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Abstract The p-rank of the point-hyperplane incidence matrix A of PG(n, pe)
is well-known. Let AS be the submatrix formed by the rows of A indexed by an
arbitrary subset S of the points. We show that the p-rank of AS is related to the
Hilbert function (or a modification thereof) for I(S), the ideal of F [X0, X1, . . . , Xn]
generated by all homogeneous polynomials vanishing on S. This leads to a deter-
mination of rankp(AS) in case S is a naturally embedded Grassmann variety. The
cases when S is a quadric or a Hermitian variety have been treated by Blokhuis and
the author [2] and the author [10] respectively.

1 HILBERT FUNCTIONS AND p-RANKS

Let F = GF (q), q = pe, and let A be the incidence matrix of points versus
hyperplanes of PG(n, F ). Thus A is a square matrix of size N = (qn+1−1)/(q−1)
having entries 1 and 0 corresponding to incident and non-incident point-hyperplane
pairs. Now let AS be an s × N submatrix of A, whose rows are indexed by an
s-subset S of the points of PG(n, F ). The intent of Theorem 1 is to describe
a general approach to finding the p-rank of AS . This approach makes use of a
modification of the Hilbert function of I(S), the ideal in the polynomial ring R :=
F [X0, X1, . . . , Xn] generated by all homogeneous polynomials which vanish on S.
Much of our terminology and background results are standard in algebraic geometry;
see eg. [7].
For each integer k ≥ 0, let Rk be the F -subspace of R consisting of all homo-

geneous polynomials of degree k. The natural action of G := GL(n + 1, F ) on
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R1
∼= Fn+1 extends uniquely to an action of G on the algebra R =

⊕
k≥0 Rk , and

each Rk is an FG-submodule. Let I ⊆ R be a homogeneous ideal, i.e. the ideal I
is generated by homogeneous polynomials. The Hilbert function of I is defined by

hI(k) = dim
(
Rk

/
I ∩Rk

)
=

(
n+ k
n

)
− dim(I ∩Rk) .

It is known that for all sufficiently large k, the function hI(k) agrees with a
polynomial PI(k), called the Hilbert polynomial of I. Over algebraically closed
fields, Hilbert polynomials provide a precise algebraic definition of the degree and
dimension of projective varieties.
Denote by R†

k the subspace of Rk spanned by all monomials Xα0
0 Xα1

1 · · ·Xαn
n

where α0, α1, . . . , αn are non-negative integers summing to k such that the multi-
nomial coefficient

(
k

α0, α1, ··· , αn

)
is not divisible by p. This is more than an F -

subspace; as shown in [2], it is an FG-submodule of Rk. Note that the inclusion
R†

k ⊆ Rk is proper iff k ≥ p. By Lucas’ Theorem (see Section 2) we have

dim(R†
k) =

e−1∏
�=0

(
n+ k�

n

)

where the p-adic expansion of k is given by k =
∑e−1

�=0 k�p
�, 0 ≤ k� ≤ p − 1. In

particular, dim(R†
q−1) =

(
p+n−1

n

)e = (dim Rp−1)e. We modify the Hilbert function
of I by defining

h†I(k) = dim
(
R†

k

/
I ∩R†

k

)
.

In general, the values of h†I(k) for k 
 0 are not given by any polynomial.
Let GS be the subgroup of G = GL(n + 1, F ) preserving the point set S in

PG(n, F ). As explained in Section 5, the row and column spaces of AS over F are
naturally contragredient FGS-modules. Similarly, the row and column spaces of
J −AS are naturally contragredient FGS-modules, where J is an s×N matrix of
1’s. In Section 3 we prove

THEOREM 1
(i) rankp(J − AS) = h†I(S)(q − 1). Moreover, the column space Col(J − AS) is

isomorphic to R†
q−1

/
I(S) ∩R†

q−1 as an FGS-module.
(ii) rankpAS differs from rankp(J − AS) by at most one. If |H ∩ S| ≡ 1 mod p

for every hyperplane H of PG(n, F ), then rankpAS = 1+rankp(J−AS), and
Col(AS) ∼= 〈1〉⊕Col(J−AS) where 〈1〉 is a trivial FGS-module of dimension
one.

