Some p-ranks Related to Finite Geometric Structures

G. ERIC MOORHOUSE ${ }^{\dagger}$ Dept. of Mathematics, University of Wyoming, Laramie WY 82071-3036, U.S.A. moorhous@UWyo.edu

Dedicated to Professor T. G. Ostrom

Abstract

The p-rank of the point-hyperplane incidence matrix A of $P G\left(n, p^{e}\right)$ is well-known. Let A_{S} be the submatrix formed by the rows of A indexed by an arbitrary subset S of the points. We show that the p-rank of A_{S} is related to the Hilbert function (or a modification thereof) for $\mathcal{I}(S)$, the ideal of $F\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ generated by all homogeneous polynomials vanishing on S. This leads to a determination of $\operatorname{rank}_{p}\left(A_{S}\right)$ in case S is a naturally embedded Grassmann variety. The cases when S is a quadric or a Hermitian variety have been treated by Blokhuis and the author [2] and the author [10] respectively.

1 HILBERT FUNCTIONS AND p-RANKS

Let $F=G F(q), q=p^{e}$, and let A be the incidence matrix of points versus hyperplanes of $P G(n, F)$. Thus A is a square matrix of size $N=\left(q^{n+1}-1\right) /(q-1)$ having entries 1 and 0 corresponding to incident and non-incident point-hyperplane pairs. Now let A_{S} be an $s \times N$ submatrix of A, whose rows are indexed by an s-subset S of the points of $P G(n, F)$. The intent of Theorem 1 is to describe a general approach to finding the p-rank of A_{S}. This approach makes use of a modification of the Hilbert function of $\mathcal{I}(S)$, the ideal in the polynomial ring $R:=$ $F\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ generated by all homogeneous polynomials which vanish on S. Much of our terminology and background results are standard in algebraic geometry; see eg. [7].

For each integer $k \geq 0$, let R_{k} be the F-subspace of R consisting of all homogeneous polynomials of degree k. The natural action of $G:=G L(n+1, F)$ on

[^0]$R_{1} \cong F^{n+1}$ extends uniquely to an action of G on the algebra $R=\bigoplus_{k \geq 0} R_{k}$, and each R_{k} is an $F G$-submodule. Let $\mathfrak{I} \subseteq R$ be a homogeneous ideal, i.e. the ideal \mathfrak{I} is generated by homogeneous polynomials. The Hilbert function of \mathfrak{I} is defined by
$$
h_{\mathfrak{I}}(k)=\operatorname{dim}\left(R_{k} / \mathfrak{I} \cap R_{k}\right)=\binom{n+k}{n}-\operatorname{dim}\left(\mathfrak{I} \cap R_{k}\right) .
$$

It is known that for all sufficiently large k, the function $h_{\mathfrak{I}}(k)$ agrees with a polynomial $P_{\mathfrak{I}}(k)$, called the Hilbert polynomial of \mathfrak{I}. Over algebraically closed fields, Hilbert polynomials provide a precise algebraic definition of the degree and dimension of projective varieties.

Denote by R_{k}^{\dagger} the subspace of R_{k} spanned by all monomials $X_{0}^{\alpha_{0}} X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}$ where $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ are non-negative integers summing to k such that the multinomial coefficient $\binom{k}{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}}$ is not divisible by p. This is more than an F subspace; as shown in [2], it is an $F G$-submodule of R_{k}. Note that the inclusion $R_{k}^{\dagger} \subseteq R_{k}$ is proper iff $k \geq p$. By Lucas' Theorem (see Section 2) we have

$$
\operatorname{dim}\left(R_{k}^{\dagger}\right)=\prod_{\ell=0}^{e-1}\binom{n+k_{\ell}}{n}
$$

where the p-adic expansion of k is given by $k=\sum_{\ell=0}^{e-1} k_{\ell} p^{\ell}, 0 \leq k_{\ell} \leq p-1$. In particular, $\operatorname{dim}\left(R_{q-1}^{\dagger}\right)=\binom{p+n-1}{n}^{e}=\left(\operatorname{dim} R_{p-1}\right)^{e}$. We modify the Hilbert function of \mathfrak{I} by defining

$$
h_{\mathfrak{I}}^{\dagger}(k)=\operatorname{dim}\left(R_{k}^{\dagger} / \mathfrak{I} \cap R_{k}^{\dagger}\right) .
$$

In general, the values of $h_{\mathfrak{J}}^{\dagger}(k)$ for $k \gg 0$ are not given by any polynomial.
Let G_{S} be the subgroup of $G=G L(n+1, F)$ preserving the point set S in $P G(n, F)$. As explained in Section 5, the row and column spaces of A_{S} over F are naturally contragredient $F G_{S}$-modules. Similarly, the row and column spaces of $J-A_{S}$ are naturally contragredient $F G_{S}$-modules, where J is an $s \times N$ matrix of 1's. In Section 3 we prove

THEOREM 1

(i) $\operatorname{rank}_{p}\left(J-A_{S}\right)=h_{\mathcal{I}(S)}^{\dagger}(q-1)$. Moreover, the column space $\operatorname{Col}\left(J-A_{S}\right)$ is isomorphic to $R_{q-1}^{\dagger} / \mathcal{I}(S) \cap R_{q-1}^{\dagger}$ as an $F G_{S}$-module.
(ii) $\operatorname{rank}_{p} A_{S}$ differs from $\operatorname{rank}_{p}\left(J-A_{S}\right)$ by at most one. If $|H \cap S| \equiv 1 \bmod p$ for every hyperplane H of $P G(n, F)$, then $\operatorname{rank}_{p} A_{S}=1+\operatorname{rank}_{p}\left(J-A_{S}\right)$, and $\operatorname{Col}\left(A_{S}\right) \cong\langle\mathbf{1}\rangle \oplus \operatorname{Col}\left(J-A_{S}\right)$ where $\langle\mathbf{1}\rangle$ is a trivial $F G_{S^{-}}$module of dimension one.

