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Abstract Translation planes admitting 2Alt6 ∼= SL(2, 9), and those of ‘extraspe-
cial type’ (admitting 21+4

− Alt5), have been studied by Ostrom, Mason, Shult and
others. We show the existence of such planes of order p2 for all odd primes p. We
construct such planes using ovoids obtained from lattices by the constructions of
Conway et al. [5] and this author [14], [15].

1 INTRODUCTION

The author is grateful to Ted Ostrom for motivating this research, in particular
through his survey [21] which was the first paper the author read as a graduate
student.

Throughout this paper, all translation planes considered are two-dimensional over
F = GF (q) where q is a power of an odd prime p. Translation planes of dimension
two, the most extensively studied case, can be viewed in at least three equivalent
ways (as described in [9], [8], [13]):

(i) π is an affine translation plane of order q2 and kernel containing F = GF (q).
Thus π has point set V = F 4, and lines consisting of the cosets of certain
mutually complementary two-dimensional subspaces V0, V1, . . . , Vq2 < V called
the spread components of π. We may suppose Vi = {(x, xMi) : x ∈ F 2} for 0 ≤
i < q2 and Vq2 = {(0, 0)} ⊕ F 2, where the spread matrices M0,M1, . . . ,Mq2−1

are 2 × 2 matrices over F such that Mi −Mj is nonsingular whenever i 	= j;
(ii) S is a spread of PG(3, q), i.e. a collection of q2 + 1 lines of PG(3, q) which

partition the point set; or
(iii) O is an ovoid of the Klein quadric, i.e. a set of q2 + 1 points on a hyperbolic

quadric in PG(5, q), no two of which are on a line of the quadric.
Now consider a subgroup G of the linear translation complement of π; thus G ≤
GL(4, q) preserves the set of spread components. We are especially interested in
the following two possibilities:



Type A G ∼= SL(2, 9). We assume that p > 3, so that the choice of G ∼=
SL(2, 9) is unique up to conjugacy in GL(4, q), and G acts irreducibly on V ; see [17].
The corresponding subgroup of PSL(4, q) given by G = G/{±I} ∼= PSL(2, 9) ∼=
Alt6 preserves the corresponding spread S, and G acts irreducibly on PG(5, q)
preserving both the Klein quadric and the corresponding ovoid O. (The restriction
p 	= 3 eliminates Desarguesian planes of order 32t, among others, admitting SL(2, 9)
in a less interesting representation.)

Type B (‘Extraspecial type’) G has a normal subgroup Q ∼= D8 ∗ Q8, a
central product of a dihedral group of order 8 and a quaternion group of order 8,
and G/Q ∼= Alt5. See [12], [13] for a more precise description of the isomorphism
type of G and its representation on V . The corresponding group acting on S and
on O is G = G/{±I} ∼= 24Alt5, a split extension of an elementary abelian group of
order 24 by Alt5. Although G acts irreducibly on V (preserving a symplectic form),
G fixes a unique point of PG(5, p) outside the Klein quadric.

Ostrom [19] shows that types A and B are the ‘largest’ two possibilities for G,
assuming that G′ = G acts irreducibly on V , and p 	 ∣∣ |G|. Examples of such planes
for small prime values of q have been given by Mason and Ostrom [12], Mason, Shult
and Cabaniss [13], Mason [10], [11], Ostrom [20], [21], Biliotti and Korchmáros [1],
and Nakagawa [18]. Remarkably, no examples are known except when q = p is
prime; more will be said about this mystery in Section 4. However, in Section 3 we
construct examples over every odd prime field:

THEOREM 1 For every odd prime p there exist self-polar translation planes of
order p2 of types A and B. Valid examples are provided by Constructions 1.1 and
1.2 when p ≡ 1 mod 4, and Construction 1.3 when p ≡ 1 mod 3.

The self-polar property implies that the corresponding spread is invariant under
a correlation of PG(3, p), as we explain in the context of our examples.

1.1 Construction Let p ≡ 1 mod 4 be prime. List all integer solutions of

x2
1 + x2

2 + · · · + x2
6 = 6p, xi ≡ 1 mod 4 .