We are most interested in the case S is a ‘discrete variety’ of the form Z(I),
i.e. the set of points of PG(n, F ) where a given homogeneous ideal I vanishes.
Although the Hilbert function of I is often readily available, care is required in
applying Theorem 1 since in general, the inclusion I(S) ⊇ I may be proper. The
radical of I is the ideal

√
I := {f ∈ R : fk ∈ I for some positive integer k} ⊆ R.

Clearly

I(S) = I(Z(I)) ⊇
√

I ⊇ I .

Since F is not algebraically closed, I(Z(I)) is typically larger than
√

I (considering
that for all I, Xq

i Xj −XiX
q
j vanishes on PG(n, F ) for all i �= j).



DEFINITION I satisfies FFN(k) (Finite Field Nullstellensatz of degree k) if every
f ∈ Rk which vanishes on Z(I), belongs to I.

In many cases I satisfies FFN(q − 1), which implies that h†I(Z(I))(q−1) = h†I(q−
1) and Theorem 1 applies. Moreover, h†I(q−1) ≤ (hI(p−1))e (see Lemma 2) with
equality in many cases, including Examples 1.1, 1.2, 1.4 below.

1.1 Example: Projective Spaces

Let I = (0), S = Z(0) = PG(n, pe). Then

rankpAS = rankp A = h†(0)(q − 1) + 1 = (h(0)(p− 1))
e + 1 =

(
p+n−1

n

)e
+ 1.

This is the well-known result of Goethals and Delsarte [6], MacWilliams and Mann
[9], and Smith [11]; see also [3]. In this case, Col(A) ∼= R†

q−1 ⊕ 〈1〉 as FG-modules.

1.2 Example: Quadrics

Let Q(X) = Q(X0, X1, . . . , Xn) be a quadratic form, i.e. Q(X) ∈ R2. We will
assume that the corresponding bilinear form f(X,Y ) := Q(X +Y )−Q(X)−Q(Y )
is nondegenerate. Thus the quadric S := Z(Q) is nondegenerate, and if p = 2 then
n is odd. Homogeneous polynomials of degree k ≥ 2 belonging to the principal ideal
I = (Q) are precisely those polynomials of the form Q(X)f(X) where f ∈ Rk−2, so

h(Q)(k) = dim(Rk)− dim(Rk−2) =
(

n+k
n

)
−

(
n+k−2

n

)
.

In [2] it is also shown that (Q) satisfies FFN(q) for n ≥ 4, and FFN(q − 1) for n = 3,
and that consequently

rankpAZ(Q) =
[(

n+p−1
n

)
−

(
n+p−3

n

)]e + 1

for n ≥ 3. This statement fails for n ≤ 2, as does FFN(q − 1).

1.3 Example: Hermitian Varieties

Suppose q = p2d and let U(X) =
∑n

i=0

∑n
j=0 aijXiX

pd

j be a nondegenerate unitary

form; thus aji = apd

ij and det
[
aij

]
�= 0. Then S := Z(U) is a nondegenerate

Hermitian variety. In [10] it is shown that the principal ideal (U) satisfies FFN(q)
for n �= 3, and

rankpAZ(U) = h†(U)(q − 1) + 1 =
[(

n+p−1
n

)2 − (
n+p−2

n

)2]d + 1

for all n ≥ 1.