We are most interested in the case S is a 'discrete variety' of the form $\mathcal{Z}(\mathfrak{I})$, i.e. the set of points of $P G(n, F)$ where a given homogeneous ideal \mathfrak{I} vanishes. Although the Hilbert function of \mathfrak{I} is often readily available, care is required in applying Theorem 1 since in general, the inclusion $\mathcal{I}(S) \supseteq \mathfrak{I}$ may be proper. The radical of \mathfrak{I} is the ideal $\sqrt{\mathfrak{I}}:=\left\{f \in R: f^{k} \in \mathfrak{I}\right.$ for some positive integer $\left.k\right\} \subseteq R$. Clearly

$$
\mathcal{I}(S)=\mathcal{I}(\mathcal{Z}(\mathfrak{I})) \supseteq \sqrt{\mathfrak{I}} \supseteq \mathfrak{I}
$$

Since F is not algebraically closed, $\mathcal{I}(\mathcal{Z}(\mathfrak{I}))$ is typically larger than $\sqrt{\mathfrak{I}}$ (considering that for all $\mathfrak{I}, X_{i}^{q} X_{j}-X_{i} X_{j}^{q}$ vanishes on $P G(n, F)$ for all $\left.i \neq j\right)$.

DEFINITION \mathfrak{I} satisfies $\operatorname{FFN}(k)$ (Finite Field Nullstellensatz of degree k) if every $f \in R_{k}$ which vanishes on $\mathcal{Z}(\mathfrak{I})$, belongs to \mathfrak{I}.

In many cases \mathfrak{I} satisfies $\operatorname{FFN}(q-1)$, which implies that $h_{\mathcal{I}(\mathcal{Z}(\mathfrak{I}))}^{\dagger}(q-1)=h_{\mathfrak{I}}^{\dagger}(q-$ 1) and Theorem 1 applies. Moreover, $h_{\mathfrak{J}}^{\dagger}(q-1) \leq\left(h_{\mathfrak{I}}(p-1)\right)^{e}$ (see Lemma 2) with equality in many cases, including Examples 1.1, 1.2, 1.4 below.

1.1 Example: Projective Spaces

Let $\mathfrak{I}=(0), S=\mathcal{Z}(0)=P G\left(n, p^{e}\right)$. Then

$$
\operatorname{rank}_{p} A_{S}=\operatorname{rank}_{p} A=h_{(0)}^{\dagger}(q-1)+1=\left(h_{(0)}(p-1)\right)^{e}+1=\binom{p+n-1}{n}^{e}+1
$$

This is the well-known result of Goethals and Delsarte [6], MacWilliams and Mann [9], and Smith [11]; see also [3]. In this case, $\operatorname{Col}(A) \cong R_{q-1}^{\dagger} \oplus\langle\mathbf{1}\rangle$ as $F G$-modules.

1.2 Example: Quadrics

Let $Q(X)=Q\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ be a quadratic form, i.e. $Q(X) \in R_{2}$. We will assume that the corresponding bilinear form $f(X, Y):=Q(X+Y)-Q(X)-Q(Y)$ is nondegenerate. Thus the quadric $S:=\mathcal{Z}(Q)$ is nondegenerate, and if $p=2$ then n is odd. Homogeneous polynomials of degree $k \geq 2$ belonging to the principal ideal $\mathfrak{I}=(Q)$ are precisely those polynomials of the form $Q(X) f(X)$ where $f \in R_{k-2}$, so

$$
h_{(Q)}(k)=\operatorname{dim}\left(R_{k}\right)-\operatorname{dim}\left(R_{k-2}\right)=\binom{n+k}{n}-\binom{n+k-2}{n} .
$$

In [2] it is also shown that (Q) satisfies $\operatorname{FFN}(q)$ for $n \geq 4$, and $\operatorname{FFN}(q-1)$ for $n=3$, and that consequently

$$
\operatorname{rank}_{p} A_{\mathcal{Z}(Q)}=\left[\binom{n+p-1}{n}-\binom{n+p-3}{n}\right]^{e}+1
$$

for $n \geq 3$. This statement fails for $n \leq 2$, as does $\operatorname{FFN}(q-1)$.

1.3 Example: Hermitian Varieties

Suppose $q=p^{2 d}$ and let $U(X)=\sum_{i=0}^{n} \sum_{j=0}^{n} a_{i j} X_{i} X_{j}^{p^{d}}$ be a nondegenerate unitary form; thus $a_{j i}=a_{i j}^{p^{d}}$ and $\operatorname{det}\left[a_{i j}\right] \neq 0$. Then $S:=\mathcal{Z}(U)$ is a nondegenerate Hermitian variety. In [10] it is shown that the principal ideal (U) satisfies $\operatorname{FFN}(q)$ for $n \neq 3$, and

$$
\operatorname{rank}_{p} A_{\mathcal{Z}(U)}=h_{(U)}^{\dagger}(q-1)+1=\left[\binom{n+p-1}{n}^{2}-\binom{n+p-2}{n}^{2}\right]^{d}+1
$$

for all $n \geq 1$.

1.4 Example: Grassmann Varieties

Let $V=F^{\nu+1}$. Every subspace $U \leq V$ of dimension $r+1$ gives rise to a onedimensional subspace $\bigwedge^{r+1} U \leq \bigwedge^{r+\overline{1}} V$. This defines an injective mapping from the collection of projective r-subspaces of $P G(\nu, F)$ to points of $P G\left(\bigwedge^{r+1} V\right)=$ $P G(n, F)$ where $n=\binom{\nu+1}{r+1}-1$. The image of this mapping is the Grassmann variety $S=G_{r, \nu}(F)$, a discrete variety of the form $S=\mathcal{Z}(\mathfrak{I})$ where \mathfrak{I} is the ideal generated by a certain collection of homogeneous quadratic polynomials known as van der Waerden syzygies. In Section 4, we show that \mathfrak{I} satisfies $\operatorname{FFN}(q-1)$, and consequently

THEOREM 2 If $S=\mathcal{Z}(\mathfrak{I})$ is the Grassmann variety $G_{r, \nu}\left(p^{e}\right)$ naturally embedded in $P G\left(n, p^{e}\right)$ where $n=\binom{\nu+1}{r+1}-1$, then $\operatorname{rank}_{p} A_{S}=\delta^{e}+1$ where $\delta=h_{\mathfrak{I}}(p-1)$ is given by the formula

$$
h_{\mathfrak{I}}(k)=\prod_{j=0}^{r} \frac{(\nu+k-r+j)!j!}{(\nu-r+j)!(k+j)!}
$$

For example, the Grassmann variety $G_{0, n}\left(p^{e}\right)$ coincides with $P G\left(n, p^{e}\right)$, and the p-rank value from Theorem 2 agrees with that obtained in Example 1.1. Also, the Grassmann variety $G_{1,3}\left(p^{e}\right)$ coincides with the Klein quadric in $P G\left(5, p^{e}\right)$, and the value $\operatorname{rank}_{p} A_{S}=\left[p(p+1)^{2}(p+2) / 12\right]^{e}+1$ from Theorem 2 agrees with the value given in Example 1.2.

