unique line of class 2 (resp. class 3) through (1, i).

Let (i, 1) = �21 ∩ �3i, �1i = the unique line of class 1 through (i, 1), and (i, j) = �1i ∩ �2j.

Finally define G = {1, 2, . . . , n}, with binary operation ∗ : G × G → G, i ∗ j = s where

�1i ∩ �2j ∈ �3s. Then (G, ∗) is a loop with identity 1, such that N (G) ∼= N , and we say that

G coördinatizes N . Although N itself does not determine G uniquely, G is specified up to

loop isomorphism once the three parallel classes of N are distinguished and a point of N is

distinguished as the ‘origin’.

While it is possible for nonisomorphic loops to coördinatize isomorphic 3-nets, it is well

known that this cannot happen for a 3-net coördinatized by an associative loop (i.e. a group).

But to extract this fact from the existing literature requires some care as to what is meant

by ‘net isomorphism’ (recall our definition in Section 2), and so we present a direct proof of

this assertion here.

4.1 Proposition. Let G1 be a group of order n, and G2 a loop of order n. Then G1 ∼= G2

if and only if N (G1) ∼= N (G2).

Proof. If G1 ∼= G2 then clearly N (G1) ∼= N (G2).

Conversely, letN = N (G1) with point set G1×G1 and lines �1g, �2g, �3g (g ∈ G1) defined

as above. Then N admits an automorphism θ : (x, y) �→ (y−1, x−1), which maps �1g �→ �2,g−1,

�2g �→ �1,g−1, �3g �→ �3,g−1 and an automorphism ρ : (x, y) �→ (xy, y−1), which maps

�1g �→ �3g, �2g �→ �2,g−1, �3g �→ �1g. Thus AutN induces all 3! = 6 permutations of the three

parallel classes. Furthermore AutN has a subgroup of order n2 acting transitively on the

points, while preserving each parallel class: for any u, v ∈ G1 we have τuv : (x, y) �→ (ux, yv),

which maps �1g �→ �1,ug, �2g �→ �2,gv, �3g �→ �3,ugv. Consequently any choice of labels 1, 2,

3 for the three parallel classes of N , and any choice of point as ‘origin’ for N , will yield the

same (i.e. isomorphic) coördinatizing loop for N .
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For our purposes, a p-character of a loop G shall mean a loop homomorphism G → Fp,

i.e. a map φ : G → Fp such that φ(g ∗ h) = φ(g) + φ(h) for all g, h ∈ G. Clearly the

set Hom(G,Fp) of all p-characters of G, is a vector space over Fp. In proving the following

results we shall assume some basic facts concerning loops (eg. Lagrange’s Theorem for normal

subloops, homomorphisms of loops, and isomorphism theorems) as recorded in [4].

4.2 Theorem. Let G be a loop of order n, with corresponding 3-net N3 = N (G), and let p

be a prime such that pe
∣∣∣∣n. Then

rankp N3 = 3n− 2− dim Hom(G,Fp) = 3n− 2− s ≥ 3n− 2− e

where ps = [G : K] and K is the unique minimal normal subloop of G such that G/K is an

elementary abelian p-group.

Proof. Corresponding to the lines �1g, �2g, �3g (g ∈ G) of N3, we have the characteristic

functions χ1g, χ2g, χ3g ∈ F
P
p where P = G × G is the point set of N3. Since

∑
g∈G

χ1g =
∑

g∈G

χ2g =
∑

g∈G

χ3g, the code Cp(N3) spanned by {χig : 1≤ i≤n, g ∈ G} has dimension ≤

3n− 2, and in fact

dim Cp(N3) = 3n− 2− dimV,

where V is the vector space (over Fp) consisting of all sequences
(
ag : g ∈ G

)
in Fp such that

a1 = 0 (where 1 ∈ G is the two-sided identity) and

∑
g∈G

agχ3g ∈
2∑

i=1

∑
g∈G

Fpχig.