1.4 Example: Grassmann Varieties

Let V = F ν+1. Every subspace U ≤ V of dimension r + 1 gives rise to a one-
dimensional subspace

∧r+1
U ≤

∧r+1
V . This defines an injective mapping from

the collection of projective r-subspaces of PG(ν, F ) to points of PG(
∧r+1

V ) =
PG(n, F ) where n =

(
ν+1
r+1

)
− 1. The image of this mapping is the Grassmann

variety S = Gr,ν(F ), a discrete variety of the form S = Z(I) where I is the ideal
generated by a certain collection of homogeneous quadratic polynomials known as
van der Waerden syzygies. In Section 4, we show that I satisfies FFN(q − 1), and
consequently



THEOREM 2 If S = Z(I) is the Grassmann variety Gr,ν(pe) naturally embedded
in PG(n, pe) where n =

(
ν+1
r+1

)
− 1, then rankpAS = δe + 1 where δ = hI(p− 1) is

given by the formula

hI(k) =
r∏

j=0

(ν + k − r + j)! j!
(ν − r + j)! (k + j)!

.

For example, the Grassmann variety G0,n(pe) coincides with PG(n, pe), and the
p-rank value from Theorem 2 agrees with that obtained in Example 1.1. Also, the
Grassmann variety G1,3(pe) coincides with the Klein quadric in PG(5, pe), and the
value rankpAS = [p(p+ 1)2(p+ 2)/12]e + 1 from Theorem 2 agrees with the value
given in Example 1.2.

2 STANDARD MONOMIALS

The goal of this section is to provide combinatorial interpretations of the Hilbert
function values hI(k) and h

†
I(k) as the cardinalities of certain sets of monomials. In

many cases, including Examples 1.2–1.4 above, this leads to explicit computation
of h†I(q − 1) and hence the desired p-rank values; in other cases, they may at least
provide useful bounds for p-ranks. We require only a few notions from the theory
of Gröbner bases, as introduced in [12], [13]; several broader texts on the subject
are now available, including [5].
Let X = (X0, X1, . . . , Xn) be an (n + 1)-tuple of indeterminates, and let R =

K[X ] = K[X0, X1, . . . , Xn] be the polynomial ring over a fixed arbitrary field K. A
monomial is a polynomial of the form Xα0

0 Xα1
1 · · ·Xαn

n ∈ R for some non-negative
integers α0, α1, . . . , αn (note that we require coefficient 1). The set of monomials is
a multiplicative submonoidM⊂ R. A monomial ordering is a total ordering < on
M such that
(i) (M, <) is well-ordered with least element 1, and
(ii) for all m,m′,m′′ ∈ M, m < m′ ⇒ m′′m < m′′m′.
The most well-known monomial ordering, and the only one we shall require, is the
lexicographical ordering defined by

Xα0
0 Xα1

1 · · ·Xαn
n < Xβ0

0 X
β1
1 · · ·Xβn

n ⇐⇒ there exists i0 such that αi0 < βi0
and αi = βi whenever i < i0 .

For any nonzero polynomial f ∈ R, let Init(f) denote the initial monomial of f , i.e.
the largest monomial with respect to < which appears in f . For any subset B ⊆ R,
define Init(B) := {Init(f) : 0 �= f ∈ B}.
Now let I ⊆ R be an ideal. A monomial m ∈ M is standard (with respect to I)

if m /∈ Init(I). Let k ≥ 0, and let Rk be the k-homogeneous component of R. We
immediately have

LEMMA 1 Rk = (I ∩ Rk) ⊕ 〈SMI(k)〉 where SMI(k) is the set of standard
monomials of degree k. In particular, hI(k) =

∣∣SMI(k)
∣∣.



Now suppose the field K (not necessarily finite) has prime characteristic p. Given
an integer k ≥ 0, choose e ≥ 0 such that pe > k. Then k has a unique p-adic
expansion of the form k = k0 + k1p + k2p

2 + · · · + ke−1pe−1 where 0 ≤ k� ≤
p− 1. As before, let R†

k be the subspace of Rk spanned by all monomials m(X) =
Xα0
0 Xα1

1 · · ·Xαn
n such that the multinomial coefficient(

k

α0, α1, · · · , αn

)
:=




k!
α0!α1! · · ·αn!

