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1. INTRODUCTION

A k-net of order n is an incidence structure consisting of a set P of n2 points, together

with nk distinguished subsets �ij ⊂ P called lines (1≤ i≤ k, 1≤ j≤n), such that

|�ij ∩ �i′j′ | =


1 if i �= i′;
0 if i= i′, j �= j′;
n if i= i′, j= j′.

Thus the lines are partitioned into k parallel classes {�ij : 1≤ j≤n}, 1≤ i≤ k, and each

line has n points. Note that an (n+1)-net is the same thing as an affine plane of order

n. For any k-net N and any k′-subset of the parallel classes of N , we obtain a k′-subnet

N ′ ⊆ N of order n, also with point set P. The description of nets found here is more

amenable to our specialized rank computations than to a broader presentation; more general

information concerning nets is found in Baer (1939), Beth et al. (1985), Bruck (1951) and

(1963), Jungnickel (1990), and Pickert (1975).

We denote the p-rank of a net N (the p-rank of its incidence matrix) by rankp N . In
Moorhouse (1990) we proposed the following conjecture, supported by numerous computa-

tional examples:

Conjecture 1. Let Nk be any k-net of order n, and let Nk−1 be any (k− 1)-subnet thereof.
If p is any prime such that p2 � ∣∣ n, then

rankp Nk − rankp Nk−1 ≥ n− k + 1.

The only interesting primes are those dividing n, since as shown in Moorhouse (1990), for

k≥ 1 we have rankp Nk ≤ (n− 1)k + 1, in which equality holds if p � ∣∣ n. Furthermore

Conjecture 1 holds trivially for k ≤ 2, and its validity for k = 3 has been shown using the

theory of loop characters (see Theorem 5 below).

In Sections 2 and 3 we prove Theorems 2, 3, and Corollary 4.
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Theorem 2. Conjecture 1 holds for 4-nets constructed from 3× p difference matrices over

cyclic groups of prime order p, that is, for 4-nets of prime order p admitting a central trans-

lation of order p.

Theorem 3. Let Nk be a translation k-net with abelian translation group T = G×G, k≥ 2,
and let Nk−1 be any (k− 1)-subnet thereof. Let Fp be a field of prime order p, and let A be

the augmentation ideal of the group algebra Fp[G]. Then

rankp Nk − rankp Nk−1 ≥ dimAk−1.

Corollary 4. Conjecture 1 holds for translation nets with abelian translation groups.

The values dimAk−1 are determined by Jennings (1941); see Theorem 11 below. In case

k = 3, the lower bound of Theorem 3 holds with equality since the subgroup G2 = 〈[G,G], Gp〉
of Theorem 11 coincides with the subloop K of Theorem 5. It is hoped that these results

may generalize to other nets without the assumption of translations, after replacing group

algebras by loop algebras; see Bruck (1944). We are encouraged in this direction by the fact

that many of the relevant facts concerning group algebras, including parts of Theorem 11

below, would seem to extend to loop algebras.

The following five additional results are shown in Moorhouse (1990); our reference for

loop theory is Bruck (1958).

Theorem 5. Let G be a loop of order n, and let N be the corresponding 3-net. Let p be a

prime such that pe
∣∣∣∣n (meaning that pe is the highest power of p dividing n). Then

rankp N = 3n− 2− s ≥ 3n− 2− e

where ps = [G : K] and K is the unique minimal normal subloop of G such that G/K is an

elementary abelian p-group.
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Corollary 6. Let N be a 3-net of order n ≡ 2 mod 4. If N is extendable to a 4-net, then

rank2 N = 3n− 2.

A 3-net is cyclic if it is coördinatized by a cyclic group, or equivalently, if it is obtainable

from a Latin square in which all rows are cyclic shifts of the first row.

Theorem 7. Let G be a loop of order n, with corresponding 3-net N .

(i) Suppose that n is squarefree (that is, n is a product of distinct primes), or that G is a

nilpotent group. Then N is cyclic if and only if rankp N = 3n− 3 for every prime p
∣∣n.

(ii) Suppose that G is a nilpotent loop. Then G is generated by a single element, if and only

if rankp N ≥ 3n− 3 for every prime p
∣∣n.

Theorem 8. An explicit basis for the Fp-code of AG(2, p) is obtained by choosing all p lines

of some parallel class, followed by any p−1 lines from any other parallel class, plus any p−2
lines from yet another parallel class, and so on, finally taking 0 lines from the last remaining

parallel class; this gives 1
2p(p+1) lines in all. In particular, Conjecture 1 holds with equality

in the case of subnets of AG(2, p).

Actually the final assertion of Theorem 8 is obtainable from Corollary 4 without appeal to

the proof in Moorhouse (1990).