If χ ∈
2∑

i=1

∑
g∈G

Fpχig, then clearly χ(1, 1)−χ(x, 1)−χ(1, y)+χ(x, y) = 0 for all (x, y) ∈ P. It
follows that for

(
ag : g ∈ G

) ∈ V, we have a1 − ax − ay + ax∗y = 0. But a1 = 0, so the map

G → Fp, g �→ ag is a p-character of G. Conversely, if φ ∈ Hom(G,Fp), then φ(1) = 0 and

∑
g∈G

φ(g)χ3g =
2∑

i=1

∑
g∈G

φ(g)χig,

since the values of both sides agree at an arbitrary point (x, y) ∈ P = G×G. Thus we may

identify V with Hom (G,Fp), which proves that rankp N3 = 3n− 2− dim Hom(G,Fp).
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If H1 and H2 are normal subloops of G such that each quotient G/Hi is an elementary

abelian p-group, then H1∩H2 is a normal subloop of G, and the natural loop homomorphism

π : G → (
G/H1

) × (
G/H2

)
, g �→ (gH1, gH2)

has kernel H1 ∩ H2, so that G/H1 ∩ H2 is isomorphic to a subgroup of
(
G/H1

) × (
G/H2

)
.

This means that the class of all normal subloops H ⊆ G such that G/H is an elementary

abelian p-group, has a unique minimal member, say K, and
∣∣G/K

∣∣ = |G|/|K| = ps, s≤ e.

If φ ∈ Hom(G,Fp) is nonzero, then kerφ is a normal subloop of G such that G/kerφ is a

cyclic group of order p, so that kerφ ⊇ K; thus there is a unique φ ∈ Hom
(
G/K,Fp

)
such that

φ(g) = φ(gK) for all g ∈ G. Conversely any p-character of G/K, after composing with the

natural homomorphism G → G/K, gives a p-character of G. This gives a bijection between

Hom (G,Fp) and Hom
(
G/K,Fp

)
. Thus dimHom (G,Fp) = dimHom

(
G/K,Fp

)
= s ≤ e, from

which the result follows.

Bruck, in his beautiful 1951 paper [3], encountered a normal subloop condition similar to

the definition of K above, when considering extendability of nets, using some basic notions

(if not strictly the modern language) of coding theory. Combining Bruck’s results with ours

gives the following.

4.3 Corollary. Let N3 be a 3-net of order n ≡ 2 mod 4. If N3 is extendable to a 4-net,

then rank2N3 = 3n− 2.

Proof. Let G be a loop coördinatizing N3. If rank2N3 = 3n − 3 then G has a normal

subloop of order n/2 by Theorem 4.2, in which case by [3], N3 cannot be extended by a

single additional line, much less by a fourth parallel class.

Corollary 4.3 explains why the examples of Table 4 with 2
∣∣∣∣n, have ρ3 = n− 1.

4.4 Theorem. Let G be a loop of order n = pe1
1 pe2

2 . . . pem
m , where p1, p2, . . . , pm are distinct

primes, and let N3 = N (G). Then the following four conditions are equivalent.

(i) G is a direct product of elementary abelian groups of order pei
i , i = 1, 2, . . . , m.

(ii) rankpi
N3 = 3n− 2− ei for i = 1, 2, . . . , m.

(iii) dim Hom (G,Fpi
) = ei for i = 1, 2, . . . , m.

(iv) For i = 1, 2, . . . , m, G has a normal subloop Ki such that G/Ki is an elementary abelian

group of order pei
i .
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Proof. By the previous results, it remains only to assume (iv) and prove (i). The natural

homomorphism

π : G → (
G/K1

) × (
G/K2

) × (
G/Km

)
, g �→ (gK1, gK2, . . . , gKm)

has kernel K1 ∩K2 ∩ . . .∩Km, a normal subloop of G, with order dividing n/pei
i for each i,

and so kerπ = 1, i.e. π is one-to-one. Comparing orders, we see that π is an isomorphism.

A 3-net is cyclic if one (and hence each) of its coördinatizing loops is a cyclic group.

4.5 Corollary. Let N3 be a 3-net of squarefree order n, coördinatized by a loop G. Then

N3 is cyclic, if and only if rankp N3 = 3n− 3 for every prime p
∣∣n.

With the interest of characterizing cyclic 3-nets of arbitrary order by their p-ranks,

D. Jungnickel has observed the following (which is invalid with ‘solvable’ in place of ‘nilpo-

tent’, as the example of S3 ×C3 shows):

4.6 Corollary. Let N3 = N (G) where G is a nilpotent group of order n. Then N3 is cyclic

if and only if rankp N3 = 3n− 3 for every prime p
∣∣n.