Here are the two smallest cases.

p = 5 : (5, 15) 6 vectors p = 13: (53, 13) 20 vectors
(−33, 13) 20 ” (−7, 5, 14) 30 ”

total 26 = 52 + 1 (52,−33, 1) 60 ”
(−7,−33, 12) 60 ”

total 170 = 132 + 1

There are always p2 + 1 solutions, and the resulting 6-tuples, taken modulo p,
yield an ovoid O in PG(5, p) with respect to the standard quadratic form. This
ovoid is invariant under a group G ∼= 2×Sym6 < PO+

6 (p) generated by coordinate
permutations and the reflection x �→ x− 1

3 (
∑

xi)(16). By the Klein correspondence,
we obtain a translation plane π of order p2 of type A. We may identify G ∼= 2×Sym6

with a subgroup of Aut(PSL(4, p)) preserving the corresponding spread S, such that



half of G (a subgroup ∼= Sym6) acts as collineations, and the remaining elements
are correlations. The preimage of G given by G < Aut(SL(4, p)) has a subgroup ∼=
ΣL(2, 9) in the translation complement of π. Here ΣL(2, 9) = SL(2, 9)〈σ〉 where σ

is the Frobenius automorphism of GF (9).

DEFINITION Let π, S, O be a triple consisting of a plane, spread and ovoid as
described above, and let π′, S′, O′ be another such triple. We say that π′ is the
polar of π if any of the following three equivalent conditions is satisfied:

(i) π′ is isomorphic to the translation plane with spread matrices M�
i , where Mi

are the spread matrices of π;
(ii) S′ = Sρ for some correlation ρ of PG(3, q);
(iii) O′ = Og for some orthogonal transformation g such that det(g) = −1.
If in addition π′ is isomorphic to π, we say π is self-polar.

If p ≡ 3 mod 4 then the ‘standard’ quadratic form
∑

x2
i is elliptic rather than

hyperbolic. In this case, a modification (Section 3, case II) yields analogues of
Construction 1.1.

1.2 Construction Let p ≡ 1 mod 4 be prime. List all integer solutions of

x2
1 +x2

2+ · · ·+x2
6 = p, x1 +1 ≡ x2 ≡ x3 ≡ · · · ≡ x6 mod 2 ,

∑
xi ≡ 3 mod 4.

Here are the two smallest cases.

p = 5 : (0| ± 15) 16 vectors p = 13: (0| ± 3,±14) 80 vectors
(1| ± 2, 04) 10 ” (1| ± 23, 02) 80 ”

total 26 = 52 + 1 (−3| ± 2, 04) 10 ”
total 170 = 132 + 1

There are always p2 +1 solutions, and these vectors, taken modulo p, yield an ovoid
O in PG(5, p) with respect to the standard quadratic form. This ovoid is clearly
invariant under a group of projective orthogonal transformations G ∼= 2 × 24Sym5

generated by all permutations and sign changes of the last five coordinates. The
corresponding translation plane π of order p2 is of type B. We identify G with
a subgroup of Aut(SL(4, p)) preserving the corresponding spread S. Half of G

(a subgroup ∼= 24Sym5) consists of collineations, and the other half consists of
correlations.

1.3 Construction Let p ≡ 1 mod 3 be prime. The root lattice of type E6 may be
identified as

L = {x = (x1, x2, . . . , x6) : xi ∈ Z,
∑

xi ≡ 0 mod 3}

using the quadratic form Q(x) =
∑

x2
i − 1

9

(∑
xi

)2. Let e = (16) ∈ L. List all
vectors v ∈ e + 2L such that Q(v) = 2p, but omit the vector −v if v has already
been listed. Here are the two smallest cases.



p = 7 : (13, 33) 20 vectors p = 13: (33,−13) 20 vectors
(3, 1,−14) 30 ” (32, 13,−3) 60 ”

total 50 = 72 + 1 (5, 13,−12) 60 ”
(5, 34, 1) 30 ”

total 170 = 132 + 1

In every case, p2 + 1 vectors are obtained. Reducing modulo p gives an ovoid in
PG(5, p) with respect to Q (mod p) invariant under G ∼= 2 × Sym6 generated by
coordinate permutations and the reflection in e⊥. The corresponding translation
plane π of order p2 is of type A.

