Ovoids and Translation Planes from Lattices

G. ERIC MOORHOUSE Dept. of Mathematics, University of Wyoming, Laramie
WY 82071-3036, U.S.A. moorhous@UWyo.edu

Dedicated to Professor T. G. Ostrom

Abstract

Translation planes admitting $2 A l t_{6} \cong S L(2,9)$, and those of 'extraspecial type' (admitting $2_{-}^{1+4} A l t_{5}$), have been studied by Ostrom, Mason, Shult and others. We show the existence of such planes of order p^{2} for all odd primes p. We construct such planes using ovoids obtained from lattices by the constructions of Conway et al. [5] and this author [14], [15].

1 INTRODUCTION

The author is grateful to Ted Ostrom for motivating this research, in particular through his survey [21] which was the first paper the author read as a graduate student.

Throughout this paper, all translation planes considered are two-dimensional over $F=G F(q)$ where q is a power of an odd prime p. Translation planes of dimension two, the most extensively studied case, can be viewed in at least three equivalent ways (as described in [9], [8], [13]):
(i) π is an affine translation plane of order q^{2} and kernel containing $F=G F(q)$. Thus π has point set $V=F^{4}$, and lines consisting of the cosets of certain mutually complementary two-dimensional subspaces $V_{0}, V_{1}, \ldots, V_{q^{2}}<V$ called the spread components of π. We may suppose $V_{i}=\left\{\left(x, x M_{i}\right): x \in F^{2}\right\}$ for $0 \leq$ $i<q^{2}$ and $V_{q^{2}}=\{(0,0)\} \oplus F^{2}$, where the spread matrices $M_{0}, M_{1}, \ldots, M_{q^{2}-1}$ are 2×2 matrices over F such that $M_{i}-M_{j}$ is nonsingular whenever $i \neq j$;
(ii) \mathcal{S} is a spread of $P G(3, q)$, i.e. a collection of $q^{2}+1$ lines of $P G(3, q)$ which partition the point set; or
(iii) \mathcal{O} is an ovoid of the Klein quadric, i.e. a set of $q^{2}+1$ points on a hyperbolic quadric in $P G(5, q)$, no two of which are on a line of the quadric.
Now consider a subgroup G of the linear translation complement of π; thus $G \leq$ $G L(4, q)$ preserves the set of spread components. We are especially interested in the following two possibilities:

Type A $G \cong S L(2,9)$. We assume that $p>3$, so that the choice of $G \cong$ $S L(2,9)$ is unique up to conjugacy in $G L(4, q)$, and G acts irreducibly on V; see [17]. The corresponding subgroup of $P S L(4, q)$ given by $\bar{G}=G /\{ \pm I\} \cong P S L(2,9) \cong$ $A l t_{6}$ preserves the corresponding spread \mathcal{S}, and \bar{G} acts irreducibly on $P G(5, q)$ preserving both the Klein quadric and the corresponding ovoid \mathcal{O}. (The restriction $p \neq 3$ eliminates Desarguesian planes of order $3^{2 t}$, among others, admitting $S L(2,9)$ in a less interesting representation.)

Type B ('Extraspecial type') G has a normal subgroup $Q \cong D_{8} * Q_{8}$, a central product of a dihedral group of order 8 and a quaternion group of order 8 , and $G / Q \cong A l t_{5}$. See [12], [13] for a more precise description of the isomorphism type of G and its representation on V. The corresponding group acting on \mathcal{S} and on \mathcal{O} is $\bar{G}=G /\{ \pm I\} \cong 2^{4} A l t_{5}$, a split extension of an elementary abelian group of order 2^{4} by $A l t_{5}$. Although G acts irreducibly on V (preserving a symplectic form), \bar{G} fixes a unique point of $P G(5, p)$ outside the Klein quadric.

Ostrom [19] shows that types A and B are the 'largest' two possibilities for G, assuming that $G^{\prime}=G$ acts irreducibly on V, and $p \nmid|G|$. Examples of such planes for small prime values of q have been given by Mason and Ostrom [12], Mason, Shult and Cabaniss [13], Mason [10], [11], Ostrom [20], [21], Biliotti and Korchmáros [1], and Nakagawa [18]. Remarkably, no examples are known except when $q=p$ is prime; more will be said about this mystery in Section 4. However, in Section 3 we construct examples over every odd prime field:

THEOREM 1 For every odd prime p there exist self-polar translation planes of order p^{2} of types A and B. Valid examples are provided by Constructions 1.1 and 1.2 when $p \equiv 1 \bmod 4$, and Construction 1.3 when $p \equiv 1 \bmod 3$.

The self-polar property implies that the corresponding spread is invariant under a correlation of $P G(3, p)$, as we explain in the context of our examples.
1.1 Construction Let $p \equiv 1 \bmod 4$ be prime. List all integer solutions of

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{6}^{2}=6 p, \quad x_{i} \equiv 1 \bmod 4
$$

Here are the two smallest cases.

$$
\begin{array}{cccccc}
p=5: & \left(5,1^{5}\right) & 6 & \text { vectors } & p=13: & \left(5^{3}, 1^{3}\right) \\
& \left(-3^{3}, 1^{3}\right) & 20 & " & \left(-7,5,1^{4}\right) & 30 \\
& \text { vectors } \\
\text { total } & 26=5^{2}+1 & & \left(5^{2},-3^{3}, 1\right) & 60 & " \\
& & & \left(-7,-3^{3}, 1^{2}\right) & 60 & " \\
& & & \text { total } & \overline{170} & =13^{2}+1
\end{array}
$$

There are always $p^{2}+1$ solutions, and the resulting 6 -tuples, taken modulo p, yield an ovoid \mathcal{O} in $P G(5, p)$ with respect to the standard quadratic form. This ovoid is invariant under a group $\bar{G} \cong 2 \times S y m_{6}<P O_{6}^{+}(p)$ generated by coordinate permutations and the reflection $x \mapsto x-\frac{1}{3}\left(\sum x_{i}\right)\left(1^{6}\right)$. By the Klein correspondence, we obtain a translation plane π of order p^{2} of type A. We may identify $\bar{G} \cong 2 \times$ Sym $_{6}$ with a subgroup of $\operatorname{Aut}(P S L(4, p))$ preserving the corresponding spread \mathcal{S}, such that
half of \bar{G} (a subgroup $\cong S y m_{6}$) acts as collineations, and the remaining elements are correlations. The preimage of \bar{G} given by $G<A u t(S L(4, p))$ has a subgroup \cong $\Sigma L(2,9)$ in the translation complement of π. Here $\Sigma L(2,9)=S L(2,9)\langle\sigma\rangle$ where σ is the Frobenius automorphism of $G F(9)$.