2 STANDARD MONOMIALS

The goal of this section is to provide combinatorial interpretations of the Hilbert function values $h_{\mathfrak{I}}(k)$ and $h_{\mathfrak{J}}^{\dagger}(k)$ as the cardinalities of certain sets of monomials. In many cases, including Examples 1.2-1.4 above, this leads to explicit computation of $h_{\mathfrak{J}}^{\dagger}(q-1)$ and hence the desired p-rank values; in other cases, they may at least provide useful bounds for p-ranks. We require only a few notions from the theory of Gröbner bases, as introduced in [12], [13]; several broader texts on the subject are now available, including [5].

Let $X=\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ be an $(n+1)$-tuple of indeterminates, and let $R=$ $K[X]=K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ be the polynomial ring over a fixed arbitrary field K. A monomial is a polynomial of the form $X_{0}^{\alpha_{0}} X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}} \in R$ for some non-negative integers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ (note that we require coefficient 1). The set of monomials is a multiplicative submonoid $\mathcal{M} \subset R$. A monomial ordering is a total ordering $<$ on \mathcal{M} such that
(i) $(\mathcal{M},<)$ is well-ordered with least element 1 , and
(ii) for all $m, m^{\prime}, m^{\prime \prime} \in \mathcal{M}, m<m^{\prime} \Rightarrow m^{\prime \prime} m<m^{\prime \prime} m^{\prime}$.

The most well-known monomial ordering, and the only one we shall require, is the lexicographical ordering defined by

$$
X_{0}^{\alpha_{0}} X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}<X_{0}^{\beta_{0}} X_{1}^{\beta_{1}} \cdots X_{n}^{\beta_{n}} \Longleftrightarrow \quad \begin{array}{r}
\text { there exists } i_{0} \text { such that } \alpha_{i_{0}}<\beta_{i_{0}} \\
\text { and } \alpha_{i}=\beta_{i} \text { whenever } i<i_{0} .
\end{array}
$$

For any nonzero polynomial $f \in R$, let $\operatorname{Init}(f)$ denote the initial monomial of f, i.e. the largest monomial with respect to $<$ which appears in f. For any subset $B \subseteq R$, define $\operatorname{Init}(B):=\{\operatorname{Init}(f): 0 \neq f \in B\}$.

Now let $\mathfrak{I} \subseteq R$ be an ideal. A monomial $m \in \mathcal{M}$ is standard (with respect to \mathfrak{I}) if $m \notin \operatorname{Init}(\mathfrak{I})$. Let $k \geq 0$, and let R_{k} be the k-homogeneous component of R. We immediately have

LEMMA $1 \quad R_{k}=\left(\mathfrak{I} \cap R_{k}\right) \oplus\left\langle\mathcal{S M}_{\mathfrak{I}}(k)\right\rangle$ where $\mathcal{S M}_{\mathfrak{I}}(k)$ is the set of standard monomials of degree k. In particular, $h_{\mathfrak{I}}(k)=\left|\mathcal{S M}_{\mathfrak{I}}(k)\right|$.

Now suppose the field K (not necessarily finite) has prime characteristic p. Given an integer $k \geq 0$, choose $e \geq 0$ such that $p^{e}>k$. Then k has a unique p-adic expansion of the form $k=k_{0}+k_{1} p+k_{2} p^{2}+\cdots+k_{e-1} p^{e-1}$ where $0 \leq k_{\ell} \leq$ $p-1$. As before, let R_{k}^{\dagger} be the subspace of R_{k} spanned by all monomials $m(X)=$ $X_{0}^{\alpha_{0}} X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}$ such that the multinomial coefficient

$$
\binom{k}{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}}:= \begin{cases}\frac{k!}{\alpha_{0}!\alpha_{1}!\cdots \alpha_{n}!}, & \alpha_{\ell} \geq 0, \sum \alpha_{\ell}=k \\ 0, & \text { otherwise }\end{cases}
$$

is not divisible by p (and so in particular, $\operatorname{deg}(m)=\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n}=k$). Lucas' Theorem (see [3], [2]) states that

$$
\binom{k}{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}} \equiv \prod_{\ell=0}^{e-1}\binom{k_{\ell}}{\alpha_{0 \ell}, \alpha_{1 \ell}, \cdots, \alpha_{n \ell}} \quad \bmod p
$$

where $\alpha_{i}=\sum_{\ell} \alpha_{i \ell} p^{\ell}, 0 \leq \alpha_{i, \ell} \leq p-1$. It follows that the monomial $m(X)$ belongs to R_{k}^{\dagger} if and only if it is expressible in the form

$$
m(X)=\prod_{\ell=0}^{e-1} m_{\ell}(X)^{p^{\ell}}
$$

where $m_{\ell}(X)$ is a monomial of degree k_{ℓ}. In particular,

$$
\operatorname{dim}\left(R_{k}^{\dagger}\right)=\prod_{\ell=0}^{e-1}\binom{n+k_{\ell}}{n}
$$

We say the monomial $m(X)$ is p-standard if each of the monomials m_{ℓ} (as above) is standard.