If p ≡ 1 mod 12 then Constructions 1.1 and 1.3 give two ovoids of type A in
O+

6 (p), and these are not necessarily equivalent under PGO+
6 (p); in particular for

p = 13 our examples are inequivalent.
We remark that if p ≡ 2 mod 3 then Q (mod p) gives instead a quadratic form

of elliptic type. It is known (see [24]) that elliptic quadrics in PG(5, q) (also known
as generalized quadrangles of type Q−(5, q)) do not admit ovoids. In this case
(odd p ≡ 2 mod 3) the above construction gives caps (sets of pairwise noncollinear
points) of size 5

4 (p2−1) in the associated generalized quadrangles; however, we have
found that larger caps than these are obtainable by other means.

2 THE BINARY OVOIDS

Let V = F 2n, F = GF (q) where q is an odd prime power, and let Q : V → F

be a nondegenerate quadratic form. Thus Q(x) = 1
2xAx� for some nonsingular

symmetric 2n × 2n matrix A over F . A point (one-dimensional subspace) 〈v〉 of
PG(V ) is singular if Q(v) = 0. A subspace U ≤ V is totally singular if Q(u) = 0
for all u ∈ U . We suppose that Q is of hyperbolic type, which is to say that V has
totally singular subspaces of dimension n; equivalently, (−1)n det(A) is a nonzero
square in F . We denote by O+

2n(q) either the isometry type of the pair (V,Q), or
the associated isometry group, depending on the context. An ovoid in O+

2n(q) is a
collection O of singular points, such that every maximal totally singular subspace
contains exactly one point of O; equivalently, O consists of qn−1 +1 singular points,
no two of which are perpendicular with respect to the bilinear form (x, y) := xAy�.
Ovoids in O+

2n(q) are not known to exist for n ≥ 5. Ovoids in O+
6 (q) (projectively,

the Klein quadric in PG(5, q)) were featured in Section 1. The known ovoids in
O+

8 (q) are listed in [8], [14]. Of these, the most important family we shall require
are the binary ovoids of Conway et al. [5], which we proceed to construct.

Our terminology and basic facts regarding root systems, and their Weyl groups
and lattices, are well-known; see [6], [7]. Consider the root lattice of type E8 defined
by

E =
{

1
2

(
a1, a2, . . . , a8

)
: ai ∈ Z, a1 ≡ a2 ≡ · · · ≡ a8 mod 2,

∑
ai ≡ 0 mod 4

}
.



It is well-known that the points of E determine the unique densest lattice packing
of uniform spheres in R8. The root vectors of E are the 240 vectors e ∈ E such that
||e||2 = 2. Among these we choose a system of fundamental roots:

e1 = 1
2

(
1,−12, 15

)
e2 = (−12, 06)

e3 = (0, 1,−1, 05)

e4 = (02, 1,−1, 04)

e5 = (03, 1,−1, 03)

e6 = (04, 1,−1, 02)

e7 = (05, 1,−1, 0)

e8 = (06, 1,−1)•
•
•
•
•
•
•
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Edges of this Dynkin diagram represent pairs of roots at an angle 2π/3; unjoined
nodes represent perpendicular pairs of roots. Let ri be the reflection E → E,
x �→ x− (x · ei)ei. Then r1, . . . , r8 generate the Weyl group W (E8) ∼= O+

8 (2).
For any prime p, E := E/pE is an 8-dimensional vector space over F = GF (p),

with quadratic form Q(v) (v := v + pE, v ∈ E) of hyperbolic type, obtained by
reducing 1

2 ||v||2 modulo p. Fix a root vector e and an odd prime p. There are exactly
2(p3 + 1) vectors v ∈ e + 2E such that ||v||2 = 2p, which come in pairs ±v. These
vectors determine exactly p3 + 1 coset pairs ±(v+pE) in E, forming a binary ovoid
in E � O+

8 (p). This ovoid, denoted O2,p(e), is invariant under the stabilizer of Ze

in W (E8), namely 2 ×W (E7) ∼= 22 × Sp6(2).