DEFINITION Let $\pi, \mathcal{S}, \mathcal{O}$ be a triple consisting of a plane, spread and ovoid as described above, and let $\pi^{\prime}, \mathcal{S}^{\prime}, \mathcal{O}^{\prime}$ be another such triple. We say that π^{\prime} is the polar of π if any of the following three equivalent conditions is satisfied:
(i) π^{\prime} is isomorphic to the translation plane with spread matrices M_{i}^{\top}, where M_{i} are the spread matrices of π;
(ii) $\mathcal{S}^{\prime}=\mathcal{S}^{\rho}$ for some correlation ρ of $P G(3, q)$;
(iii) $\mathcal{O}^{\prime}=\mathcal{O}^{g}$ for some orthogonal transformation g such that $\operatorname{det}(g)=-1$.

If in addition π^{\prime} is isomorphic to π, we say π is self-polar.

If $p \equiv 3 \bmod 4$ then the 'standard' quadratic form $\sum x_{i}^{2}$ is elliptic rather than hyperbolic. In this case, a modification (Section 3, case II) yields analogues of Construction 1.1.
1.2 Construction Let $p \equiv 1 \bmod 4$ be prime. List all integer solutions of
$x_{1}^{2}+x_{2}^{2}+\cdots+x_{6}^{2}=p, \quad x_{1}+1 \equiv x_{2} \equiv x_{3} \equiv \cdots \equiv x_{6} \bmod 2, \quad \sum x_{i} \equiv 3 \bmod 4$.
Here are the two smallest cases.

$$
\begin{array}{ccccccc}
p=5: & \left(0 \mid \pm 1^{5}\right) & 16 & \text { vectors } & p=13: & \left(0 \mid \pm 3, \pm 1^{4}\right) & 80 \\
\text { vectors } \\
& \left(1 \mid \pm 2,0^{4}\right) & 10 & " & & \left(1 \mid \pm 2^{3}, 0^{2}\right) & 80 \\
& \text { total } & 26=5^{2}+1 & & \left(-3 \mid \pm 2,0^{4}\right) & 10 & " \\
& & & \text { total } & \frac{170}{170}=13^{2}+1
\end{array}
$$

There are always $p^{2}+1$ solutions, and these vectors, taken modulo p, yield an ovoid \mathcal{O} in $P G(5, p)$ with respect to the standard quadratic form. This ovoid is clearly invariant under a group of projective orthogonal transformations $\bar{G} \cong 2 \times 2^{4}$ Sym $_{5}$ generated by all permutations and sign changes of the last five coordinates. The corresponding translation plane π of order p^{2} is of type B . We identify \bar{G} with a subgroup of $\operatorname{Aut}(S L(4, p))$ preserving the corresponding spread \mathcal{S}. Half of \bar{G} (a subgroup $\cong 2^{4} S y m_{5}$) consists of collineations, and the other half consists of correlations.
1.3 Construction Let $p \equiv 1 \bmod 3$ be prime. The root lattice of type E_{6} may be identified as

$$
L=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{6}\right): x_{i} \in \mathbb{Z}, \quad \sum x_{i} \equiv 0 \bmod 3\right\}
$$

using the quadratic form $Q(x)=\sum x_{i}^{2}-\frac{1}{9}\left(\sum x_{i}\right)^{2}$. Let $e=\left(1^{6}\right) \in L$. List all vectors $v \in e+2 L$ such that $Q(v)=2 p$, but omit the vector $-v$ if v has already been listed. Here are the two smallest cases.

$$
\begin{array}{cclcccc}
p=7: & \left(1^{3}, 3^{3}\right) & 20 & \text { vectors } & p=13: & \left(3^{3},-1^{3}\right) & 20 \\
& \left(3,1,-1^{4}\right) & 30 \\
& \text { total } & 50 & \text { vectors } \\
& & & \left(3^{2}, 1^{3},-3\right) & 60 & " \\
& & & \left(5,1^{3},-1^{2}\right) & 60 & " \\
& & \left(5,3^{4}, 1\right) & 30 & " \\
& & \text { total } & \overline{170}=13^{2}+1
\end{array}
$$

In every case, $p^{2}+1$ vectors are obtained. Reducing modulo p gives an ovoid in $P G(5, p)$ with respect to $Q(\bmod p)$ invariant under $\bar{G} \cong 2 \times S y m_{6}$ generated by coordinate permutations and the reflection in e^{\perp}. The corresponding translation plane π of order p^{2} is of type A.

If $p \equiv 1 \bmod 12$ then Constructions 1.1 and 1.3 give two ovoids of type A in $O_{6}^{+}(p)$, and these are not necessarily equivalent under $P G O_{6}^{+}(p)$; in particular for $p=13$ our examples are inequivalent.

We remark that if $p \equiv 2 \bmod 3$ then $Q(\bmod p)$ gives instead a quadratic form of elliptic type. It is known (see [24]) that elliptic quadrics in $P G(5, q)$ (also known as generalized quadrangles of type $\left.Q^{-}(5, q)\right)$ do not admit ovoids. In this case (odd $p \equiv 2 \bmod 3$) the above construction gives caps (sets of pairwise noncollinear points) of size $\frac{5}{4}\left(p^{2}-1\right)$ in the associated generalized quadrangles; however, we have found that larger caps than these are obtainable by other means.