LEMMA 2 Let $k \geq 0$ be an integer, with p-adic coefficients k_{ℓ} as above. Then
(i) $R_{k}^{\dagger}=\left(\mathfrak{I} \cap R_{k}^{\dagger}\right)+\left\langle\mathcal{S M}_{\mathfrak{I}}^{(p)}(k)\right\rangle$ where $\mathcal{S M}_{\mathfrak{I}}^{(p)}(k)$ is the set of p-standard monomials of degree k.
(ii) $h_{\mathfrak{I}}^{\dagger}(k) \leq\left|\mathcal{S M}_{\mathfrak{I}}^{(p)}(k)\right|=\prod_{\ell=0}^{e-1} h_{\mathfrak{I}}\left(k_{\ell}\right)$.
(iii) $h_{\mathfrak{J}}^{\dagger}(q-1) \leq\left(h_{\mathfrak{I}}(p-1)\right)^{e}$.

Proof: We must show that every monomial in R_{k}^{\dagger}, but not in \mathfrak{I}, is p-standard. Accordingly, suppose $m(X)=\prod_{\ell=0}^{e-1} m_{\ell}(X)^{p^{\ell}}$ for some monomials $m_{\ell} \in R_{k_{\ell}}$. If m is not p-standard, then for some ℓ_{0} and some $f \in R_{k_{\ell_{0}}}$ we have $m_{\ell_{0}}=\operatorname{Init}(f)$. But then since $\operatorname{char}(K)=p$, the polynomial

$$
f(X)^{p^{\ell_{0}}} \prod_{\ell \neq \ell_{0}} m_{\ell}(X)^{p^{\ell}}
$$

lies in $\mathfrak{I} \cap R_{k}^{\dagger}$, with initial monomial $m \in \operatorname{Init}\left(\mathfrak{I} \cap R_{k}^{\dagger}\right)$. This proves (i), and the remaining conclusions clearly follow as well.

LEMMA 3 Let $k \geq 0$. Then
(i) $h_{\mathcal{I}(\mathcal{Z}(\mathfrak{I}))}(k) \leq h_{\mathfrak{I}}(k)$ and $h_{\mathcal{I}(\mathcal{Z}(\mathfrak{J}))}^{\dagger}(k) \leq h_{\mathfrak{J}}^{\dagger}(k)$.
(ii) If \mathfrak{I} satisfies $\operatorname{FFN}(k)$, then equality holds in (i).
(iii) Suppose the ideal \mathfrak{I} is prime. Then \mathfrak{I} satisfies $\operatorname{FFN}(k)$ iff \mathfrak{I} satisfies FFN (ℓ) for all $\ell \leq k$, iff $h_{\mathcal{I}(\mathcal{Z}(\mathfrak{I}))}(k)=h_{\mathfrak{I}}(k)$, iff $h_{\mathcal{I}(\mathcal{Z}(\mathfrak{I}))}(\ell)=h_{\mathfrak{I}}(\ell)$ for all $\ell \leq k$.

Proof: (i) and (ii) are clear. Suppose \mathfrak{I} is a prime ideal satisfying $\operatorname{FFN}(k)$, and let $0 \leq \ell<k$. For $i=0,1,2, \ldots, n$, the polynomial $X_{i}^{k-\ell} f\left(X_{0}, \ldots, X_{n}\right) \in R_{k}$ vanishes on $\mathcal{Z}(\mathfrak{I})$. If $f \notin \mathfrak{I}$ then $X_{0}, X_{1}, \ldots, X_{n} \in \mathfrak{I}$ and $\mathfrak{I} \supset R_{k} \ni f$, a contradiction. Hence I satisfies $\mathrm{FFN}(\ell)$, and (iii) follows.

The following is well-known.
LEMMA 4 Suppose $f \in R$ has degree $\leq q-1$ in each of $X_{0}, X_{1}, \ldots, X_{n}$. If f vanishes on F^{n+1} then $f=0$.

Proof: If $\sum_{\alpha} a_{\alpha_{0} \alpha_{1} \cdots \alpha_{n}} x_{0}^{\alpha_{0}} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}=0$ (sum over $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \in\{0,1$, $\left.2, \ldots, q-1\}^{n+1}\right)$ for all $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in F^{n+1}$, then the vector $\left(a_{\alpha}\right)_{\alpha}$ lies in the left null space of the $q^{n+1} \times q^{n+1}$ matrix with (α, x)-entry equal to $x_{0}^{\alpha_{0}} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$. By [2, Lemma 2.3], the latter matrix is nonsingular, and so $\left(a_{\alpha}\right)=0$.

3 INCIDENCE MATRICES

Most of this section can be found in [2] and [10], either directly or implicitly. In particular, the following is shown in [2]. Let $F^{k \times \ell}$ denote the vector space of $k \times \ell$ matrices over $F=G F(q)$, and let A be the incidence matrix of $P G(n, F)$ as in Section 1.

LEMMA $5 \quad \operatorname{Col}\left(J_{N, N}-A\right) \cong R_{q-1}^{\dagger}$ as $F G$-modules, where $G=G L(n+1, F)$.
We sketch the proof of Lemma 5, describing the natural isomorphism $R_{q-1}^{\dagger} \rightarrow$ $\operatorname{Col}\left(J_{N, N}-A\right)$, since this is useful in verifying Theorem 1. For each $f(X)=$ $f\left(X_{0}, X_{1}, \ldots, X_{n}\right) \in R_{q-1}^{\dagger}$ and $x \in F^{n+1}$, the value of $f(x) \in F$ clearly depends only on the subspace $\langle x\rangle$. So we have a well-defined $F G$-homomorphism $\varphi: R_{q-1}^{\dagger} \rightarrow F^{N \times 1}$ which maps f to the column vector having values $f(x)$ as $\langle x\rangle$ ranges over the one-dimensional subspaces of F^{n+1} (i.e. the points of $P G(n, F)$). For any nonzero $\ell(X) \in R_{1}, \varphi\left(\ell^{q-1}\right)$ is the column of $J_{N, N}-A$ corresponding to the hyperplane $\mathcal{Z}(\ell)$. However, $\operatorname{Col}\left(J_{N, N}-A\right)$ and R_{q-1}^{\dagger} both have dimension $\binom{p+n-1}{n}^{e}$. Therefore $R_{q-1}^{\dagger}=\left\langle\ell(X)^{q-1}: \ell \in R_{1}\right\rangle$ and $\varphi: R_{q-1}^{\dagger} \rightarrow \operatorname{Col}\left(J_{N, N}-A\right)$ is the required isomorphism.