3 SLICING THE BINARY OVOIDS

Let O be an ovoid in O+
2n(q), and suppose 〈w〉 /∈ O is a singular point. Then

Q induces a quadratic form of hyperbolic type on w⊥/〈w〉, and O ∩ w⊥ yields an
ovoid in w⊥/〈w〉 � O+

2n−2(q), called a slice of O; see [8]. By appropriately slicing
the binary ovoids O2,p(e) of Section 3, we shall obtain ovoids in O+

6 (p) of types A
and B.

We require some facts about the representability of integers by integral quadratic
forms.

LEMMA 1 Let p be a prime, and n a positive integer. Then

(i) p = a2 + b2 for some integers a, b, iff p ≡ 1 mod 4;
(ii) p = a2 − ab + b2 for some integers a, b, iff p ≡ 1 mod 3;
(iii) n = a2 + b2 + c2 for some integers a, b, c, iff n is not of the form 4k(8+ − 1)

where k, + ∈ Z;
(iv) n = a2−ab+ b2 + c2 for some integers a, b, c, iff n is not of the form 9k(9+−3)

where k, + ∈ Z.



Proof: Conclusions (i)–(iii) are well-known; see [4, pp.10,77], [23, p.45]. We prove
(iv) using the theory of rational quadratic forms (see [23], especially Corollary 1
on p.43 therein, and the Corollary on p.37). The quadratic form Q(a, b, c) = a2 −
ab + b2 + c2 is rationally equivalent to the diagonal form X2 + 3Y 2 + Z2 where
a = X + Y , b = 2Y , c = Z. Computing local invariants, we find that Q represents
n in Qp for every prime p 	= 3, and that Q represents n in Q3 if and only if −3n is
a nonsquare in the group of units of Q3. The latter condition on n is equivalent to

(*) n is not of the form 9k(9+− 3) where k, + ∈ Z.

Thus (*) is a necessary and sufficient condition for n to be represented as Q(a, b, c)
for some (a, b, c) ∈ Q3. To see that (a, b, c) may in fact be chosen in Z3, we apply
the following:

LEMMA 2 (Davenport-Cassels) Consider a positive definite rational quadratic
form Q(x1, . . . , xr) =

∑
1≤i,j≤r aijxixj where aij = aji ∈ 1

2Z, aii ∈ Z. Suppose
furthermore that for all x ∈ Qr, there exists x′ ∈ Zr such that Q(x′ − x) < 1.
Then for any integer n, we may represent n = Q(x) for some x ∈ Qr if and only if
n = Q(x′) for some x′ ∈ Zr .

This is shown in [23, p.46] under the additional hypothesis that aij ∈ Z, which is
stronger than necessary, as the proof in [23] shows.

We show that our form Q(a, b, c) = a2 − ab + b2 + c2 satisfies the hypothesis
of Lemma 2. Fix a, b, c ∈ Q. Choose c′ ∈ Z such that |c′ − c| ≤ 1

2 . Now ob-
serve that Q(a, b, 0) is the squared length of the Euclidean vector ae + bf where
e = (1, 0), f = 1

2

(−1,
√

3
)
. Since every point of R2 lies at distance ≤ 1/

√
3 from

some point of the root lattice Ze + Zf of type A2, we may choose a′, b′ ∈ Z such
that Q(a′−a, b′− b, c′− c) ≤ 1

3 + 1
4 < 1. Now the statement of Lemma 1(iv) follows

from Lemma 2.

LEMMA 3 Let w = w + pE ∈ E, and suppose 〈w〉 ∈ O2,p(e) where e ∈ E is a
root vector.

(i) If p > 3 and f ∈ E ∩w⊥ is a root vector, then e · f is even.
(ii) If p ≡ 3 mod 4, ||w||2 = 2p and w · e is even, then w ∈ e + 2E.

Proof: By hypothesis, we have v ∈ λw + pE for some v ∈ e + 2E, ||v||2 = 2p,
p 	 ∣∣ λ.

If f ∈ E ∩ w⊥ is a root vector, then v · f ≡ λw · f ≡ 0 mod p. But |v · f | ≤
||v||||f || = 2

√
p and since p > 3, we must have v ·f = 0. Now e ·f ≡ v ·f ≡ 0 mod 2.