This actually follows from the more general result

4.7 Corollary. Let N3 = N (G), where G is a nilpotent loop of order n. Then G is generated

by a single element, if and only if rankp N3 ≥ 3n− 3 for every prime p
∣∣n.

Proof of Corollary 4.7. Let n = pe1
1 pe2

2 . . . pem
m where p1, p2, . . . , pm are distinct primes. Let

Φ(G) be the Frattini subloop of G (see [4]). Since G is nilpotent, G/Φ(G) is a direct product

of cyclic groups of prime order, and furthermore Φ(G) is the unique minimal normal subloop

of G with this property.

Suppose that rankpi
N3 ≥ 3n− 3 for i = 1, 2, . . . , m. Then |G/Φ(G)| divides p1p2 . . . pm

by Theorem 4.4, and in particular G/Φ(G) is cyclic. Let g ∈ G such that gΦ(G) generates

G/Φ(G); then G = 〈g,Φ(G)〉 = 〈g〉. The converse follows by reversing these steps.

Note that if G is a nilpotent group of order n and the prime p
∣∣ n, then G necessarily

has a normal subgroup of index p, so Theorem 4.4 yields rankp N (G) ≤ 3n− 3; this explains



17

why the inequality in the statement of 4.7 was replaced with equality in 4.6. The situation

for loops is different; eg. the loop G of order 6 with multiplication table

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 4 3
6 5 2 1 3 4

is nilpotent; we have G = 〈3〉, Φ(G) = Z(G) = {1, 2}, rank3N (G) = 3n− 3 = 15,

rank2N (G) = 3n− 2 = 16.

5. IMPLICATIONS FOR PROJECTIVE PLANES

Our main result is as follows.

5.1 Theorem. Suppose that Π is a projective plane of order n, where n is squarefree or

n ≡ 2 mod 4. If Conjecture 1.1 holds for n, then n is prime and Π is Desarguesian.

Before proving Theorem 5.1, we require the following two propositions, in which n is an

arbitrary integer, not necessarily satisfying the hypotheses of Theorem 5.1.

5.2 Proposition. Let G be a cyclic group of order n > 1.

(i) If n is odd, then every element of G is a product of two generators of G.

(ii) If n is even, then every square in G is a product of two generators.

As a corollary,

(iii) every non-generator of G is expressible as the product of two generators.

Proof of Proposition 5.2. (i) We proceed by induction on the number of distinct prime divisors

of n. First suppose that n is a power of an odd prime p. Let x be a generator for G. For any

element xe ∈ G, at most one of {xe−1, xe+1} belongs to 〈xp〉 (i.e. fails to generate G). Thus

at least one of the two factorizations xe = xe−1x = xe+1x−1 suffices.

Now suppose that n = n1n2 where n1 and n2 are relatively prime odd integers exceed-

ing 1. We have G = G1G2 ∼= G1 × G2 where Gi is cyclic of order ni. The generators of G
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are of the form x1x2 where xi generates Gi. Let a ∈ G. Then a = a1a2, ai ∈ Gi. We may

suppose by induction that ai = xiyi where 〈xi〉 = 〈yi〉 = Gi. Then a = (x1x2)(y1y2) is a

factorization as required.

(ii) Write n = n1n2, n1 = 2s, n2 odd, G = G1G2 ∼= G1 × G2, Gi cyclic of order ni. Since

the squares in G are of the form a1a2 where ai ∈ Gi and a1 is a square, it suffices (cf. (i)) to

prove the result for G1. Let x generate G1. If a ∈ G1 is a square, then ax is a nonsquare, so

〈ax〉 = G1, and the factorization a = (ax)(x−1) suffices.

(iii) Follows directly from (i) and (ii).

Let G be a loop of order n, with corresponding 3-net N3 = N (G). It is convenient to

assume that G = {1, 2, . . . , n} with binary operation ∗ : G × G → G. With respect to the

lexicographical ordering of the lines as �11, �12, . . . , �1n, �21, �22, . . . , �2n, �31, �32, . . . , �3n, and

the points as (1, 1), (1, 2), . . . , (1, n), (2, 1), (2, 2), . . . , (2, n), . . . , (n, 1), (n, 2), . . . , (n, n), the

line-point incidence matrix of N3 is

(5.3) A =


R1 R2 R3 · · · Rn

I I I · · · I
I Σ2 Σ3 · · · Σn




where Σ2,Σ3, . . . ,Σn are n× n permutation matrices such that I +Σ2 +Σ3 + . . .+Σn = J

(the n× n matrix of 1’s), the (s, 1)-entry of Σs is 1, and the n× n matrices Rs are given by

(5.4) R1 =




1 1 · · · 1
0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0


 , R2 =




0 0 · · · 0
1 1 · · · 1
0 0 · · · 0
...