Now let $\pi_{S}: F^{N \times 1} \rightarrow F^{s \times 1}$ be the projection onto the coordinates corresponding to the points of S. This gives rise to an exact sequence of $F G_{S}$-modules:

$$
0 \longrightarrow \mathcal{I}(S) \cap R_{q-1}^{\dagger} \longrightarrow R_{q-1}^{\dagger} \xrightarrow{\pi_{S O \varphi}} \operatorname{Col}\left(J_{s, N}-A_{S}\right) \longrightarrow 0
$$

This proves Theorem 1(i).
Since $\operatorname{rank}_{p}\left(J_{s, N}\right)=1$, it is clear that $\operatorname{rank}_{p} A_{S}$ differs from $\operatorname{rank}_{p}\left(J_{s, N}-A_{S}\right)$ by at most 1. Now suppose that $|H \cap S| \equiv 1 \bmod p$ for every hyperplane H of $P G(n, F)$. Then the sum of the rows of A_{S} (modulo p) equals $\mathbf{1}=(1,1, \ldots, 1) \in$ $F^{1 \times N}$, so that $\operatorname{Row}\left(A_{S}\right)=\operatorname{Row}\left(J_{s, N}-A_{S}\right)+\langle\mathbf{1}\rangle$. To see that the latter sum is direct, observe that every row of $J_{s, N}-A_{S}$ has sum $q^{n} \equiv 0 \bmod p$, whereas
every row of A_{S} has sum $\equiv 1 \bmod p$. The proof of Theorem 1 follows by taking contragredients (Section 5).

4 GRASSMANN VARIETIES

For terminology and basic properties on Grassmann varieties, we follow [12], [13]; see also [4] for a more general approach.

We develop further the description of Example 1.4, this time over an arbitrary field K, and using explicit coordinates. Consider the vector space $V=K^{\nu+1}$, with standard basis $\left\{e_{0}, e_{1}, \ldots, e_{\nu}\right\}$. Fix an integer $r, 0 \leq r \leq \nu$. By $\bigwedge^{r+1} V$, we mean the K-vector space of dimension $n+1:=\binom{\nu+1}{r+1}$ with basis consisting of the symbols

$$
e_{\tau_{0} \tau_{1} \cdots \tau_{r}}:=e_{\tau_{0}} \wedge e_{\tau_{1}} \wedge \cdots \wedge e_{\tau_{r}}, \quad 0 \leq \tau_{0}<\tau_{1}<\cdots<\tau_{r} \leq \nu
$$

Given an $(r+1)$-dimensional subspace $U \leq V$, let $x=\left[x_{i j}\right]$ be an $(r+1) \times(\nu+1)$ matrix whose rows form a basis for U. Then $\bigwedge^{r+1} U$ is the point (one-dimensional subspace) of $\bigwedge^{r+1} V$ spanned by the vector

$$
\Phi(x):=\sum_{\left[\tau_{0} \tau_{1} \cdots \tau_{r}\right] \in \Lambda} \operatorname{det}\left[\begin{array}{cccc}
x_{0, \tau_{0}} & x_{0, \tau_{1}} & \cdots & x_{0, \tau_{r}} \\
x_{1, \tau_{0}} & x_{1, \tau_{1}} & \cdots & x_{1, \tau_{r}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{r, \tau_{0}} & x_{r, \tau_{1}} & \cdots & x_{r, \tau_{r}}
\end{array}\right] e_{\tau_{0} \tau_{1} \cdots \tau_{r}}
$$

The Grassmann variety $G_{r, \nu}(K) \subseteq P G\left(\bigwedge^{r+1} V\right)=P G(n, K)$ is the set of all such points. To justify the term 'variety', we must find an ideal \mathfrak{I} whose zero set coincides with $G_{r, \nu}(K)$.

Let $X=\left[X_{i j}\right]_{0 \leq i \leq r, 0 \leq j \leq \nu}$ be an $(r+1) \times(\nu+1)$ matrix of indeterminates, and let $K[X]=K\left[X_{00}, \bar{X}_{01}, \ldots, X_{r \nu}\right]$ be the corresponding polynomial algebra over K. As coordinate functions for $\bigwedge^{r+1} V$, we require $\binom{\nu+1}{r+1}$ additional indeterminates, for which purpose we adopt the set Λ consisting of the $\binom{\nu+1}{r+1}$ bracket symbols

$$
\left[\tau_{0} \tau_{1} \cdots \tau_{r}\right], \quad 0 \leq \tau_{0}<\tau_{1}<\cdots<\tau_{r} \leq \nu
$$

Let $K[\Lambda]$ denote the polynomial algebra in these new indeterminates. Let φ : $K[\Lambda] \rightarrow K[X]$ be the unique algebra homomorphism such that

$$
\varphi\left(\left[\tau_{0} \tau_{1} \cdots \tau_{r}\right]\right)=\operatorname{det}\left[\begin{array}{cccc}
X_{0 \tau_{0}} & X_{0 \tau_{1}} & \cdots & X_{0 \tau_{r}} \\
X_{1 \tau_{0}} & X_{1 \tau_{1}} & \cdots & X_{1 \tau_{r}} \\
\vdots & \vdots & \ddots & \vdots \\
X_{r \tau_{0}} & X_{r \tau_{1}} & \cdots & X_{r \tau_{r}}
\end{array}\right]
$$

As described above, the Grassmann variety $G_{r, n}(K) \subseteq P G\left(\bigwedge^{r+1} V\right)=P G(n, K)$ is obtained by evaluating the expression

$$
\Phi(X):=\sum_{\left[\tau_{0} \tau_{1} \cdots \tau_{r}\right] \in \Lambda} \varphi\left(\left[\tau_{0} \tau_{1} \cdots \tau_{r}\right]\right) e_{\tau_{0} \tau_{1} \cdots \tau_{r}}
$$

at constant matrices $\left[x_{i j}\right]$ of full rank. Moreover, $G_{r, n}(K)=\mathcal{Z}(\mathfrak{I})$ where $\mathfrak{I} \subseteq K[\Lambda]$ is the syzygy ideal generated by certain homogeneous quadratic polynomials known as van der Waerden syzygies, as described in [13], [12]; the exact form of these generators will not be required here.