, α� ≥ 0,
∑
α� = k;

0, otherwise

is not divisible by p (and so in particular, deg(m) = α0+α1+ · · ·+αn = k). Lucas’
Theorem (see [3], [2]) states that(

k

α0, α1, · · · , αn

)
≡

e−1∏
�=0

(
k�

α0� , α1� , · · · , αn�

)
mod p

where αi =
∑

� αi�p
�, 0 ≤ αi,� ≤ p− 1. It follows that the monomial m(X) belongs

to R†
k if and only if it is expressible in the form

m(X) =
∏e−1

�=0 m�(X)p
�

where m�(X) is a monomial of degree k�. In particular,

dim(R†
k) =

e−1∏
�=0

(
n+ k�

n

)
.

We say the monomial m(X) is p-standard if each of the monomials m� (as above)
is standard.

LEMMA 2 Let k ≥ 0 be an integer, with p-adic coefficients k� as above. Then
(i) R†

k = (I ∩R†
k) + 〈SM(p)

I (k)〉 where SM(p)
I (k) is the set of p-standard mono-

mials of degree k.
(ii) h†I(k) ≤

∣∣SM(p)
I (k)

∣∣ = ∏e−1
�=0 hI(k�).

(iii) h†I(q − 1) ≤ (hI(p− 1))e.

Proof: We must show that every monomial in R†
k, but not in I, is p-standard.

Accordingly, suppose m(X) =
∏e−1

�=0 m�(X)p
�

for some monomials m� ∈ Rk�
. If m

is not p-standard, then for some ,0 and some f ∈ Rk�0
we have m�0 = Init(f). But

then since char(K) = p, the polynomial

f(X)p
�0 ∏

� �=�0
m�(X)p

�

lies in I ∩ R†
k, with initial monomial m ∈ Init(I ∩ R†

k). This proves (i), and the
remaining conclusions clearly follow as well.

LEMMA 3 Let k ≥ 0. Then
(i) hI(Z(I))(k) ≤ hI(k) and h†I(Z(I))(k) ≤ h†I(k).
(ii) If I satisfies FFN(k), then equality holds in (i).
(iii) Suppose the ideal I is prime. Then I satisfies FFN(k) iff I satisfies FFN(,)

for all , ≤ k, iff hI(Z(I))(k) = hI(k), iff hI(Z(I))(,) = hI(,) for all , ≤ k.



Proof: (i) and (ii) are clear. Suppose I is a prime ideal satisfying FFN(k), and let
0 ≤ , < k. For i = 0, 1, 2, . . . , n, the polynomial Xk−�

i f(X0, . . . , Xn) ∈ Rk vanishes
on Z(I). If f /∈ I then X0, X1, . . . , Xn ∈ I and I ⊃ Rk � f , a contradiction. Hence
I satisfies FFN(,), and (iii) follows.

The following is well-known.

LEMMA 4 Suppose f ∈ R has degree ≤ q − 1 in each of X0, X1, . . . , Xn. If f
vanishes on Fn+1 then f = 0.

Proof: If
∑

α aα0α1···αnx
α0
0 x

α1
1 · · ·xαn

n = 0 (sum over α = (α0, α1, . . . , αn) ∈ {0, 1,
2, . . . , q−1}n+1) for all x = (x0, x1, . . . , xn) ∈ Fn+1, then the vector

(
aα

)
α
lies in the

left null space of the qn+1 × qn+1 matrix with (α, x)-entry equal to xα0
0 x

α1
1 · · ·xαn

n .
By [2, Lemma 2.3], the latter matrix is nonsingular, and so

(
aα

)
= 0.

3 INCIDENCE MATRICES

Most of this section can be found in [2] and [10], either directly or implicitly. In
particular, the following is shown in [2]. Let F k×� denote the vector space of k × ,
matrices over F = GF (q), and let A be the incidence matrix of PG(n, F ) as in
Section 1.

LEMMA 5 Col(JN,N −A) ∼= R†
q−1 as FG-modules, where G = GL(n+ 1, F ).