...
...

0 0 · · · 0


 , . . . , Rn =




0 0 . . . 0
0 0 · · · 0
...

...
...

0 0 · · · 0
1 1 · · · 1


 .

An n-cycle matrix is an n×n permutation matrix of the form
(
δi,σ(j) : 1≤ i, j≤n

)
where

the permutation σ ∈ Sn is an n-cycle, i.e. σ is conjugate in Sn to (1 2 3 . . . n).

5.5 Proposition. A 3-net N3 of order n having incidence matrix given by (5.3), is a cyclic

3-net if and only if {I,Σ2,Σ3, . . . ,Σn} = {I, Q,Q2, . . . , Qn−1} for some n-cycle matrix Q.
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Proof. Suppose that {Σ1= I,Σ2,Σ3, . . . ,Σn} = {I, Q,Q2, . . . , Qn−1} for some n-cycle matrix

Q. Then Q = M−1Q0M for some n× n permutation matrix M , where

Q0 =




0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 .

With no loss of generality, we may assume that Q = Q0, for otherwise replace A by the

equivalent incidence matrix



I 0 0
0 M−1 0
0 0 M−1


A




M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M


 .

Without loss of generality the (s, 1)-entry of Σs is 1; otherwise permute the 3n × n blocks(Rs

I
Σs

)
appropriately, then permute rows 2, 3, . . . , n of A to restore the first n rows to(

R1R2 · · · Rn

)
. Then Σs = Qs−1

0 . Labelling the rows of A by the lines lexicographically

ordered as �11, �12, . . . , �1n, �21, �22, . . . , �2n, �31, �32, . . . , �3n, we have i∗j = k ⇐⇒ �1i∩�2j ∈
�3k ⇐⇒ the (k, j)-entry of Σi =Qi−1

0 is 1 ⇐⇒ (i− 1) + (j− 1) ≡ (k− 1) mod n. Thus

G = {1, 2, . . . , n} under the operation ∗, is a cyclic group of order n, which coördinatizes N3.
The converse is easy, and is left to the reader.

Proof of Theorem 5.1. Let (P0, �0) be an arbitrary incident point-line pair in Π. We may

label the remaining points {Pi : 1≤ i≤n2+n} and lines {�i : 1≤ i≤n2+n} of Π in such a

way (see [8,p.287]) that the resulting incidence matrix

A =
(
aij : 0 ≤ i, j ≤ n2+n

)
, aij =

{
1, if Pj ∈ �i;
0, otherwise

has the form

A =

1 1 1 · · ·1 0 0 0 · · · 0
1
1··
1

0 R1 R2 R3 · · · Rn

0 RT1 I I I · · · I

0 RT2 I Σ22 Σ23 · · · Σ2n
0 RT3 I Σ32 Σ33 · · · Σ3n
...

...
...

...
...

. . .
...

0 RTn I Σn2 Σn3 · · · Σnn
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where the n × n matrices Rs are as defined in (5.4), and the Σij ’s are n × n permutation

matrices. Then 


R1 R2 R3 · · · Rn

I I I · · · I
I Σ22 Σ23 · · · Σ2n
I Σ32 Σ33 · · · Σ3n
...

...
...

. . .
...

I Σn2 Σn3 · · · Σnn




is the incidence matrix of an (n+1)-net N of order n, i.e. an affine plane of order n (namely,

the residual of Π with respect to �0). For any prime p
∣∣∣∣n it is well known that

rankp N = 1
2

(
n2 + n

)

(since rankp Π = 1
2

(
n2 + n+ 2

)
; see eg. [13,p.57]). Let

N0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ Nn+1 = N

be any chain of subnets of subsets of N , as in Sections 1,3. Then assuming Conjecture 1.1,

we have
1
2

(
n2 + n

)
= rankp N = rankpN1 +

n+1∑
k=2

(
rankp Nk − rankp Nk−1

)

≥ n+ (n− 1) + (n− 2) + . . .+ 2 + 1 + 0

= 1
2

(
n2 + n

)
.