Let $<$ denote the lexicographical order on monomials for each of our sets X, Λ of indeterminates; thus

$$
\begin{gathered}
X_{00}<X_{01}<\cdots<X_{0 \nu}<X_{10}<\cdots<X_{1 \nu}<\cdots<X_{r 0}<\cdots<X_{r \nu} \\
\prod_{i, j} X_{i j}^{\alpha_{i j}}<\prod_{i, j} X_{i j}^{\beta_{i j}} \Longleftrightarrow \begin{array}{c}
\text { there exists }\left(i_{0}, j_{0}\right) \text { such that } \alpha_{i_{0} j_{0}}<\beta_{i_{0} j_{0}} \\
\text { and } \alpha_{i j}=\beta_{i j} \text { whenever } X_{i j}<X_{i_{0} j_{0}}
\end{array} \\
{\left[\tau_{0} \tau_{1} \cdots \tau_{r}\right]<\left[\rho_{0} \rho_{1} \cdots \rho_{r}\right] \Longleftrightarrow \begin{array}{c}
\text { there exists } j_{0} \text { such that } \tau_{j_{0}}<\rho_{j_{0}} \\
\text { and } \tau_{j}=\rho_{j} \text { for all } j<j_{0}
\end{array}}
\end{gathered}
$$

Products of indeterminates in Λ are represented by tableaux, which are arrays having the indeterminates as rows: thus the monomial $T=\prod_{i=1}^{k}\left[\tau_{i 0} \tau_{i 1} \cdots \tau_{i r}\right]$ of degree k may be expressed as

$$
T=\left[\begin{array}{cccc}
\tau_{10} & \tau_{11} & \cdots & \tau_{1 r} \\
\tau_{20} & \tau_{21} & \cdots & \tau_{2 r} \\
\vdots & \vdots & & \vdots \\
\tau_{k 0} & \tau_{k 1} & \cdots & \tau_{k r}
\end{array}\right]
$$

The degree of this tableau is k, the number of rows. We may assume that the rows have been listed in weakly increasing order:

$$
\left[\tau_{10} \tau_{11} \cdots \tau_{1 r}\right] \leq\left[\tau_{20} \tau_{21} \cdots \tau_{2 r}\right] \leq \cdots \leq\left[\begin{array}{l}
\tau_{k 0} \\
\tau_{k 1}
\end{array} \cdots \tau_{k r}\right]
$$

Let

$$
T=\left[\tau_{i j}: 1 \leq i \leq k, 0 \leq j \leq r\right], \quad T^{\prime}=\left[\tau_{i j}^{\prime}: 1 \leq i \leq k^{\prime}, 0 \leq j \leq r\right]
$$

be two tableaux. Then $T<T^{\prime}$ iff either $k<k^{\prime}$, or $k=k^{\prime}$ and there exists $i \leq k$ such that $\left[\tau_{i 0} \tau_{i 1} \cdots \tau_{i r}\right]<\left[\tau_{i 0}^{\prime} \tau_{i 1}^{\prime} \cdots \tau_{i r}^{\prime}\right]$ and the first $i-1$ rows of T^{\prime} coincide with those of T. By [12], [13] we have

LEMMA 6 Let T be an arbitrary tableau, as above. Then T is standard ($T \notin$ $\operatorname{Init}(\mathfrak{I}))$ if and only if every column of T is weakly increasing, i.e. $\tau_{1 j} \leq \tau_{2 j} \leq \cdots \leq$ $\tau_{k j}$.

The number of standard tableaux of degree k is given by [$8, \mathrm{p} .387$] in slightly different language:

$$
h_{\mathfrak{I}}(k)=\operatorname{det}\left[\begin{array}{cccc}
\binom{\nu+k}{k} & \binom{\nu+k-1}{k-1} & \cdots & \binom{\nu+k-r}{k-r} \\
\binom{\nu+k}{k+1} & \binom{\nu+k-1}{k} & \cdots & \binom{\nu+k-r}{k-r+1} \\
\vdots & \vdots & \ddots & \vdots \\
\binom{\nu+k}{k+r} & \binom{\nu+k-1}{k+r-1} & \cdots & \binom{\nu+k-r}{k}
\end{array}\right] .
$$

Although it was assumed in [8] that $\operatorname{char}(K)=0$, it is clear that the number of standard tableaux with k rows cannot depend on the choice of K. By [1, p.95], the $(r+1) \times(r+1)$ determinant above can be evaluated in closed form, whereby we obtain
LEMMA $7 \quad h_{\mathfrak{J}}(k)=\prod_{j=0}^{r} \frac{(\nu+k-r+j)!j!}{(\nu-r+j)!(k+j)!}$, independent of the choice of field K.

Case (i) of the following is found in [12, pp.81-82].

LEMMA 8 Let T, T^{\prime} be tableaux such that either
(i) T, T^{\prime} are both standard; or
(ii) T, T^{\prime} are both p-standard where $p=\operatorname{char}(K)$ is prime.

If $\varphi(T)$ and $\varphi\left(T^{\prime}\right)$ have the same initial monomial, then $T=T^{\prime}$.
Proof: We may assume that T, T^{\prime} are of the same degree k. First suppose that the monomial $T=\left[\tau_{i j}\right]_{1 \leq i \leq k, 0 \leq j \leq r}$ is standard. Clearly $\operatorname{Init}\left(\varphi\left(\left[\tau_{i 0} \tau_{i 1} \cdots \tau_{i r}\right]\right)\right)=$ $X_{0, \tau_{i 0}} X_{1, \tau_{i 1}} \cdots X_{r, \tau_{i r}}$, and so

$$
\operatorname{Init}(\varphi(T))=\prod_{i=1}^{k} X_{0, \tau_{i 0}} X_{1, \tau_{i 1}} \cdots X_{r, \tau_{i r}}
$$

The number of times an integer τ appears in column j of T equals the exponent of $X_{j, \tau}$ in $\operatorname{Init}(\varphi(T))$, and since the j th column of T is weakly increasing, this means we can recover the j th column of T from $\operatorname{Init}(\varphi(T))$, for each $j=0,1,2, \ldots, r$. This verifies the Lemma in Case (i).