Our main interest in Conjecture 1 is due to the following:

1.9 Theorem. Suppose that Π is a projective plane of order n, where n is squarefree or

n ≡ 2 mod 4. If Conjecture 1 holds for n, then n is prime and Π is Desarguesian.

2. 4-NETS OF PRIME ORDER WITH TRANSLATIONS

A central (or ‘strict’) translation of a net N is an automorphism of N preserving each

parallel class of N , and fixing every line in some parallel class (called the direction of the

translation). We show how nets with such strict translations may be constructed; see also

Beth et al. (1985), Jungnickel (1990).
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Suppose that G is a group of order n, and that σ3, σ4, . . . , σk : G → G are bijections

such that whenever i �= j, the map g �→ σi(g)σj(g)−1 is also a bijection G → G. Then the

sets
�1g = {(g, y) : y ∈ G}, g ∈ G,

�2g = {(x, g) : x ∈ G}, g ∈ G,

�ig = {(x, gσi(x)) : x ∈ G}, 3 ≤ i ≤ k, g ∈ G

form a k-net N of order n on the point set P = G × G. For h ∈ G define τh : P → P by

τh(x, y) = (x, hy). Then τh maps �1g �→ �1g, �ig �→ �i,hg for 2≤ i≤ k, and thus N admits a

group of central translations whose common direction is the first parallel class {�1g : g ∈ G}.
Moreover every net with the latter property is constructible in this way. It is customary to

specify N by the difference matrix




1 1 · · · 1
σ3(g1) σ3(g2) · · · σ3(gn)
σ4(g1) σ4(g2) · · · σ4(gn)
...

...
...

σk(g1) σk(g2) · · · σk(gn)




where g1, g2, . . . , gn are the elements of G in some order (see Beth et al. (1985), Jungnickel

(1990)); however, the language of difference matrices will not be required for our presentation.

We also remark that there is no loss of generality in assuming that σ3(g) = g for all g ∈ G,

and σi(g1)= g1=1 for all i.

We develop some notation which will be useful in handling codes of such nets. Let F
P
p

be the n2-dimensional vector space over Fp consisting of all functions P → Fp. To each line

�ig of N there corresponds the characteristic function

χig : P → Fp, χig(x, y) =
{
1, (x, y) ∈ �ig,
0, (x, y) /∈ �ig.

We may define the Fp-code of N as

Cp(N ) =
k∑

i=1

∑
g∈G

Fpχig,

which is the subspace of F
P
p spanned by the characteristic functions of the line sets. The

p-rank of N is then

rankp N = dim Cp(N ).
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If 1 ≤ i0 ≤ k, then a (k− 1)-subnet Nk−1 ⊂ N is formed by excluding the i0-th parallel class

of N , and the Fp-code of Nk−1 is

Cp(Nk−1) =
∑

1≤i≤k

i �=i0

∑
g∈G

Fpχig.

Clearly we have:

Lemma 10. With the above notation, we have rankp N − rankp Nk−1 = n − dimV, where
V is the vector space consisting of all sequences (ag : g ∈ G), where ag ∈ Fp, such that∑
g∈G

agχi0g ∈ Cp(Nk−1).

For a group G, recall that the augmentation ideal of the group algebra Fp[G] is the

ideal defined by

A =
{ ∑

g∈G

agg ∈ Fp[G] :
∑

g∈G

ag = 0
}
.

The j-th power of A is the ideal spanned over Fp by

{
(1− x1)(1− x2) . . . (1− xj) : x1, x2, . . . , xj ∈ G

}
.

In case G is cyclic of order p, it is well known that A is nilpotent, and that the only ideals

of Fp[G] are those in the chain

Fp[G] ⊃ A ⊃ A2 ⊃ . . . ⊃ Ap−1 ⊃ Ap = 0,

so Ap−j is the unique ideal of Fp[G] of dimension j. It also follows that AnnAj = Ap−j

where AnnB = {
α ∈ Fp[G] : αβ = 0 for all β ∈ B}

is the annihilator of an arbitrary ideal

B ⊆ Fp[G].

Proof of Theorem 2. Let G be a cyclic group of prime order p, and let N be 4-net of order

p with a central translation of order p. Thus we may assume that N is constructed as above

with k=4, σ3= identity, σ4=σ, σ(1)=1. Corresponding to the lines �ig defined as above,

we have the characteristic functions

χ1g(x, y) = δx,g, χ2g(x, y) = δy,g, χ3g(x, y) = δgx,y, χ4g(x, y) = δgσ(x),y
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for g ∈ G. With Lemma 10 in mind, for given scalars aig ∈ Fp we define χ =
4∑

i=1

∑
g∈G

aigχig ∈
F
P
p , and suppose that χ = 0. Then for arbitrary x, y ∈ G we have 0 = χ(1, 1) − χ(x, 1) −

χ(1, y) + χ(x, y), or

0 = a3,1 − a3,x−1 − a3,y + a3,x−1y + a4,1 − a4,σ(x)−1 − a4,y + a4,σ(x)−1y .