This means that equality must hold for each summand:

rankp Nk − rankp Nk−1 = n− k + 1.

In particular we obtain rankp N3 = 3n− 3. If n ≡ 2 mod 4 and p = 2 then the result follows

by Corollary 4.3. Hence assume that n is squarefree, so the above holds for any prime p
∣∣ n.

By Corollary 4.5, this means that every 3-subnet N3 ⊆ N is cyclic. By Proposition 5.5, for

2 ≤ i ≤ n the set {I,Σi2,Σi3, . . . ,Σin} consists of all n powers of some n-cycle matrix, and

the same is true of {I,Σ2i,Σ3i, . . . ,Σni} by the dual argument. Moreover whenever i �= i′,

2 ≤ i, i′ ≤ n, N has a 3-subnet with incidence matrix


R1 R2 R3 · · · Rn

I Σi2 Σi3 · · · Σin

I Σi′2 Σi′3 · · · Σi′n


 .
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Another incidence matrix for this 3-subnet is found by permuting columns:


R1 R2 R3 · · · Rn

I I I · · · I
I Σi′2ΣTi2 Σi′3ΣTi3 · · · Σi′nΣTin


 .

Again by Proposition 5.5, the set {I, Σi′2ΣTi2, Σi′3ΣTi3, . . . , Σi′nΣTin} consists of all n powers

of some n-cycle matrix.

We claim that all Σij ’s are powers of the same n-cycle matrix. The alert reader will see

that this already follows from the above remarks if n is prime; however we proceed to prove

the claim in the general case (n is squarefree) using Proposition 5.2. If our claim is false,

then we may choose i �= i′ and j �= j′ such that Σij and Σi′j′ are both n-cycle matrices, but

Σi′j′ /∈ 〈Σij〉 = {Σr
ij : 0 ≤ r < n} = {I} ∪ {Σrj : 2 ≤ r ≤ n}.

However Σi′j ∈ 〈Σij〉 ∩ 〈Σi′j′〉. This implies that Σi′j is a non-generator of 〈Σij〉. By

Proposition 5.2(iii), Σi′j is a product of two generators of 〈Σij〉, say

Σi′j = ΣsjΣtj , 〈Σsj〉 = 〈Σtj〉 = 〈Σij〉.

FIGURE 2. A portion of
the incidence matrix of N

...
...

· · · Σsj · · · Σsj′ · · ·
...

...
· · · Σtj · · · Σtj′ · · ·

...
...

I · · · Σij · · · Σij′ · · ·
...

...

I · · · Σi′j · · · Σi′j′ · · ·
...

...
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(Refer to Figure 2.) Since Σi′jΣTtj = Σsj is an n-cycle matrix, by the above remarks

Σi′j′ΣTtj′ ∈ 〈Σi′jΣTtj〉 = 〈Σsj〉 = 〈Σij〉.

However we also have Σtj′ ∈ 〈Σtj〉 = 〈Σij〉. Together this implies that Σi′j′ ∈ 〈Σij〉, a
contradiction.

We have verified our claim: there exists an n-cycle σ ∈ Sn such that every Σij is a power

of the n-cycle matrix Q =
(
δi,σ(j) : 1≤ i, j≤n

)
, and in particular Σij commutes with Q.

This implies that the mapping

Pi �→ Pi, 0 ≤ i ≤ n; �i �→ �i, 0 ≤ i ≤ n;
Psn+i �→ Psn+σ(i), 1 ≤ s, i ≤ n; �sn+i �→ �sn+σ(i), 1 ≤ s, i ≤ n

is an automorphism of Π, in fact an elation of order n with centre P0 and axis �0 (see

[7]). However (P0, �0) was an arbitrarily chosen incident point-line pair in Π. Thus Π is

(P, �)-transitive for every flag (P, �) of Π. It is well known (see eg. [7]) that any finite plane

satisfying this condition is desarguesian. Moreover this implies that n is a prime power, and

hence prime.

6. DESARGUESIAN NETS OF PRIME ORDER

6.1 Theorem. Conjecture 1.1 holds with equality in the case of desarguesian nets (neces-

sarily of prime order).