Now suppose $T=\prod_{\ell=0}^{e-1} T_{\ell}^{p^{\ell}}$ is p-standard, i.e. T_{ℓ} is a standard tableau of degree $k_{\ell} \leq p-1$. Then

$$
\operatorname{Init}(\varphi(T))=\prod_{\ell=0}^{e-1}\left(\operatorname{Init} \varphi\left(T_{\ell}\right)\right)^{p^{\ell}}
$$

The degree of this polynomial with respect to $X_{i j}$ is given by

$$
\operatorname{deg}_{X_{i j}}(\operatorname{Init} \varphi(T))=\sum_{\ell=0}^{e-1} \operatorname{deg}_{X_{i j}}\left(\text { Init } \varphi\left(T_{\ell}\right)\right) p^{\ell}
$$

where $\operatorname{deg}_{X_{i j}}\left(\right.$ Init $\left.\varphi\left(T_{\ell}\right)\right) \leq k_{\ell} \leq p-1$. By the uniqueness of p-adic expansions, the monomial $\operatorname{Init}(\varphi(T))$ uniquely determines each of the monomials $\operatorname{Init}\left(\varphi\left(T_{\ell}\right)\right)$ ($\ell=0,1,2, \ldots, e-1$), which in turn (by case (i)) uniquely determines each of the tableaux $T_{0}, T_{1}, \ldots, T_{e-1}$ and hence also T. This proves the Lemma in Case (ii).

For the remainder of Section 4, we replace K by the finite field F of order $q=p^{e}$.
LEMMA 9 (i) The syzygy ideal $\mathfrak{I} \subseteq F[\Lambda]$ satisfies $\operatorname{FFN}(q-1)$.
(ii) $h_{\mathfrak{J}}^{\dagger}(q-1)=\left(h_{\mathfrak{I}}(p-1)\right)^{e}$.

Proof: Let $R=F[\Lambda]$, and suppose $f(\Lambda) \in R_{q-1}$ vanishes on $G_{r, \nu}(F)$. Since $R_{q-1}=\left(\mathfrak{I} \cap R_{q-1}\right) \oplus\langle\mathcal{T}\rangle$ where $\langle\mathcal{T}\rangle$ is the F-span of \mathcal{T}, the set of standard tableaux of degree $q-1$, we may assume that $f \in\langle\mathcal{T}\rangle$ vanishes on $G_{r, \nu}(F)$. We must show that $f=0$. By hypothesis, the polynomial $\widehat{f}(X):=f(\Phi(X)) \in F[X]$ vanishes on $F^{(r+1) \times(\nu+1)}$. Clearly $\operatorname{deg}_{X_{i j}}(\widehat{f}) \leq \operatorname{deg}(f)=q-1$, and so by Lemma $4, \widehat{f}(X)$ is the zero polynomial. If $f(\Lambda) \neq 0$, then let $T=\operatorname{Init}(f) \in \mathcal{T}$; then by Lemma 8(i) we have $\operatorname{Init}(\widehat{f})=\operatorname{Init} \varphi(T) \neq 0$, a contradiction. Thus $f(\Lambda)=0$ as required, and (i) follows.

By Lemma 2, we have $R_{q-1}^{\dagger}=\left(\mathfrak{I} \cap R_{q-1}^{\dagger}\right)+\left\langle\mathcal{T}^{\prime}\right\rangle$ where \mathcal{T}^{\prime} is the set of all p-standard tableaux of degree $q-1$. We must show that this sum is direct. Accordingly, suppose $0 \neq f(\Lambda) \in \mathfrak{I} \cap\left\langle\mathcal{T}^{\prime}\right\rangle$. By hypothesis, the polynomial
$\widehat{f}(X):=f(\Phi(X)) \in F[X]$ vanishes on $F^{(r+1) \times(\nu+1)}$. As above, this implies that $\widehat{f}(X)=0$ and $f(\Lambda)=0$, a contradiction. Thus $R_{q-1}^{\dagger}=\left(\mathcal{I} \cap R_{q-1}^{\dagger}\right) \oplus\left\langle\mathcal{I}^{\prime}\right\rangle$ and conclusion (ii) follows from Lemma 2.

LEMMA 10 Let $S=G_{r, \nu}(F) \subseteq P G(n, F)$ and let H be any hyperplane of $P G(n, F), F=G F(q)$. Then $|H \cap S| \equiv 1 \bmod q$.

Proof: (Due to A. E. Brouwer.) Let N_{H} be the number of incident point-line pairs (P, ℓ) such that $P \in S \backslash H$ and $\ell \subseteq S$. For every point $P \in S$, the number of lines contained in S passing through P, equals $\left[\left(q^{r+1}-1\right) /(q-1)\right]\left[\left(q^{\nu-r}-1\right) /(q-1)\right] \equiv 1$ $\bmod q$. Thus $N_{H} \equiv|S-H| \bmod q$. However, every line $\ell \subseteq S$ not contained in H, contains exactly q points of $S \backslash H$, so that $N_{H} \equiv 0 \bmod q$. Furthermore, $|S|=\prod_{i=0}^{r}\left[\left(q^{\nu-i+1}-1\right) /\left(q^{r-i+1}-1\right)\right] \equiv 1 \bmod q$, so that $|S \cap H|=|S|-|S \checkmark H| \equiv 1$ $\bmod q$.

Now Theorem 2 follows from Theorem 1 and Lemmas 3, 7, 8 and 10.

5 AUTOMORPHISMS OF MATRICES

Let $B \in K^{k \times \ell}$, the vector space of all $k \times \ell$ matrices over a field K. Let G be a group, and let $\operatorname{Perm}(k)$ denote the group of all $k \times k$ permutation matrices. Consider a permutation action of G on B, i.e. a homomorphism $G \rightarrow \operatorname{Perm}(k) \times \operatorname{Perm}(\ell)$, $g \mapsto\left(\Pi_{1}(g), \Pi_{2}(g)\right)$ such that

$$
\Pi_{1}(g) B=B \Pi_{2}(g)
$$

for all $g \in G$. In the special case that B is square and invertible, it is well known that Π_{1} and Π_{2} are equivalent linear representations (although not necessarily equivalent permutation representations). In this section we prove a natural generalisation of this fact, which was alluded to in [2], but not proven there.