We sketch the proof of Lemma 5, describing the natural isomorphism R†
q−1 →

Col(JN,N − A), since this is useful in verifying Theorem 1. For each f(X) =
f(X0, X1, . . . ,Xn) ∈ R†

q−1 and x ∈ Fn+1, the value of f(x) ∈ F clearly de-
pends only on the subspace 〈x〉. So we have a well-defined FG-homomorphism
ϕ : R†

q−1 → FN×1 which maps f to the column vector having values f(x) as 〈x〉
ranges over the one-dimensional subspaces of Fn+1 (i.e. the points of PG(n, F )).
For any nonzero ,(X) ∈ R1, ϕ(,q−1) is the column of JN,N − A corresponding
to the hyperplane Z(,). However, Col(JN,N − A) and R†

q−1 both have dimension(
p+n−1

n

)e. Therefore R†
q−1 =

〈
,(X)q−1 : , ∈ R1

〉
and ϕ : R†

q−1 → Col(JN,N −A) is
the required isomorphism.

Now let πS : FN×1 → F s×1 be the projection onto the coordinates corresponding
to the points of S. This gives rise to an exact sequence of FGS-modules:

0 −→ I(S) ∩R†
q−1 −→ R†

q−1
πS◦ϕ−→ Col(Js,N −AS) −→ 0 .

This proves Theorem 1(i).
Since rankp(Js,N ) = 1, it is clear that rankpAS differs from rankp(Js,N − AS)

by at most 1. Now suppose that |H ∩ S| ≡ 1 mod p for every hyperplane H of
PG(n, F ). Then the sum of the rows of AS (modulo p) equals 1 = (1, 1, . . . , 1) ∈
F 1×N , so that Row(AS) = Row(Js,N − AS) + 〈1〉. To see that the latter sum
is direct, observe that every row of Js,N − AS has sum qn ≡ 0 mod p, whereas



every row of AS has sum ≡ 1 mod p. The proof of Theorem 1 follows by taking
contragredients (Section 5).

4 GRASSMANN VARIETIES

For terminology and basic properties on Grassmann varieties, we follow [12], [13];
see also [4] for a more general approach.
We develop further the description of Example 1.4, this time over an arbitrary

field K, and using explicit coordinates. Consider the vector space V = Kν+1, with
standard basis {e0, e1, . . . , eν}. Fix an integer r, 0 ≤ r ≤ ν. By

∧r+1 V , we mean
the K-vector space of dimension n+1 :=

(
ν+1
r+1

)
with basis consisting of the symbols

eτ0τ1···τr := eτ0 ∧ eτ1 ∧ · · · ∧ eτr , 0 ≤ τ0 < τ1 < · · · < τr ≤ ν .

Given an (r+1)-dimensional subspace U ≤ V , let x =
[
xij

]
be an (r+1)× (ν +1)

matrix whose rows form a basis for U . Then
∧r+1

U is the point (one-dimensional
subspace) of

∧r+1 V spanned by the vector

Φ(x) :=
∑

[τ0τ1···τr]∈Λ
det



x0,τ0 x0,τ1 · · · x0,τr

x1,τ0 x1,τ1 · · · x1,τr

...
...

. . .
...

xr,τ0 xr,τ1 · · · xr,τr


 eτ0τ1···τr .

The Grassmann variety Gr,ν(K) ⊆ PG
(∧r+1

V
)
= PG(n,K) is the set of all such

points. To justify the term ‘variety’, we must find an ideal I whose zero set coincides
with Gr,ν(K).
Let X = [Xij ]0≤i≤r, 0≤j≤ν be an (r + 1)× (ν + 1) matrix of indeterminates, and

let K[X ] = K[X00, X01, . . . , Xrν] be the corresponding polynomial algebra over K.
As coordinate functions for

∧r+1
V , we require

(
ν+1
r+1

)
additional indeterminates,

for which purpose we adopt the set Λ consisting of the
(

ν+1
r+1

)
bracket symbols

[τ0 τ1 · · · τr], 0 ≤ τ0 < τ1 < · · · < τr ≤ ν.