2 THE BINARY OVOIDS

Let $V=F^{2 n}, F=G F(q)$ where q is an odd prime power, and let $Q: V \rightarrow F$ be a nondegenerate quadratic form. Thus $Q(x)=\frac{1}{2} x A x^{\top}$ for some nonsingular symmetric $2 n \times 2 n$ matrix A over F. A point (one-dimensional subspace) $\langle v\rangle$ of $P G(V)$ is singular if $Q(v)=0$. A subspace $U \leq V$ is totally singular if $Q(u)=0$ for all $u \in U$. We suppose that Q is of hyperbolic type, which is to say that V has totally singular subspaces of dimension n; equivalently, $(-1)^{n} \operatorname{det}(A)$ is a nonzero square in F. We denote by $O_{2 n}^{+}(q)$ either the isometry type of the pair (V, Q), or the associated isometry group, depending on the context. An ovoid in $O_{2 n}^{+}(q)$ is a collection \mathcal{O} of singular points, such that every maximal totally singular subspace contains exactly one point of \mathcal{O}; equivalently, \mathcal{O} consists of $q^{n-1}+1$ singular points, no two of which are perpendicular with respect to the bilinear form $(x, y):=x A y^{\top}$. Ovoids in $O_{2 n}^{+}(q)$ are not known to exist for $n \geq 5$. Ovoids in $O_{6}^{+}(q)$ (projectively, the Klein quadric in $P G(5, q)$) were featured in Section 1. The known ovoids in $O_{8}^{+}(q)$ are listed in [8], [14]. Of these, the most important family we shall require are the binary ovoids of Conway et al. [5], which we proceed to construct.

Our terminology and basic facts regarding root systems, and their Weyl groups and lattices, are well-known; see [6], [7]. Consider the root lattice of type E_{8} defined by

$$
E=\left\{\frac{1}{2}\left(a_{1}, a_{2}, \ldots, a_{8}\right): a_{i} \in \mathbb{Z}, a_{1} \equiv a_{2} \equiv \cdots \equiv a_{8} \bmod 2, \sum a_{i} \equiv 0 \bmod 4\right\}
$$

It is well-known that the points of E determine the unique densest lattice packing of uniform spheres in \mathbb{R}^{8}. The root vectors of E are the 240 vectors $e \in E$ such that $\|e\|^{2}=2$. Among these we choose a system of fundamental roots:

$$
e_{1}=\frac{1}{2}\left(1,-1^{2}, 1^{5}\right) \bullet\left\{\begin{array}{l}
e_{2}=\left(-1^{2}, 0^{6}\right) \\
e_{3}=\left(0,1,-1,0^{5}\right) \\
e_{4}=\left(0^{2}, 1,-1,0^{4}\right) \\
e_{5}=\left(0^{3}, 1,-1,0^{3}\right) \\
e_{6}=\left(0^{4}, 1,-1,0^{2}\right) \\
e_{7}=\left(0^{5}, 1,-1,0\right) \\
e_{8}=\left(0^{6}, 1,-1\right)
\end{array}\right.
$$

Edges of this Dynkin diagram represent pairs of roots at an angle $2 \pi / 3$; unjoined nodes represent perpendicular pairs of roots. Let r_{i} be the reflection $E \rightarrow E$, $x \mapsto x-\left(x \cdot e_{i}\right) e_{i}$. Then r_{1}, \ldots, r_{8} generate the Weyl group $W\left(\mathrm{E}_{8}\right) \cong O_{8}^{+}(2)$.

For any prime $p, \bar{E}:=E / p E$ is an 8 -dimensional vector space over $F=G F(p)$, with quadratic form $Q(\bar{v})(\bar{v}:=v+p E, v \in E)$ of hyperbolic type, obtained by reducing $\frac{1}{2}\|v\|^{2}$ modulo p. Fix a root vector e and an odd prime p. There are exactly $2\left(p^{3}+1\right)$ vectors $v \in e+2 E$ such that $\|v\|^{2}=2 p$, which come in pairs $\pm v$. These vectors determine exactly $p^{3}+1$ coset pairs $\pm(v+p E)$ in E, forming a binary ovoid in $\bar{E} \simeq O_{8}^{+}(p)$. This ovoid, denoted $\mathcal{O}_{2, p}(e)$, is invariant under the stabilizer of $\mathbb{Z} e$ in $W\left(\mathrm{E}_{8}\right)$, namely $2 \times W\left(\mathrm{E}_{7}\right) \cong 2^{2} \times S p_{6}(2)$.

3 SLICING THE BINARY OVOIDS

Let \mathcal{O} be an ovoid in $O_{2 n}^{+}(q)$, and suppose $\langle w\rangle \notin \mathcal{O}$ is a singular point. Then Q induces a quadratic form of hyperbolic type on $w^{\perp} /\langle w\rangle$, and $\mathcal{O} \cap w^{\perp}$ yields an ovoid in $w^{\perp} /\langle w\rangle \simeq O_{2 n-2}^{+}(q)$, called a slice of \mathcal{O}; see [8]. By appropriately slicing the binary ovoids $\mathcal{O}_{2, p}(e)$ of Section 3 , we shall obtain ovoids in $O_{6}^{+}(p)$ of types A and B.

We require some facts about the representability of integers by integral quadratic forms.

LEMMA 1 Let p be a prime, and n a positive integer. Then
(i) $p=a^{2}+b^{2}$ for some integers a, b, iff $p \equiv 1 \bmod 4$;
(ii) $p=a^{2}-a b+b^{2}$ for some integers a, b, iff $p \equiv 1 \bmod 3$;
(iii) $n=a^{2}+b^{2}+c^{2}$ for some integers a, b, c, iff n is not of the form $4^{k}(8 \ell-1)$ where $k, \ell \in \mathbb{Z}$;
(iv) $n=a^{2}-a b+b^{2}+c^{2}$ for some integers a, b, c, iff n is not of the form $9^{k}(9 \ell-3)$ where $k, \ell \in \mathbb{Z}$.