Or writing αi =
∑

y∈G

ai,yy ∈ Fp[G] for i = 3, 4, we obtain

α3(1− x) + α4(1− σ(x)) =
∑

y∈G

(
a3,y − a3,x−1y + a4,y − a4,σ(x)−1y

)
y

=
(
a3,1 − a3,x−1 + a4,1 − a4,σ(x)−1

) ∑
y∈G

y

∈ Fpγ

for all x ∈ G, where Fpγ = Ap−1 is the one-dimensional ideal of Fp spanned by γ =
∑

g∈G

g ∈
Fp[G]. Since x ∈ G is arbitrary, we may replace x by z or by xz, where x, z ∈ G are both

arbitrary, so that [
α3(1− x) + α4(1− σ(x))

]
x−1 ∈ Fpγ,

α3(1− z) + α4(1− σ(z)) ∈ Fpγ,[
α3(1− xz) + α4(1− σ(xz))

](−x−1
) ∈ Fpγ.

Adding the above relations yields

α4

(
1− σ(x)x−1 − σ(z) + σ(xz)x−1

) ∈ Fpγ

for all x, z ∈ G. This means that α4B ⊆ Fpγ where B ⊂ Fp[G] is the ideal generated by all

expressions of the form

1− σ(x)x−1 − σ(z) + σ(xz)x−1 =
(
1− σ(x)x−1

)(
1− σ(z)

)
+

(
σ(xz)− σ(x)σ(z)

)
x−1

for x, z ∈ G. We may assume that σ(xz) �= σ(x)σ(z) for some x, z ∈ G; otherwise σ ∈ AutG,
in which case as will appear in Section 3, N is a translation 4-net of order p and hence is a

4-subnet of AG(2, p), and the result follows by Corollary 4 (which will be proved in Section

3), or by Theorem 8 (proved in Moorhouse (1990)).

Thus B �⊆ A2 and B ⊆ A, and so by the preceding remarks, we obtain B = A. Now
α4A ⊆ Fpγ is equivalent to α4 ∈ AnnA2 = Ap−2, so by Lemma 10,

rankp N − rankp N3 ≥ p− dimAp−2 = p− 2
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where N3 is the 3-subnet of N formed by omitting the fourth parallel class. But rankp N3 =

3p − 3 by Theorem 5, and so rankp N ≥ 4p − 5. Now for any 3-subnet N ′ ⊂ N we have

rankp N ′ ≤ 3p− 2 by the remarks following Conjecture 1, and so

rankp N − rankp N ′ ≥ (4p− 5)− (3p− 2) = p− 3

as required.

3. TRANSLATION NETS

A net N is a translation net if it admits an automorphism group T (called a translation

group of N ) which acts regularly (= sharply transitively) on the points of N , and preserving
each parallel class of N . For a given translation net N , the translation group T need not

be abelian, or even unique. We describe how the most general translation nets with abelian

translation groups are constructed, then proceed to prove Theorem 3 and Corollary 4. For

more on translation nets, see Beth et al. (1985), Jungnickel (1990).

Suppose that G is a group of order n, with bijections σ3, σ4, . . . , σk as in Section 2,

with corresponding k-net N of order n defined as before. But now assume additionally

that σ3, σ4, . . . , σk are homomorphisms, so that σ3, σ4, . . . , σk ∈ AutG. For u, v ∈ G

define τuv : P → P by τuv(x, y) = (ux, vy). Then τuv maps �1g �→ �1,ug, �2g �→ �2,vg,

�ig �→ �i,vgσi(u)−1 for 3 ≤ i ≤ k, so that N is a translation net with translation group

T = {τuv : u, v ∈ G} ∼= G×G. This construction does not yield the most general translation

net; however every translation net with an abelian translation group is constructible in this

way. Indeed, in proving Theorem 3 we shall assume thatG is abelian, although this hypothesis

is not required in the foregoing construction of N , and so perhaps might be avoidable.
In order for Theorem 3 to be useful, for a given group algebra Fp[G] we shall require a

knowledge of the dimensions of various powers of its augmentation ideal. Fortunately these

dimensions may be derived from G by purely group-theoretic methods, as shown by Jennings

(1941). Although the following result is stated in Jennings (1941) and Passman (1977) only

for p-groups (when A is nilpotent, and coincides with the radical of Fp[G]), nevertheless the

following holds for general n, by the same proof:
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Theorem 11 (Jennings, 1941). For i ≥ 1 define Gi =
{
g ∈ G : g − 1 ∈ Ai

}
. Then the

following statements hold:

(i) G = G1 ≥ G2 ≥ G3 ≥ . . . is a sequence of characteristic subgroups of G, such that

Gi/Gi+1 is an elementary abelian p-group.