Let K[Λ] denote the polynomial algebra in these new indeterminates. Let ϕ :
K[Λ]→ K[X ] be the unique algebra homomorphism such that

ϕ([τ0 τ1 · · · τr ]) = det



X0τ0 X0τ1 · · · X0τr

X1τ0 X1τ1 · · · X1τr

...
...

. . .
...

Xrτ0 Xrτ1 · · · Xrτr


 .

As described above, the Grassmann variety Gr,n(K) ⊆ PG
(∧r+1

V ) = PG(n,K)
is obtained by evaluating the expression

Φ(X) :=
∑

[τ0τ1···τr]∈Λ
ϕ([τ0 τ1 · · · τr]) eτ0τ1···τr

at constant matrices
[
xij

]
of full rank. Moreover, Gr,n(K) = Z(I) where I ⊆ K[Λ]

is the syzygy ideal generated by certain homogeneous quadratic polynomials known
as van der Waerden syzygies, as described in [13], [12]; the exact form of these
generators will not be required here.



Let < denote the lexicographical order on monomials for each of our sets X,Λ of
indeterminates; thus

X00 < X01 < · · · < X0ν < X10 < · · · < X1ν < · · · < Xr0 < · · · < Xrν ;

∏
i,j X

αij

ij <
∏

i,j X
βij

ij ⇐⇒ there exists (i0, j0) such that αi0j0 < βi0j0
and αij = βij whenever Xij < Xi0j0 ;

[τ0 τ1 · · · τr] < [ρ0 ρ1 · · · ρr] ⇐⇒ there exists j0 such that τj0 < ρj0
and τj = ρj for all j < j0.

Products of indeterminates in Λ are represented by tableaux, which are arrays having
the indeterminates as rows: thus the monomial T =

∏k
i=1[τi0 τi1 · · · τir ] of degree

k may be expressed as

T =



τ10 τ11 · · · τ1r
τ20 τ21 · · · τ2r
...

...
...

τk0 τk1 · · · τkr


 .

The degree of this tableau is k, the number of rows. We may assume that the rows
have been listed in weakly increasing order:

[τ10 τ11 · · · τ1r] ≤ [τ20 τ21 · · · τ2r] ≤ · · · ≤ [τk0 τk1 · · · τkr].
Let

T =
[
τij : 1 ≤ i ≤ k, 0 ≤ j ≤ r

]
, T ′ =

[
τ ′ij : 1 ≤ i ≤ k′, 0 ≤ j ≤ r

]
be two tableaux. Then T < T ′ iff either k < k′, or k = k′ and there exists i ≤ k
such that [τi0 τi1 · · · τir ] < [τ ′i0 τ ′i1 · · · τ ′ir ] and the first i−1 rows of T ′ coincide with
those of T . By [12], [13] we have

LEMMA 6 Let T be an arbitrary tableau, as above. Then T is standard (T /∈
Init(I)) if and only if every column of T is weakly increasing, i.e. τ1j ≤ τ2j ≤ · · · ≤
τkj .

The number of standard tableaux of degree k is given by [8, p.387] in slightly
different language:

hI(k) = det




(
ν+k

k

) (
ν+k−1

k−1
)

· · ·
(

ν+k−r
k−r

)
(

ν+k
k+1

) (
ν+k−1

k

)
· · ·

(
ν+k−r
k−r+1

)
...

...
. . .

...(
ν+k
k+r

) (
ν+k−1
k+r−1

)
· · ·

(
ν+k−r

k

)


 .

Although it was assumed in [8] that char(K) = 0, it is clear that the number of
standard tableaux with k rows cannot depend on the choice of K. By [1, p.95], the
(r + 1) × (r + 1) determinant above can be evaluated in closed form, whereby we
obtain

LEMMA 7 hI(k) =
r∏

j=0

(ν + k − r + j)! j!
(ν − r + j)! (k + j)!