Proof: Conclusions (i)-(iii) are well-known; see [4, pp.10,77], [23, p.45]. We prove (iv) using the theory of rational quadratic forms (see [23], especially Corollary 1 on p. 43 therein, and the Corollary on p.37). The quadratic form $Q(a, b, c)=a^{2}-$ $a b+b^{2}+c^{2}$ is rationally equivalent to the diagonal form $X^{2}+3 Y^{2}+Z^{2}$ where $a=X+Y, b=2 Y, c=Z$. Computing local invariants, we find that Q represents n in \mathbb{Q}_{p} for every prime $p \neq 3$, and that Q represents n in \mathbb{Q}_{3} if and only if $-3 n$ is a nonsquare in the group of units of \mathbb{Q}_{3}. The latter condition on n is equivalent to
$\left(^{*}\right) \quad n$ is not of the form $9^{k}(9 \ell-3)$ where $k, \ell \in \mathbb{Z}$.
Thus $\left(^{*}\right)$ is a necessary and sufficient condition for n to be represented as $Q(a, b, c)$ for some $(a, b, c) \in \mathbb{Q}^{3}$. To see that (a, b, c) may in fact be chosen in \mathbb{Z}^{3}, we apply the following:

LEMMA 2 (Davenport-Cassels) Consider a positive definite rational quadratic form $Q\left(x_{1}, \ldots, x_{r}\right)=\sum_{1 \leq i, j \leq r} a_{i j} x_{i} x_{j}$ where $a_{i j}=a_{j i} \in \frac{1}{2} \mathbb{Z}, a_{i i} \in \mathbb{Z}$. Suppose furthermore that for all $x \in \mathbb{Q}^{r}$, there exists $x^{\prime} \in \mathbb{Z}^{r}$ such that $Q\left(x^{\prime}-x\right)<1$. Then for any integer n, we may represent $n=Q(x)$ for some $x \in \mathbb{Q}^{r}$ if and only if $n=Q\left(x^{\prime}\right)$ for some $x^{\prime} \in \mathbb{Z}^{r}$.

This is shown in [23, p.46] under the additional hypothesis that $a_{i j} \in \mathbb{Z}$, which is stronger than necessary, as the proof in [23] shows.

We show that our form $Q(a, b, c)=a^{2}-a b+b^{2}+c^{2}$ satisfies the hypothesis of Lemma 2. Fix $a, b, c \in \mathbb{Q}$. Choose $c^{\prime} \in \mathbb{Z}$ such that $\left|c^{\prime}-c\right| \leq \frac{1}{2}$. Now observe that $Q(a, b, 0)$ is the squared length of the Euclidean vector $a e+b f$ where $e=(1,0), f=\frac{1}{2}(-1, \sqrt{3})$. Since every point of \mathbb{R}^{2} lies at distance $\leq 1 / \sqrt{3}$ from some point of the root lattice $\mathbb{Z} e+\mathbb{Z} f$ of type \mathbb{A}_{2}, we may choose $a^{\prime}, b^{\prime} \in \mathbb{Z}$ such that $Q\left(a^{\prime}-a, b^{\prime}-b, c^{\prime}-c\right) \leq \frac{1}{3}+\frac{1}{4}<1$. Now the statement of Lemma 1(iv) follows from Lemma 2.

LEMMA 3 Let $\bar{w}=w+p E \in \bar{E}$, and suppose $\langle\bar{w}\rangle \in \mathcal{O}_{2, p}(e)$ where $e \in E$ is a root vector.
(i) If $p>3$ and $f \in E \cap w^{\perp}$ is a root vector, then $e \cdot f$ is even.
(ii) If $p \equiv 3 \bmod 4,\|w\|^{2}=2 p$ and $w \cdot e$ is even, then $w \in e+2 E$.

Proof: By hypothesis, we have $v \in \lambda w+p E$ for some $v \in e+2 E,\|v\|^{2}=2 p$, $p \nmid \lambda$.

If $f \in E \cap w^{\perp}$ is a root vector, then $v \cdot f \equiv \lambda w \cdot f \equiv 0 \bmod p$. But $|v \cdot f| \leq$ $\|v\|\|f\|=2 \sqrt{p}$ and since $p>3$, we must have $v \cdot f=0$. Now $e \cdot f \equiv v \cdot f \equiv 0 \bmod 2$.

Under the hypotheses of (ii), we have $|v \cdot w| \leq\|v\|\|w\|=2 p$ and $v \cdot w \equiv 0 \bmod p$, and so $v \cdot w \in\{0, \pm p, \pm 2 p\}$. Also $v \cdot w \equiv e \cdot w \equiv 0 \bmod 2$. If $v \cdot w= \pm 2 p$ then $w= \pm v \equiv e \bmod 2 E$ and we are done. Hence we may assume that $v \cdot w=0$. Then $v-\lambda w \in p E$ implies that $\|v-\lambda w\|^{2}=\|v\|^{2}+\lambda^{2}\|w\|^{2} \equiv 0 \bmod 2 p^{2}$ and $1+\lambda^{2} \equiv 0$ $\bmod p$, contradicting $p \equiv 3 \bmod 4$.