(ii) The subgroups Gi may be recursively determined by G1 = G and Gi = 〈[G,Gi−1], G
p
�i/p�〉

for i ≥ 2, where �i/p� is the least integer ≥ i/p, and G p
�i/p� consists of all p-th powers of

the elements of G�i/p�.

(iii) dim
(Aj/Aj+1

)
equals the coefficient of Xj in the expansion of

∞∏
i=1

(
1 +X i +X2i + . . .+X(p−1)i

)ei

where pei = |Gi/Gi+1|.
Observe that the above product is finite since ei = 0 for i sufficiently large.

We shall also require the following, in which AnnB is the annihilator of B:

3.2 Lemma. If B is any ideal of Fp[G], then dimB + dim AnnB = n.

Proof. AnnB is the orthogonal complement of B with respect to the nondegenerate symmetric
bilinear form

( ∑
g∈G

agg ,
∑

g∈G

bgg
)
=

∑
g∈G

agbg−1 defined on Fp[G].

Actually, Lemma 3.2 will be required only for B a power of the augmentation ideal A, in
which case an explicit basis may be obtained for AnnB if desired; see Hill (1970).

Proof of Theorem 3. The proof is trivial for k = 2; hence assume that k ≥ 3. We begin with

the same steps as the proof of Theorem 2 in Section 2. The characteristic functions of the

line sets are

χ1g(x, y) = δx,g, χ2g(x, y) = δy,g, χig(x, y) = δgσi(x),y

for 3≤ i≤ k; g ∈G. We may assume that Nk−1 consists of all but the k-th parallel class

{�kg : g ∈ G}; this is more evident from Beth et al. (1985) and Jungnickel (1990) than from

the latter expressions for the χig’s, which unfortunately make the first two parallel classes

appear different by construction. For given scalars aig ∈ Fp we define χ =
k∑

i=1

∑
g∈G

aigχig ∈ F
P
p ,

and suppose that χ = 0. Then for arbitrary x, y ∈ G we have

0 = χ(1, 1)− χ(x, 1)− χ(1, y) + χ(x, y)

=
k∑

i=3

(
ai,1 − ai,σi(x)−1 − ai,y + ai,σi(x)−1y

)
.
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Letting αi =
∑

y∈G

aiyy ∈ Fp[G], we obtain

k∑
i=3

αi

(
1− σi(x)

)
=

k∑
i=3

∑
y∈G

(
ai,y − ai,σi(x)−1y

)
y =

( k∑
i=3

(
ai,1 − ai,σi(x)−1

)) ∑
y∈G

y ∈ Fpγ

for all x ∈ G. Replacing x by x1, x2 or x1x2 ∈ G gives

k∑
i=3

αi

(
1− σi(x1)

)
σ3(x1)−1 ∈ Fpγ,

k∑
i=3

αi

(
1− σi(x2)

) ∈ Fpγ,

k∑
i=3

αi

(
1− σi(x1x2)

)(−σ3(x1)−1
) ∈ Fpγ.

Adding these relations yields

k∑
i=4

αi

(
1− σ3(x1)−1σi(x1)

)(
1− σi(x2)

) ∈ Fpγ

for all x1, x2 ∈ G. Again replacing x2 by x2, x3, x2x3 ∈ G and combining yields

k∑
i=5

αi

(
1− σ3(x1)−1σi(x1)

)(
1− σ4(x2)−1σi(x2)

)(
1− σi(x3)

) ∈ Fpγ

for all x1, x2, x3 ∈ G. Continuing in this way, we eventually obtain

αk

(
1− σ3(x1)−1σk(x1)

)(
1− σ4(x2)−1σk(x2)

)
. . .

. . .
(
1− σk−1(xk−3)−1σk(xk−3)

)(
1− σk(xk−2)

) ∈ Fpγ

for all x1, x2, . . . , xk−2 ∈ G. Since the maps G → G, x �→ σi(x)−1σk(x) are bijective for

3≤ i< k, we have αkAk−2 ⊆ Fpγ, or equivalently, αk ∈ AnnAk−1. By Lemma 3.2 we have

dim AnnAk−1 = n− dimAk−1, and so the result follows by Lemma 10.

Proof of Corollary 4. By assumption, p2 � ∣∣ n. By Theorem 11, we have dimAk−1 = max {n−
k + 1, n − ps} where ps = p if G has a normal subgroup of index p; ps = 1 otherwise. The

result follows from Theorem 3.
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