, independent of the choice of fieldK.



Case (i) of the following is found in [12, pp.81–82].

LEMMA 8 Let T, T ′ be tableaux such that either
(i) T, T ′ are both standard; or
(ii) T, T ′ are both p-standard where p = char(K) is prime.
If ϕ(T ) and ϕ(T ′) have the same initial monomial, then T = T ′.

Proof: We may assume that T, T ′ are of the same degree k. First suppose that
the monomial T = [τij ]1≤i≤k, 0≤j≤r is standard. Clearly Init(ϕ([τi0 τi1 · · · τir])) =
X0,τi0X1,τi1 · · ·Xr,τir , and so

Init(ϕ(T )) =
k∏

i=1

X0,τi0X1,τi1 · · ·Xr,τir .

The number of times an integer τ appears in column j of T equals the exponent of
Xj,τ in Init(ϕ(T )), and since the jth column of T is weakly increasing, this means
we can recover the jth column of T from Init(ϕ(T )), for each j = 0, 1, 2, . . . , r. This
verifies the Lemma in Case (i).
Now suppose T =

∏e−1
�=0 T

p�

� is p-standard, i.e. T� is a standard tableau of degree
k� ≤ p− 1. Then

Init(ϕ(T )) =
e−1∏
�=0

(
Init ϕ(T�)

)p�

.

The degree of this polynomial with respect to Xij is given by

degXij

(
Init ϕ(T )

)
=

e−1∑
�=0

degXij

(
Init ϕ(T�)

)
p�

where degXij

(
Init ϕ(T�)

)
≤ k� ≤ p − 1. By the uniqueness of p-adic expansions,

the monomial Init(ϕ(T )) uniquely determines each of the monomials Init(ϕ(T�))
(, = 0, 1, 2, . . . ,e − 1), which in turn (by case (i)) uniquely determines each of the
tableaux T0, T1, . . . , Te−1 and hence also T . This proves the Lemma in Case (ii).

For the remainder of Section 4, we replace K by the finite field F of order q = pe.

LEMMA 9 (i) The syzygy ideal I ⊆ F [Λ] satisfies FFN(q − 1).
(ii) h†I(q − 1) = (hI(p− 1))e.

Proof: Let R = F [Λ], and suppose f(Λ) ∈ Rq−1 vanishes on Gr,ν(F ). Since
Rq−1 = (I∩Rq−1)⊕〈T 〉 where 〈T 〉 is the F -span of T , the set of standard tableaux
of degree q − 1, we may assume that f ∈ 〈T 〉 vanishes on Gr,ν(F ). We must show
that f = 0. By hypothesis, the polynomial f̂(X) := f(Φ(X)) ∈ F [X ] vanishes on
F (r+1)×(ν+1). Clearly degXij

(f̂ ) ≤ deg(f) = q − 1, and so by Lemma 4, f̂(X) is
the zero polynomial. If f(Λ) �= 0, then let T = Init(f) ∈ T ; then by Lemma 8(i)
we have Init(f̂ ) = Initϕ(T ) �= 0, a contradiction. Thus f(Λ) = 0 as required, and
(i) follows.
By Lemma 2, we have R†

q−1 = (I ∩ R†
q−1) + 〈T ′〉 where T ′ is the set of

all p-standard tableaux of degree q − 1. We must show that this sum is di-
rect. Accordingly, suppose 0 �= f(Λ) ∈ I ∩ 〈T ′〉. By hypothesis, the polynomial



f̂(X) := f(Φ(X)) ∈ F [X ] vanishes on F (r+1)×(ν+1). As above, this implies that
f̂(X) = 0 and f(Λ) = 0, a contradiction. Thus R†

q−1 = (I ∩ R†
q−1) ⊕ 〈T ′〉 and

conclusion (ii) follows from Lemma 2.