We proceed to prove Theorem 1 in five cases. In cases I and II we refer to the following decomposable root subsystem of E :

$$
\text { where } \begin{aligned}
f_{1} & =\left(1,-1,0^{6}\right) \\
f_{2} & =\frac{1}{2}\left(1^{8}\right)
\end{aligned}
$$

Case I Suppose $p \equiv 1 \bmod 4$. By Lemma $1(\mathrm{i})$, we may write $p=a^{2}+b^{2}$ for some integers a, b. We may suppose that a is odd, b is even, and $a+b \equiv 1 \bmod 4$ (otherwise replace a by $-a$). Let $w=a e_{2}+b f_{1}=\left(-a+b,-a-b, 0^{6}\right) \in E$, so that $\|w\|^{2}=2 p$. By Lemma 3(i), the singular point $\langle\bar{w}\rangle$ does not lie in the ovoid $\mathcal{O}:=\mathcal{O}_{2, p}\left(f_{2}\right)\left(\right.$ since $f_{3}:=\left(0^{6} 1^{2}\right) \in w^{\perp}$ but $\left.f_{3} \cdot f_{2}=1\right)$. The slice $\mathcal{O} \cap \bar{w}^{\perp}$ is an ovoid invariant under $\left\langle r_{4}, r_{5}, \ldots, r_{8}\right\rangle \cong W\left(\mathrm{~A}_{5}\right) \cong S y m_{6}$ consisting of all permutations of the last six coordinates. To see that this is equivalent to Construction 1.1, it clearly suffices to establish:

$$
\left.\begin{array}{l}
v \in f_{2}+2 E,\|v\|^{2}=2 p, \\
v \cdot w \equiv 0 \bmod p
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
v= \pm \frac{1}{2}\left(a-b, a+b, v_{3}, \ldots, v_{8}\right) \\
v_{3} \equiv v_{4} \equiv \cdots \equiv v_{8} \equiv 1 \bmod 4 \\
v_{3}^{2}+\cdots+v_{8}^{2}=6 p
\end{array}\right.
$$

First suppose that $v=\frac{1}{2}\left(v_{1}, \ldots, v_{8}\right) \in f_{2}+2 E,\|v\|^{2}=2 p, v \cdot w \equiv 0 \bmod p$. Then $|v \cdot w| \leq\|v\|\|w\|=2 p$, so $v \cdot w \in\{0, \pm p, \pm 2 p\}$. Also $v \cdot w \equiv f_{2} \cdot w \equiv-a \equiv 1 \bmod 2$, so $v \cdot w= \pm p$. We may assume that $v \cdot w=-p$. Since $2 v \cdot w=(b-a) v_{1}-(b+a) v_{2}=-2 p$ where $\operatorname{gcd}(b-a, b+a)=1$, we have

$$
v_{1}=a-b+(b+a) k, \quad v_{2}=a+b+(b-a) k
$$

for some $k \in \mathbb{Z}$. Then $\|v\|^{2}=\frac{1}{4}\left(2 p+2 p k^{2}+v_{3}^{2}+\cdots+v_{8}^{2}\right)=2 p$ implies $|k| \leq 1$. Now $v \in f_{2}+2 E$ implies $v_{1} \equiv v_{2} \equiv \cdots \equiv v_{8} \bmod 4$. In particular, $v_{1} \equiv 1+k \equiv v_{2} \equiv 1-k$ $\bmod 4$, so $k=0$ and $v_{3}^{2}+\cdots+v_{8}^{2}=6 p$ as required.

Conversely, we may suppose $v=\frac{1}{2}\left(a-b, a+b, v_{3}, \ldots, v_{8}\right)$ where $v_{3} \equiv v_{4} \equiv \cdots \equiv$ $v_{8} \equiv 1 \bmod 4$ and $v_{3}^{2}+\cdots+v_{8}^{2}=6 p$. Clearly $v \cdot w=-p,\|v\|^{2}=2 p$. We must show that

$$
v-f_{2}=\frac{1}{2}\left(a-b-1, a+b-1, v_{3}-1, \cdots, v_{8}-1\right) \in 2 E
$$

Clearly $a-b-1 \equiv a+b-1 \equiv v_{3}-1 \equiv \cdots \equiv v_{8}-1 \equiv 0 \bmod 4$. It remains to be shown that $2 a+\sum v_{i} \equiv 0 \bmod 8$ (sum over $i=3,4, \ldots, 8$). However, $\sum\left(v_{i}-1\right)^{2} \equiv 0 \bmod 16$ implies that $2 \sum v_{i} \equiv 6+\sum v_{i}^{2} \equiv 6(p+1) \bmod 16$. Therefore $2 a+\sum v_{i} \equiv(2-2 b)+3(p+1) \equiv 2-2 b+3 a^{2}+3 b^{2}+3 \equiv 3 b(b+2) \equiv 0$ $\bmod 8$, as required.

Case II Suppose that $p \equiv 3 \bmod 4$. By Lemma 1(iv), we may choose integers a, b, c such that $a^{2}-a b+b^{2}+c^{2}=p$. Let $w=a e_{2}+b f_{2}+c f_{1}$, so that $\|w\|^{2}=2 p$. Clearly a, b cannot both be even. We may suppose a is odd, so $\left(w-f_{1}\right) \cdot f_{2}=$ $-a+2 b \equiv 1 \bmod 2$ and therefore $w-f_{1} \notin 2 E$. By Lemma 3(ii), the singular point $\langle\bar{w}\rangle$ is not in the ovoid $\mathcal{O}:=\mathcal{O}_{2, p}\left(f_{1}\right)$. As in case I, the ovoid $\mathcal{O} \cap \bar{w}^{\perp}$ is invariant under $\left\langle r_{4}, r_{5}, \ldots, r_{8}\right\rangle \cong$ Sym $_{6}$.