Under the hypotheses of (ii), we have |v ·w| ≤ ||v||||w|| = 2p and v ·w ≡ 0 mod p,
and so v · w ∈ {0,±p,±2p}. Also v · w ≡ e · w ≡ 0 mod 2. If v · w = ±2p then
w = ±v ≡ e mod 2E and we are done. Hence we may assume that v ·w = 0. Then
v−λw ∈ pE implies that ||v−λw||2 = ||v||2 +λ2||w||2 ≡ 0 mod 2p2 and 1 +λ2 ≡ 0
mod p, contradicting p ≡ 3 mod 4.



We proceed to prove Theorem 1 in five cases. In cases I and II we refer to the
following decomposable root subsystem of E:

f1

e2 f2 e4 e5 e6 e7 e8• • • • • • •
•

....................................................... ......................................................................................................................................................................................................................... where f1 = (1,−1, 06),

f2 = 1
2

(
18

)
.

Case I Suppose p ≡ 1 mod 4. By Lemma 1(i), we may write p = a2 + b2 for
some integers a, b. We may suppose that a is odd, b is even, and a + b ≡ 1 mod 4
(otherwise replace a by −a). Let w = ae2 + bf1 = (−a + b,−a − b, 06) ∈ E, so
that ||w||2 = 2p. By Lemma 3(i), the singular point 〈w〉 does not lie in the ovoid
O := O2,p(f2) (since f3 := (0612) ∈ w⊥ but f3 ·f2 = 1). The slice O∩w⊥ is an ovoid
invariant under 〈r4, r5, . . . , r8〉 ∼= W (A5) ∼= Sym6 consisting of all permutations of
the last six coordinates. To see that this is equivalent to Construction 1.1, it clearly
suffices to establish:

v ∈ f2 + 2E, ||v||2 = 2p,
v · w ≡ 0 mod p

}
⇐⇒




v = ± 1
2

(
a− b, a + b, v3, . . . , v8

)
,

v3 ≡ v4 ≡ · · · ≡ v8 ≡ 1 mod 4,
v2
3 + · · · + v2

8 = 6p .

First suppose that v = 1
2

(
v1, . . . , v8

) ∈ f2+2E, ||v||2 = 2p, v·w ≡ 0 mod p. Then
|v ·w| ≤ ||v||||w|| = 2p, so v ·w ∈ {0,±p,±2p}. Also v ·w ≡ f2 ·w ≡ −a ≡ 1 mod 2, so
v·w = ±p. We may assume that v·w = −p. Since 2v·w = (b−a)v1−(b+a)v2 = −2p
where gcd(b− a, b + a) = 1, we have

v1 = a− b + (b + a)k, v2 = a + b + (b− a)k

for some k ∈ Z. Then ||v||2 = 1
4 (2p+ 2pk2 + v2

3 + · · ·+ v2
8) = 2p implies |k| ≤ 1. Now

v ∈ f2+2E implies v1 ≡ v2 ≡ · · · ≡ v8 mod 4. In particular, v1 ≡ 1+k ≡ v2 ≡ 1−k

mod 4, so k = 0 and v2
3 + · · · + v2

8 = 6p as required.
Conversely, we may suppose v = 1

2

(
a−b, a+b, v3, . . . , v8

)
where v3 ≡ v4 ≡ · · · ≡

v8 ≡ 1 mod 4 and v2
3 + · · · + v2

8 = 6p. Clearly v · w = −p, ||v||2 = 2p. We must
show that

v − f2 = 1
2

(
a− b− 1, a + b− 1, v3 − 1, · · · , v8 − 1

) ∈ 2E.

Clearly a − b − 1 ≡ a + b − 1 ≡ v3 − 1 ≡ · · · ≡ v8 − 1 ≡ 0 mod 4. It remains
to be shown that 2a +

∑
vi ≡ 0 mod 8 (sum over i = 3, 4, . . . , 8). However,∑

(vi − 1)2 ≡ 0 mod 16 implies that 2
∑

vi ≡ 6 +
∑

v2
i ≡ 6(p + 1) mod 16.