Our intent is to show that the row and column spaces of B over K are naturally contragredient $K G$-modules (in general not isomorphic, as this author erroneously stated in [2]). In order to deal just with left $K G$-modules, we consider instead the column spaces

$$
\operatorname{Col}(B)=\left\{B x: x \in K^{\ell \times 1}\right\} \leq K^{k \times 1}, \quad \operatorname{Col}\left(B^{\top}\right)=\left\{B^{\top} y: y \in K^{k \times 1}\right\} \leq K^{\ell \times 1}
$$

Since $\Pi_{1}(g)(B x)=B\left(\Pi_{2}(g) x\right) \in \operatorname{Col}(B)$, we see that $\operatorname{Col}(B)$ is indeed a left $K G$ module via $v \mapsto \Pi_{1}(g) v$. Similarly, since $B^{\top} \Pi_{1}(g)=\Pi_{2}(g) B^{\top}, \operatorname{Col}\left(B^{\top}\right)$ is a left $K G$-module via $w \mapsto \Pi_{2}(g) w$.

LEMMA $11 \operatorname{Col}\left(B^{\top}\right) \cong \operatorname{Col}(B)^{*}$ as left $K G$-modules.
Proof: Choose $M_{1} \in G L(k, K), M_{2} \in G L(\ell, K)$ such that

$$
M_{1} B M_{2}=\left[\begin{array}{cc}
I_{r} & O_{r, \ell-r} \\
O_{k-r, r} & O_{k-r, \ell-r}
\end{array}\right]
$$

where I_{r} is an identity matrix of size $r=\operatorname{rank}_{K} B$ and the O 's consist of zeroes. Now

$$
\left(M_{1} \Pi_{1}(g) M_{1}^{-1}\right)\left(M_{1} B M_{2}\right)=\left(M_{1} B M_{2}\right)\left(M_{2}^{-1} \Pi_{2}(g) M_{2}\right)
$$

for all $g \in G$. From this it is easy to see that

$$
M_{1} \Pi_{1}(g) M_{1}^{-1}=\left[\begin{array}{cc}
Q(g) & * \\
O & *
\end{array}\right], \quad M_{2}^{-1} \Pi_{2}(g) M_{2}=\left[\begin{array}{cc}
Q(g) & O \\
* & *
\end{array}\right]
$$

where $Q: G \rightarrow G L(r, K)$ is a homomorphism. Via $v \mapsto\left(M_{1} \Pi_{1}(g) M_{1}^{-1}\right) v$, we have a left $K G$-module $\operatorname{Col}\left(M_{1} B\right)$ isomorphic to $\operatorname{Col}(B)$, and since

$$
\operatorname{Col}\left(M_{1} B\right)=\operatorname{Col}\left(M_{1} B M_{2}\right)=\{(\underbrace{*, *, \cdots, *}_{r \text { times }}, \underbrace{0,0, \cdots, 0}_{k-r \text { times }})^{\top}\}
$$

the associated matrix representation of degree r is explicitly given by Q. Similarly, via

$$
w \mapsto\left(M_{2}^{-\top} \Pi_{2}(g) M_{2}^{\top}\right) w=\left(M_{2} \Pi_{2}(g) M_{2}^{-1}\right)^{-\top} w=\left[\begin{array}{cc}
Q(g)^{-\top} & * \\
O & *
\end{array}\right] w
$$

$\operatorname{Col}\left(M_{2}^{\top} B^{\top}\right)$ becomes a left $K G$-module isomorphic to $\operatorname{Col}\left(B^{\top}\right)$. Again, $\operatorname{Col}\left(M_{2}^{\top} B^{\top}\right)$ $=\operatorname{Col}\left(M_{2}^{\top} B^{\top} M_{1}^{\top}\right)=\left\{(*, *, \ldots, *, 0,0, \ldots, 0)^{\top}\right\}$ and so the associated matrix representation of degree r is given by $Q^{-\top}$.

REFERENCES

1. E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of Algebraic Curves, Volume I, Springer-Verlag, New York (1985).
2. A. Blokhuis and G. E. Moorhouse, Some p-ranks related to orthogonal spaces, J. Algeb. Comb., 4: 295-316 (1995).
3. A. E. Brouwer and H. A. Wilbrink, Block Designs, in Handbook of Incidence Geometry, Buildings and Foundations, ed. F. Buekenhout, pp.349-382, NorthHolland, Amsterdam and New York (1995).
4. A. M. Cohen and R. H. Cushman, Gröbner bases and standard monomial theory, in Computational Algebraic Geometry, ed. F. Eyssette and A. Galligo, pp.41-60, Birkhäuser Boston (1993).
5. D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, SpringerVerlag, New York (1992).
6. J. M. Goethals and P. Delsarte, On a class of majority-logic decodable cyclic codes, IEEE Trans. Inform. Theory, 14: 182-188 (1968).
7. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York (1977).
8. W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Volume II, Camb. Univ. Press, Cambridge (1952).
9. F. J. MacWilliams and H. B. Mann, On the p-rank of the design matrix of a difference set, Inform. and Control, 12: 474-489 (1968).
10. G. E. Moorhouse, Some p-ranks related to Hermitian varieties, to appear in J. Stat. Plan. Inf.
11. K. J. C. Smith, On the p-rank of the incidence matrix of points and hyperplanes in a finite projective geometry, J. Comb. Theory, 1: 122-129 (1969).
12. B. Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, Vienna (1993).
13. B. Sturmfels and N. White, Gröbner bases and invariant theory, Adv. Math., 76: 245-259 (1989).

[^0]: \dagger The author is grateful to David Wagner and Andries Brouwer for useful discussions, and to the Fields Institute for Research in Mathematical Sciences where part of this research was conducted.