In cases III and IV we refer to the following decomposable root subsystem of E :

$$
\text { where } \begin{aligned}
f_{1} & =\left(1,-1,0^{6}\right), \\
f_{3} & =\left(0^{6} 1^{2}\right)
\end{aligned}
$$

Case III Suppose again that $p \equiv 1 \bmod 4$. As in case I, we have $p=a^{2}+b^{2}$, a odd, b even, $a+b \equiv 1 \bmod 4$. Let $w=a e_{2}+b f_{1}$, so that $\|w\|^{2}=2 p$. By Lemma 3(i), the singular point $\langle\bar{w}\rangle$ does not lie in the ovoid $\mathcal{O}:=\mathcal{O}_{2, p}\left(e_{3}\right)$ (since $e_{4} \in w^{\perp}$ but $e_{4} \cdot e_{3}=-1$). The ovoid $\mathcal{O} \cap \bar{w}^{\perp}$ is invariant under the group $\cong 2^{4}$ Sym $_{5}$ consisting of all permutations, and an even number of sign changes, of the last five coordinates. Note that this group is the Weyl group of type D_{5} generated by the reflections corresponding to the roots $e_{5}, e_{6}, e_{7}, e_{8}, f_{3}$. To see that this is equivalent to Construction 1.2, it clearly suffices to prove:

$$
\left.\begin{array}{l}
v \in e_{3}+2 E,\|v\|^{2}=2 p, \\
v \cdot w \equiv 0 \bmod p
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
v= \pm\left(a, b, v_{3}, \ldots, v_{8}\right)=(\text { OEEOOOOO }) \\
\text { or } \pm\left(b, a, v_{3}, \ldots, v_{8}\right)=(\text { EOOEEEEE }) \\
\text { where } \mathrm{E}=\text { even, } \mathrm{O}=\text { odd } \\
v_{3}+\cdots+v_{8} \equiv 3 \bmod 4, \quad v_{3}^{2}+\cdots+v_{8}^{2}=p
\end{array}\right.
$$

First suppose that $v \in e_{3}+2 E,\|v\|^{2}=2 p, v \cdot w \equiv 0 \bmod p$. The first condition implies that $v=\left(v_{1}, v_{2}, \ldots, v_{8}\right) \in \mathbb{Z}^{8}$ where $v_{1} \equiv v_{2}+1 \equiv v_{3}+1 \equiv v_{4} \equiv \cdots \equiv v_{8}$ $\bmod 2$. As in case I, we may suppose $v \cdot w=-p$. Since $v \cdot w=(b-a) v_{1}-(b+a) v_{2}=$ $-p$ where $\operatorname{gcd}(b-a, b+a)=1$, we have

$$
v_{1}=a+(b+a) k, \quad v_{2}=b+(b-a) k
$$

for some $k \in \mathbb{Z}$. Then $\|v\|^{2}=p+2 p k(k+1)+v_{3}^{2}+\cdots+v_{8}^{2}=2 p$ implies $k \in\{-1,0\}$ and $v_{3}^{2}+\cdots+v_{8}^{2}=p$. Also, $a+b \equiv 1 \bmod 4$ implies that $v_{3}+\cdots+v_{8} \equiv 3 \bmod 4$. The converse is straightforward.

Case IV Assume that $p \equiv 3 \bmod 4$. Since $2 p \equiv 6 \bmod 8$, by Lemma 3(iii) there exist odd integers a, b, c such that $2 p=a^{2}+b^{2}+4 c^{2}$. We may assume that $a \equiv b$ $\bmod 4$; otherwise replace b by $-b$. Then $\alpha=\frac{1}{2}(b-a)+c$ and $\beta=\frac{1}{2}(b-a)-c$ are odd integers. Let $w=\alpha e_{2}+b e_{3}+\beta f_{1}$, so that $\|w\|^{2}=2 p$. Now $w \cdot e_{3}=2 b-\alpha-\beta \equiv 0$ $\bmod 2$, and $\left(w-e_{3}\right) \cdot e_{1}=\beta \equiv 1 \bmod 2$ so $w-e_{3} \notin 2 E$. By Lemma 3(ii), the singular point $\langle\bar{w}\rangle$ is not in the ovoid $\mathcal{O}:=\mathcal{O}_{2, p}\left(e_{3}\right)$. As in case III, the ovoid $\mathcal{O} \cap \bar{w}^{\perp}$ is invariant under 2^{4} Sym $_{5}$.

It remains only to justify Construction 1.3 , for which we consider the decomposable root subsystem

$$
\text { where } \begin{aligned}
f_{4}= & \frac{1}{2}\left(1,-1^{6}, 1\right) \\
= & -3 e_{1}-2 e_{2}-4 e_{3}-6 e_{4} \\
& -5 e_{5}-4 e_{6}-3 e_{7}-2 e_{8}
\end{aligned}
$$

Case V Suppose $p \equiv 1 \bmod 3$. Let $L=\mathbb{Z} e_{1}+\mathbb{Z} e_{2}+\cdots+\mathbb{Z} e_{6}$, a root sublattice of type E_{6} isometric to the lattice of Construction 1.3. By Lemma 3.1(ii), there exist
integers a, b such that $p=a^{2}-a b+b^{2}$. Clearly a, b are not both even, so we may suppose that a is odd. Let $w=a f_{4}+b e_{8}$, so that $\|w\|^{2}=2 p$. By Lemma 3.3(i), $\langle\bar{w}\rangle \notin \mathcal{O}:=\mathcal{O}_{2, p}\left(e_{1}\right)$ (since $e_{4} \in w^{\perp}$ but $e_{4} \cdot e_{1}=-1$). We wish to show that the ovoid $\mathcal{O} \cap \bar{w}^{\perp}$ is equivalent to Construction 1.3. Since the Weyl group of type E_{6} is transitive on its 72 roots, our root e_{1} is equivalent to the root e chosen in Construction 1.3. Therefore it remains only to show that

$$
\left.\begin{array}{l}
v \in e_{1}+2 E,\|v\|^{2}=2 p, \\
v \cdot w \equiv 0 \bmod p
\end{array}\right\} \Longleftrightarrow v \in e_{1}+2 L, \quad\|v\|^{2}=2 p
$$