Therefore 2a+
∑

vi ≡ (2 − 2b) + 3(p + 1) ≡ 2 − 2b+ 3a2 + 3b2 + 3 ≡ 3b(b + 2) ≡ 0
mod 8, as required.

Case II Suppose that p ≡ 3 mod 4. By Lemma 1(iv), we may choose integers
a, b, c such that a2 − ab + b2 + c2 = p. Let w = ae2 + bf2 + cf1, so that ||w||2 = 2p.
Clearly a, b cannot both be even. We may suppose a is odd, so (w − f1) · f2 =
−a+ 2b ≡ 1 mod 2 and therefore w− f1 /∈ 2E. By Lemma 3(ii), the singular point
〈w〉 is not in the ovoid O := O2,p(f1). As in case I, the ovoid O ∩ w⊥ is invariant
under 〈r4, r5, . . . , r8〉 ∼= Sym6.



In cases III and IV we refer to the following decomposable root subsystem of E:

f3

e5 e6 e7 e8 e2 e3 f1• • • • • • •
•

................................................................................................................................................................... .............................................................................................................

........

........

........

........

........

........

....... where f1 = (1,−1, 06),

f3 = (0612).

Case III Suppose again that p ≡ 1 mod 4. As in case I, we have p = a2 + b2,
a odd, b even, a + b ≡ 1 mod 4. Let w = ae2 + bf1, so that ||w||2 = 2p. By
Lemma 3(i), the singular point 〈w〉 does not lie in the ovoid O := O2,p(e3) (since
e4 ∈ w⊥ but e4 ·e3 = −1). The ovoid O∩w⊥ is invariant under the group ∼= 24Sym5

consisting of all permutations, and an even number of sign changes, of the last five
coordinates. Note that this group is the Weyl group of type D5 generated by the
reflections corresponding to the roots e5, e6, e7, e8, f3. To see that this is equivalent
to Construction 1.2, it clearly suffices to prove:

v ∈ e3 + 2E, ||v||2 = 2p,
v · w ≡ 0 mod p

}
⇐⇒




v = ±(a, b, v3, . . . , v8) = (OEEOOOOO)
or ± (b, a, v3, . . . , v8) = (EOOEEEEE)

where E = even, O = odd,
v3 + · · · + v8 ≡ 3 mod 4, v2

3 + · · · + v2
8 = p .

First suppose that v ∈ e3 + 2E, ||v||2 = 2p, v · w ≡ 0 mod p. The first condition
implies that v = (v1, v2, . . . , v8) ∈ Z8 where v1 ≡ v2 + 1 ≡ v3 + 1 ≡ v4 ≡ · · · ≡ v8

mod 2. As in case I, we may suppose v ·w = −p. Since v ·w = (b−a)v1−(b+a)v2 =
−p where gcd(b− a, b + a) = 1, we have

v1 = a + (b + a)k, v2 = b + (b− a)k

for some k ∈ Z. Then ||v||2 = p+2pk(k+1)+v2
3+ · · ·+v2

8 = 2p implies k ∈ {−1, 0}
and v2

3 + · · ·+ v2
8 = p. Also, a+ b ≡ 1 mod 4 implies that v3 + · · ·+ v8 ≡ 3 mod 4.

The converse is straightforward.

Case IV Assume that p ≡ 3 mod 4. Since 2p ≡ 6 mod 8, by Lemma 3(iii) there
exist odd integers a, b, c such that 2p = a2 + b2 + 4c2. We may assume that a ≡ b
mod 4; otherwise replace b by −b. Then α = 1

2

(
b−a

)
+c and β = 1

2

(
b−a

)−c are odd
integers. Let w = αe2 + be3 +βf1, so that ||w||2 = 2p. Now w · e3 = 2b−α−β ≡ 0
mod 2, and (w − e3) · e1 = β ≡ 1 mod 2 so w − e3 /∈ 2E. By Lemma 3(ii), the
singular point 〈w〉 is not in the ovoid O := O2,p(e3). As in case III, the ovoid O∩w⊥

is invariant under 24Sym5.