LEMMA 10 Let S = Gr,ν(F ) ⊆ PG(n, F ) and let H be any hyperplane of
PG(n, F ), F = GF (q). Then |H ∩ S| ≡ 1 mod q.

Proof: (Due to A. E. Brouwer.) Let NH be the number of incident point-line pairs
(P, ,) such that P ∈ S ................H and , ⊆ S. For every point P ∈ S, the number of lines
contained in S passing through P , equals [(qr+1−1)/(q−1)][(qν−r−1)/(q−1)] ≡ 1
mod q. Thus NH ≡ |S ................H | mod q. However, every line , ⊆ S not contained
in H , contains exactly q points of S ................H , so that NH ≡ 0 mod q. Furthermore,
|S| =

∏r
i=0[(q

ν−i+1−1)/(qr−i+1−1)] ≡ 1 mod q, so that |S∩H | = |S|−|S................H | ≡ 1
mod q.

Now Theorem 2 follows from Theorem 1 and Lemmas 3, 7, 8 and 10.

5 AUTOMORPHISMS OF MATRICES

Let B ∈ Kk×�, the vector space of all k×,matrices over a fieldK. Let G be a group,
and let Perm(k) denote the group of all k × k permutation matrices. Consider a
permutation action of G on B, i.e. a homomorphism G → Perm(k) × Perm(,),
g !→ (Π1(g),Π2(g)) such that

Π1(g)B = BΠ2(g)

for all g ∈ G. In the special case that B is square and invertible, it is well known that
Π1 and Π2 are equivalent linear representations (although not necessarily equivalent
permutation representations). In this section we prove a natural generalisation of
this fact, which was alluded to in [2], but not proven there.
Our intent is to show that the row and column spaces of B over K are naturally

contragredient KG-modules (in general not isomorphic, as this author erroneously
stated in [2]). In order to deal just with left KG-modules, we consider instead the
column spaces

Col(B) = {Bx : x ∈ K�×1} ≤ Kk×1, Col(B) = {By : y ∈ Kk×1} ≤ K�×1.

Since Π1(g)(Bx) = B(Π2(g)x) ∈ Col(B), we see that Col(B) is indeed a left KG-
module via v !→ Π1(g)v. Similarly, since BΠ1(g) = Π2(g)B, Col(B) is a left
KG-module via w !→ Π2(g)w.



LEMMA 11 Col(B) ∼= Col(B)∗ as left KG-modules.

Proof: Choose M1 ∈ GL(k,K), M2 ∈ GL(,,K) such that

M1BM2 =
[

Ir Or,�−r

Ok−r,r Ok−r,�−r

]

where Ir is an identity matrix of size r = rankK B and the O’s consist of zeroes.
Now (

M1Π1(g)M−1
1

)(
M1BM2

)
=

(
M1BM2

)(
M−1

2 Π2(g)M2

)
for all g ∈ G. From this it is easy to see that

M1Π1(g)M−1
1 =

[
Q(g) ∗
O ∗

]
, M−1

2 Π2(g)M2 =
[
Q(g) O
∗ ∗

]

where Q : G→ GL(r,K) is a homomorphism. Via v !→ (M1Π1(g)M−1
1 )v, we have

a left KG-module Col(M1B) isomorphic to Col(B), and since

Col(M1B) = Col(M1BM2) = {(∗, ∗, · · · , ∗︸ ︷︷ ︸
r times

, 0, 0, · · · , 0︸ ︷︷ ︸
k−r times

)} ,

the associated matrix representation of degree r is explicitly given by Q. Similarly,
via

w !→ (M−
2 Π2(g)M

2 )w = (M2Π2(g)M−1
2 )−w =

[
Q(g)− ∗
O ∗

]
w ,

Col(M
2 B

) becomes a leftKG-module isomorphic to Col(B). Again, Col(M
2 B

)
= Col(M

2 B
M

1 ) = {(∗, ∗, . . . , ∗, 0, 0, . . . , 0)} and so the associated matrix repre-
sentation of degree r is given by Q−.
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