We need only prove the ' \Rightarrow ' implication. Suppose $v \in e_{1}+2 E,\|v\|^{2}=2 p, v \cdot w \equiv 0$ $\bmod p$. Then $|v \cdot w| \leq\|v\|\|w\|=2 p$, so $v \cdot w \in\{0, \pm p, \pm 2 p\}$. But $v \cdot w \neq \pm 2 p$, since otherwise $w= \pm v$, contradicting $\langle\bar{w}\rangle \notin \mathcal{O}$. Also, $v \cdot w \equiv e_{1} \cdot w \equiv 0 \bmod 2$, so $v \cdot w=0$. It is clear from the expression above for f_{4} that $3 E \subset L+\mathbb{Z} f_{4}+\mathbb{Z} e_{8}$. Therefore $3 v=\alpha f_{4}+\beta e_{8}+z$ for some $z \in L$. Now $0=3 v \cdot w=(2 a-b) \alpha+(2 b-a) \beta$ where $\operatorname{gcd}(2 a-b, 2 b-a)=1$, and so

$$
\alpha=(a-2 b) k, \quad \beta=(2 a-b) k
$$

for some $k \in \mathbb{Z}$. Now $18 p=\|3 v\|^{2}=6 p k^{2}+\|z\|^{2}$ and so $|k| \leq 1$. However, $3\left(v-e_{1}\right) \cdot e_{8}=2 \beta-\alpha=3 a k$ is even since $v-e_{1} \in 2 E$. Thus $k=0$ and $3 v=z \in L$. This means that $v \in L$ and the desired conclusion follows.

4 REMARKS

Much more general examples of translation planes of types A and B are available than those presented in Section 3, using the more general ovoids in $O_{8}^{+}(p)$ constructed in [14], [15] using the E_{8} root lattice. Choose a vector $x \in E$ and primes $r<p$ such that $-\frac{p}{2}\|x\|^{2}$ is a quadratic residue modulo r. List all vectors $v \in \mathbb{Z} x+r E$ such that $\|v\|^{2}=2 i(r-i) p$ where $1 \leq i \leq\left\lfloor\frac{r}{2}\right\rfloor$. This gives an ovoid $\mathcal{O}=\mathcal{O}_{r, p}(x)$ in $\bar{E}=E / p E$. Let $\langle\bar{w}\rangle \notin \mathcal{O}$ be a singular point. Then the slice $\mathcal{O} \cap \bar{w}^{\perp}$ is invariant under the group of all $g \in W\left(\mathrm{E}_{8}\right)$ preserving both $\mathbb{Z} x+r E$ and $\mathbb{Z} w+p E$. We may arrange that this group is a suitably large Weyl group, for example of type A_{5} or D_{5} as in Section 3.

We find the computer implementation of all ovoid constructions described here to be very efficient using available techniques for finding short vectors in lattices; see [3, pp.102-104]. In general, the best available method for comparing isomorphism classes by computer is J. H. Conway's invariant known as the fingerprint; see [2], [16]. However, for ovoids of type A or B, isomorphism testing is greatly simplified; see [1, Step 4], [13, (2.8)].

In Table 4.1 we have listed the number of equivalence classes (under the general orthogonal group) of ovoids of type A or B in $O_{6}^{+}(p)$ for small primes p, as enumerated by computer. (Warning: There are slight disagreements between this table and similar lists found in at least three of the references.) The full stabilizers $\bar{G}<P O_{6}^{+}(p)$ of these ovoids, namely the five groups $2 \times S y m_{6}, 2 \times A l t_{6}, S y m_{6}$, 2×2^{4} Sym $_{5}, 2^{4}$ Sym $_{5}$, all contain reflections. Each of the associated translation planes is self-polar, with full translation complement H and kernel K satisfying $H / K \cong S y m_{6}, A l t_{6}, A l t_{6}, 2^{4} S y m_{5}$ or $2^{4} A l t_{5}$ respectively. Although for $p \leq 37$ we

p	3	5	7	11	13	17	19	23	29	31	37
$2 \times$ Sym $_{6}$		1	2	3	2	2	6	6	2	12	6
$2 \times$ Alt $_{6}$		0	0	2	0	0	0	0	0	0	0
Sym $_{6}$		0	0	3	1	2	2	17	5	2	5
total type A		1	2	8	3	4	8	23	7	14	11
2×2^{4} Sym $_{5}$	1	1	1	3	2	2	5	7	8	6	7
2^{4} Sym $_{5}$	0	0	0	1	0	1	0	7	3	4	2
total type B	1	1	1	4	2	3	5	14	11	10	9

Table 4.1 Number of ovoids of type A, B in $O_{6}^{+}(p)$ for small p
found that $\bar{G} \not \approx A l t_{6}, H / K \not \approx 2 \times 2^{4} A l t_{5}$, and π is self-polar, we have no evidence that these must be true in general.

The lack of known examples for $q=p^{t}, t \geq 2$ is quite perplexing. By exhaustive computer search, we have concluded that there is no ovoid in $O_{6}^{+}(25)$ admitting $A l t_{6}$, and no ovoid in $O_{6}^{+}(q)$ admitting $2^{4} A l t_{5}$ for $q=9,25,27,49$. Similarly, for $t \geq 2$, a lack of known ovoids in $O_{8}^{+}\left(p^{t}\right)$ invariant under $S p_{6}(2)$ was observed in [15]. The best nonexistence result we have in this direction is the following:

LEMMA 4 There is no ovoid of type B in $O_{6}^{+}\left(3^{2 t}\right)$.
Proof: Suppose \mathcal{O} is an ovoid in $O_{6}^{+}(q)$ invariant under $\bar{G} \cong 2^{4} A l t_{5}$. We use the quadratic form $Q(x)=-x_{0}^{2}+\sum_{j=1}^{5} x_{j}^{2}$ of hyperbolic type, and \bar{G} acts by even permutations, and an even number of sign changes, of the last five coordinates. If $q=3^{2 t}$ then $|\mathcal{O}|=q^{2}+1 \equiv 2 \bmod 5$, so $(12345) \in A l t_{5}$ fixes at least two points of \mathcal{O}. However, (12345) fixes exactly two singular points, namely $\left\langle\left(\theta, 1^{5}\right)\right\rangle$ and $\left\langle\left(-\theta, 1^{5}\right)\right\rangle$, where $\theta^{2}=-1$. So both these points must belong to \mathcal{O}. But then \mathcal{O} also contains $\left\langle\left(\theta,-1^{2}, 1^{3}\right)\right\rangle$, which is orthogonal to $\left\langle\left(-\theta, 1^{5}\right)\right\rangle$, a contradiction.