It remains only to justify Construction 1.3, for which we consider the decompos-
able root subsystem

e1

e2 e3 e4 e5 e6 f4 e8• • • • • • •
•

......................................................................................................................................................................................................................... .......................................................

........

........

........

........

........

........

.......
where f4 = 1

2

(
1,−16, 1

)
= −3e1−2e2−4e3−6e4

−5e5−4e6−3e7−2e8.

Case V Suppose p ≡ 1 mod 3. Let L = Ze1 +Ze2 + · · ·+Ze6, a root sublattice
of type E6 isometric to the lattice of Construction 1.3. By Lemma 3.1(ii), there exist



integers a, b such that p = a2 − ab + b2. Clearly a, b are not both even, so we may
suppose that a is odd. Let w = af4 + be8, so that ||w||2 = 2p. By Lemma 3.3(i),
〈w〉 /∈ O := O2,p(e1) (since e4 ∈ w⊥ but e4 · e1 = −1). We wish to show that
the ovoid O ∩ w⊥ is equivalent to Construction 1.3. Since the Weyl group of type
E6 is transitive on its 72 roots, our root e1 is equivalent to the root e chosen in
Construction 1.3. Therefore it remains only to show that

v ∈ e1 + 2E, ||v||2 = 2p,
v · w ≡ 0 mod p

}
⇐⇒ v ∈ e1 + 2L, ||v||2 = 2p.

We need only prove the ‘⇒’ implication. Suppose v ∈ e1 +2E, ||v||2 = 2p, v ·w ≡ 0
mod p. Then |v · w| ≤ ||v||||w|| = 2p, so v · w ∈ {0,±p,±2p}. But v · w 	= ±2p,
since otherwise w = ±v, contradicting 〈w〉 /∈ O. Also, v ·w ≡ e1 ·w ≡ 0 mod 2, so
v · w = 0. It is clear from the expression above for f4 that 3E ⊂ L + Zf4 + Ze8.
Therefore 3v = αf4+βe8+z for some z ∈ L. Now 0 = 3v ·w = (2a−b)α+(2b−a)β
where gcd(2a− b, 2b− a) = 1, and so

α = (a− 2b)k, β = (2a− b)k

for some k ∈ Z. Now 18p = ||3v||2 = 6pk2 + ||z||2 and so |k| ≤ 1. However,
3(v−e1) ·e8 = 2β−α = 3ak is even since v−e1 ∈ 2E. Thus k = 0 and 3v = z ∈ L.
This means that v ∈ L and the desired conclusion follows.

4 REMARKS

Much more general examples of translation planes of types A and B are available
than those presented in Section 3, using the more general ovoids in O+

8 (p) con-
structed in [14], [15] using the E8 root lattice. Choose a vector x ∈ E and primes
r < p such that − p

2 ||x||2 is a quadratic residue modulo r. List all vectors v ∈ Zx+rE
such that ||v||2 = 2i(r − i)p where 1 ≤ i ≤ � r

2�. This gives an ovoid O = Or,p(x) in
E = E/pE. Let 〈w〉 /∈ O be a singular point. Then the slice O ∩ w⊥ is invariant
under the group of all g ∈ W (E8) preserving both Zx + rE and Zw + pE. We may
arrange that this group is a suitably large Weyl group, for example of type A5 or
D5 as in Section 3.

We find the computer implementation of all ovoid constructions described here to
be very efficient using available techniques for finding short vectors in lattices; see
[3, pp.102–104]. In general, the best available method for comparing isomorphism
classes by computer is J. H. Conway’s invariant known as the fingerprint; see [2],
[16]. However, for ovoids of type A or B, isomorphism testing is greatly simplified;
see [1, Step 4], [13, (2.8)].