Proof. Let p be a prime. A desarguesian net of order p is by definition a subnet of a

desarguesian (p+1)-net Np+1 (i.e. affine plane) of order p. Consider a maximal chain of

subnets

N0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ Np ⊂ Np+1

where Ni is an i-subnet. Then

1
2p(p+ 1) = rankp Np+1 =

p+1∑
k=1

(
rankp Nk − rankp Nk−1

)
.

It suffices to show that rankp Nk − rankp Nk−1 ≤ p− k + 1, for then

1
2p(p+ 1) =

p+1∑
k=1

(
rankp Nk − rankp Nk−1

) ≤
p+1∑
k=1

(p− k + 1) = 1
2p(p+ 1),
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which forces rankp Nk − rankp Nk−1 = p− k + 1 for all k.

We may represent Np+1 on the point set P = F
2
p = Fp × Fp, with lines

�rs = {(x, rx+ s) : x ∈ Fp}, �∞s = {(s, y) : y ∈ Fp}, r, s ∈ Fp,

or by the corresponding characteristic functions χrs, χ∞s ∈ F
P
p . (We deviate slightly from

the convention of Section 2 by using subscripts from Fp = {0, 1, 2, . . . , p−1} rather than from

{1, 2, 3, . . . , p}.) Let Nk−1 ⊂ Nk be (k−1)- and k-subnets of Np+1. Since AutNp+1 acts

transitively on the p+ 1 parallel classes, we may suppose that the lines of Nk−1 are

{�rs : r ∈ E, s ∈ Fp}, E ⊆ Fp, |E| = k − 1

and that Nk has the additional parallel class {�∞s : s ∈ Fp}. Define

Vk =
{
(a0, a1, a2, . . . , ap−1) ∈ F

p
p :

p−1∑
s=0

asχ∞s ∈ Cp(Nk−1) =
∑

r∈E

p−1∑
s=0

Fpχrs

}
.

Then dimp Vk = p− rankp Nk + rankp Nk−1, and so it suffices to show that dimp Vk ≥ k− 1.

We may suppose that k ≥ 2.

We first show that
(
0k−2, 1k−2, 2k−2, . . . , (p−1)k−2) ∈ Vk. (For k = 2 we must define

00 = 1.) Consider the unique solution
(
br : r ∈ E

)
to the linear system

∑
r∈E

rebr =
{
0, 0 ≤ e ≤ k − 3;
1, e = k − 2.

(The coefficient matrix of this system is a (k−1)× (k−1) Vandermonde matrix, whence the

existence and uniqueness of the solution (br : r ∈ E).) Then

(6.2)
p−1∑
s=0

sk−2χ∞s =
∑

r∈E

p−1∑
s=0

(−s)k−2brχrs.

To verify the latter, the right side of (6.2), evaluated at an arbitrary point (x, y) ∈ P, yields

∑
r∈E

(rx− y)k−2br =
k−2∑
e=0

( ∑
r∈E

rebr

)(
k−2
e

)
xe(−y)k−2−e = xk−2,

which agrees with the value of the left side of (6.2) at (x, y). Thus
(
0k−2, 1k−2, . . . , (p−1)k−2)

∈ Vk as claimed.
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For 1 ≤ t ≤ k−1, choose a subset Et ⊆ E of size t corresponding to a t-subnetNt ⊆ Nk−1.

Replacing E by Et in the above argument gives
(
0t−1, 1t−1, 2t−1, . . . , (p−1)t−1) ∈ Vk. Thus

Vk ⊇ {(
f(0), f(1), f(2), . . . , f(p−1)) : f(X) ∈ Fp[X ], deg f ≤ k−2},

and so dimp Vk ≥ k − 1 as required.

Observe by the argument of the above proof that we must have

Vk =
{(

f(0), f(1), f(2), . . . , f(p−1)) : f(X) ∈ Fp[X ], deg f ≤ k−2},
and since any nonzero f(X) ∈ Fp[X ] has at most deg f roots, Vk has minimum weight p−k+2

for k ≥ 2. Thus Vk is an MDS code (maximum distance separable; see [14]). This means that

any p − k + 1 of {χ∞s : s ∈ Fp} suffice to extend a basis of Cp(Nk−1) to a basis of Cp(Nk),

which justifies the recipe given in Section 1 for producing an explicit basis of Cp(Np+1). The

dual code V⊥
k is also MDS, of length p, dimension p− k + 1, and minimum weight k; in fact

V⊥
k is an extended Reed-Solomon code.
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