Because of slicing, Lemma 4 implies the nonexistence of ovoids in $O_{8}^{+}\left(3^{2 t}\right)$ invariant under $S p_{6}(2)$.

Does every known translation plane of type A or B arise from a lattice-type construction? We believe not. From the known ovoids in $O_{8}^{+}(q)$ for small q, as listed in [14], we have determined all possible $O_{6}^{+}(q)$-slices; and in general, these do not include all ovoids listed in Table 4.1. The smallest examples of this are for $q=11$, where the five known ovoids in $O_{8}^{+}(11)$ yield 85 slices in $O_{6}^{+}(11)$, but these account for only $5=1+0+1+3+0$ of the $12=3+2+3+3+1$ ovoids of types A and B.

Finally, we emphasize the most striking feature of these constructions of ovoids and translation planes: their apparent dependence on some nonelementary number theory. In addition to Lemma 1, the construction of $\mathcal{O}_{r, p}(e)$ (see [5], [14], [15]) relies on the following theorem (see [23]). Here $N_{\Lambda}(n)$ denotes the number of vectors v in an integral lattice Λ such that $\|v\|^{2}=n$. Also $\sigma_{k}(n)=\sum_{1 \leq d \mid n} d^{k}$.

THEOREM 2 For every positive integer n, we have $N_{E}(2 n)=240 \sigma_{3}(n)$ and $N_{E \oplus E}(2 n)=480 \sigma_{7}(n)$.

Sarnak's interesting book [22] describes similar 'applications of modular forms' to analysis, ergodic theory and graph theory, in particular making use of the following:

THEOREM 3 (Jacobi) $\quad N_{\mathbb{Z}^{4}}(n)=8 \sum\{d: 1 \leq d \mid n, 4 \nmid d\}$. In particular, $N_{\mathbb{Z}^{4}}(p)=$ $8(p+1)$ for every prime p.

Unlike Sarnak's examples, where the asymptotic behaviour of $N_{\mathbb{Z}^{4}}(p)$ is more important than the exact value $8(p+1)$, however, in the constructions of the ovoids $\mathcal{O}_{r, p}(x)$ the exact values $N_{E}(2 p)=240\left(p^{3}+1\right)$ and $N_{E \oplus E}(2 p)=480\left(p^{7}+1\right)$ are indispensable. A very interesting research problem is to find similar constructions in finite geometry which make use of the exact values $N_{\mathbb{Z}^{4}}(p)=8(p+1)$.

REFERENCES

1. M. Biliotti and G. Korchmáros, Some finite translation planes arising from $A_{6}{ }^{-}$ invariant ovoids of the Klein quadric, J. Geom., 37: 29-47 (1990).
2. C. Charnes, Quadratic matrices and the translation planes of order 5^{2}, in Coding Theory, Design Theory, Group Theory, ed. D. Jungnickel and S. A. Vanstone, pp.155-161, Wiley, New York (1993).
3. H. Cohen, A Course in Computational Algebraic Number Theory, SpringerVerlag, Berlin (1993).
4. D. A. Cox, Primes of the Form $x^{2}+n y^{2}$, Wiley, New York (1989).
5. J. H. Conway, P. B. Kleidman and R. A. Wilson, New families of ovoids in O_{8}^{+}, Geom. Dedicata, 26: 157-170 (1988).
6. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 2nd ed., Springer-Verlag, New York (1993).
7. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York (1972).
8. W. M. Kantor, Ovoids and translation planes, Canad. J. Math., 34: 1195-1207 (1982).
9. H. Lüneburg, Translation Planes, Springer-Verlag, New York (1980).
10. G. Mason, Orthogonal geometries over $G F(2)$ and actions of extra-special 2groups on translation planes, Europ. J. Combinatorics, 4: 347-357 (1983).
11. G. Mason, Some translation planes of order 7^{2} which admit $S L_{2}(9)$, Geom. Dedicata, 17: 297-305 (1985).
12. G. Mason and T. G. Ostrom, Some translation planes of order p^{2} and of extraspecial type, Geom. Dedicata, 17: 307-322 (1985).
13. G. Mason and E. E. Shult, The Klein correspondence and the ubiquity of certain translation planes, Geom. Dedicata, 21: 29-50 (1986).
14. G. E. Moorhouse, Ovoids from the E_{8} root lattice, Geom. Dedicata, 46: 287-297 (1993).
15. G. E. Moorhouse, Root lattice constructions of ovoids, in Finite Geometry and Combinatorics, ed. F. De Clerck et al., pp.269-275, Camb. Univ. Press, Cambridge (1993).
16. G. E. Moorhouse, Two-graphs and skew two-graphs in finite geometries, Linear Algebra Appl., 226-228: 529-551 (1995).
17. B. Mwene, On some subgroups of $P S L(4, q), q$ odd, Geom. Dedicata, 12: 189-199 (1982).
18. N. Nakagawa, Some translation planes of order 11^{2} which admit $S L(2,9)$, Hokkaido Math. J., 20: 91-107 (1991).
19. T. G. Ostrom, Collineation groups whose order is prime to the characteristic, Math. Z., 156: 59-71 (1977).
20. T. G. Ostrom, Elementary abelian 2-groups on the line at infinity of translation planes, J. Geometry, 17: 128-139 (1981).
21. T. G. Ostrom, Lectures on Finite Translation Planes, Conf. Sem. Mat. Univ. Bari, vol. 191, 31 pp. (1983).
22. P. Sarnak, Some Applications of Modular Forms, Camb. Univ. Press, Cambridge (1990).
23. J.-P. Serre, A Course in Arithmetic, Springer-Verlag, New York (1973).
24. J. A. Thas, Ovoids and spreads of finite classical polar spaces, Geom. Dedicata, 10: 135-144 (1981).