In Table 4.1 we have listed the number of equivalence classes (under the gen-
eral orthogonal group) of ovoids of type A or B in O+

6 (p) for small primes p, as
enumerated by computer. (Warning: There are slight disagreements between this
table and similar lists found in at least three of the references.) The full stabilizers
G < PO+

6 (p) of these ovoids, namely the five groups 2 × Sym6, 2 × Alt6, Sym6,
2 × 24Sym5, 24Sym5, all contain reflections. Each of the associated translation
planes is self-polar, with full translation complement H and kernel K satisfying
H/K ∼= Sym6, Alt6, Alt6, 24Sym5 or 24Alt5 respectively. Although for p ≤ 37 we



p 3 5 7 11 13 17 19 23 29 31 37
2 × Sym6 1 2 3 2 2 6 6 2 12 6
2 ×Alt6 0 0 2 0 0 0 0 0 0 0
Sym6 0 0 3 1 2 2 17 5 2 5

total type A 1 2 8 3 4 8 23 7 14 11
2 × 24Sym5 1 1 1 3 2 2 5 7 8 6 7

24Sym5 0 0 0 1 0 1 0 7 3 4 2
total type B 1 1 1 4 2 3 5 14 11 10 9

Table 4.1 Number of ovoids of type A, B in O+
6 (p) for small p

found that G 	∼= Alt6, H/K 	∼= 2 × 24Alt5, and π is self-polar, we have no evidence
that these must be true in general.

The lack of known examples for q = pt, t ≥ 2 is quite perplexing. By exhaustive
computer search, we have concluded that there is no ovoid in O+

6 (25) admitting
Alt6, and no ovoid in O+

6 (q) admitting 24Alt5 for q = 9, 25, 27, 49. Similarly, for
t ≥ 2, a lack of known ovoids in O+

8 (pt) invariant under Sp6(2) was observed in [15].
The best nonexistence result we have in this direction is the following:

LEMMA 4 There is no ovoid of type B in O+
6 (32t).

Proof: Suppose O is an ovoid in O+
6 (q) invariant under G ∼= 24Alt5. We use the

quadratic form Q(x) = −x2
0 +

∑5
j=1 x

2
j of hyperbolic type, and G acts by even

permutations, and an even number of sign changes, of the last five coordinates. If
q = 32t then |O| = q2+1 ≡ 2 mod 5, so (12345) ∈ Alt5 fixes at least two points of O.
However, (12345) fixes exactly two singular points, namely 〈(θ, 15)〉 and 〈(−θ, 15)〉,
where θ2 = −1. So both these points must belong to O. But then O also contains
〈(θ,−12, 13)〉, which is orthogonal to 〈(−θ, 15)〉, a contradiction.

Because of slicing, Lemma 4 implies the nonexistence of ovoids in O+
8 (32t) invariant

under Sp6(2).
Does every known translation plane of type A or B arise from a lattice-type

construction? We believe not. From the known ovoids in O+
8 (q) for small q, as

listed in [14], we have determined all possible O+
6 (q)-slices; and in general, these

do not include all ovoids listed in Table 4.1. The smallest examples of this are for
q = 11, where the five known ovoids in O+

8 (11) yield 85 slices in O+
6 (11), but these

account for only 5 = 1+0+1+3+0 of the 12 = 3+2+3+3+1 ovoids of types A and
B.

Finally, we emphasize the most striking feature of these constructions of ovoids
and translation planes: their apparent dependence on some nonelementary number
theory. In addition to Lemma 1, the construction of Or,p(e) (see [5], [14], [15]) relies
on the following theorem (see [23]). Here NΛ(n) denotes the number of vectors v

in an integral lattice Λ such that ||v||2 = n. Also σk(n) =
∑

1≤d|n dk.



THEOREM 2 For every positive integer n, we have NE(2n) = 240σ3(n) and
NE⊕E(2n) = 480σ7(n).

Sarnak’s interesting book [22] describes similar ‘applications of modular forms’ to
analysis, ergodic theory and graph theory, in particular making use of the following:

THEOREM 3 (Jacobi) NZ4(n) = 8
∑{d : 1≤ d |n, 4 	 ∣∣ d}. In particular, NZ4(p) =

8(p + 1) for every prime p.

Unlike Sarnak’s examples, where the asymptotic behaviour of NZ4(p) is more
important than the exact value 8(p+1), however, in the constructions of the ovoids
Or,p(x) the exact values NE(2p) = 240(p3 + 1) and NE⊕E(2p) = 480(p7 + 1) are
indispensable. A very interesting research problem is to find similar constructions
in finite geometry which make use of the exact values NZ4(p) = 8(p + 1).
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