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Some p-ranks Related to Hermitian Varieties

G. Eric Moorhouse
Dept. of Mathematics, University of Wyoming, Laramie WY, U.S.A.

Abstract. We determine the p-rank of the incidence matrix of hyper-
planes of PG(n, pe) and points of a nondegenerate Hermitian variety.
As a corollary, we obtain new bounds for the size of caps and the ex-
istence of ovoids in finite unitary spaces. This paper is a companion
to [2], in which Blokhuis and this author derive the analogous p-ranks
for quadrics.
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1. Introduction

Let F ⊇ K be finite fields of order q2 and q= pe respectively, where p is prime. Choose a

nondegenerate Hermitian variety of PG(n, F ), denoted by Z(U), the zero set of a nonde-
generate unitary form U , as defined in Section 2. The number of points and of hyperplanes

in PG(n, F ) is m =
[
n+1

1

]
q2 = (q2(n+1)− 1)/(q2− 1). Let P1, P2, . . . , Ps denote the points

of Z(U), where s is given by Lemma 2.1 below, and let Ps+1, . . . , Pm be the remaining

points of PG(n, F ). Name the hyperplanes as Hi = P δ
i for i = 1, 2, . . . , m, where δ is

the unitary polarity associated to U ; thus H1, H2, . . . , Hs are the hyperplanes tangent to

the Hermitian variety. Then we have a symmetric point-hyperplane incidence matrix for

PG(n, F ) given by

A =
(
aij : 1≤ i, j≤m

)
=

(
A1

A2

)
=

(
A11 A12

A21 A22

)

where aij = 0 or 1 according as Pi /∈ Hj or Pi ∈ Hj . Here A1 =
(
A11 A12

)
consists of

the first s rows of A; A11 consists of the first s columns of A1, etc. Our main result is the

determination of the rank of A1 in characteristic p, as will be proven in Section 5:

1.1 Theorem. rankpA1 =
[(

p+n−1
n

)2 − (
p+n−2

n

)2]e+ 1 .

For comparison, we state the corresponding result for quadrics as found in [2]: for n ≥ 2,
the incidence matrix of hyperplanes of PG(n, pe) and points of a nondegenerate quadric,
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has p-rank equal to
[(

p+n−1
n

)−(
p+n−3

n

)]e+1. All these results are related to the following,

which is well known.

1.2 Theorem. rankpA =
(
p+n−1

n

)2e
+ 1 .

The latter result has numerous independent sources, such as Goethals and Delsarte [4],

MacWilliams and Mann [6], and Smith [8]. See also [3] for a treatment closer in spirit to

ours, or [1] for more details and related results and discussion.

The following new bounds for caps and ovoids on Hermitian varieties, are improve-

ments of those given in [2]. Recall that a cap in Z(U) is a set of points in Z(U), no two of
which lie on a line of Z(U). An ovoid in Z(U) is a cap of size q2�n/2�+1+ 1 (see [5], [9]).

1.3 Corollary. Let Z(U) be a nondegenerate Hermitian variety in PG(n, q2), q= pe.

(i) If S is a cap in Z(U), then |S| ≤ [(
p+n−1

n

)2 − (
p+n−2

n

)2]e+ 1 .

(ii) If n=2m+1 and Z(U) contains an ovoid, then pn ≤ (
p+n−1

n

)2 − (
p+n−2

n

)2
.

The latter follows directly from Theorem 1.1, since if S = {P1, . . . , Pk} is a cap in Z(U),
then the upper left k× k submatrix of A11 is an identity matrix, whence k ≤ rankp A11 ≤
rankpA1 (cf. [2]).

We remark that ovoids in Z(U) are trivial for n = 2; exist for n = 3 (see [10], [7]);
are nonexistent for n = 2m ≥ 4 (see [9]); and are unknown to exist for n = 2m + 1 ≥ 5.
As an application of Corollary 1.3, we see that there do not exist ovoids in Z(U) ⊂
PG(2m+1, p2e) for p ∈ {2, 3} and 2m+1 ≥ 7; for p ∈ {5, 7} and 2m+1 ≥ 9; or for
p ∈ {11, 13} and 2m+1 ≥ 11. The case of PG(11, 132e) was not excluded, however, by

the weaker bounds given in [2].

Our proof of Theorem 1.1 depends on some rather technical arguments involving

polynomials. However, this approach yields, as a bonus, a natural interpretation of the

row or column space of A1 over F , as a module for the unitary group; see Theorem 5.5

below. It remains an open problem to determine rankp A11, which might conceivably yield

a slight improvement of Corollary 1.3.

We wish to thank the referee for suggestions which were useful in revising the original

manuscript.
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2. Preliminaries

We suppose that Hermitian forms are familiar to the reader. However, we define our terms

and establish notation for forms in a polynomial setting.

Let V = Fn+1 = {x=(x0, x1, . . . , xn) : xi ∈ F}, considered as a vector space over
F = GF (q2). Let F [X] := F [X0, X1, . . . , Xn], the ring of polynomials in the n+1 indeter-

minates X := (X0, X1, . . . , Xn), and let Fd[X] be the subspace consisting of all homoge-

neous polynomials of degree d within F [X], together with the zero polynomial. The zero

set of each nonzero f(X) ∈ Fd[X], considered projectively, becomes a variety of degree d

in PG(V ) = PG(n, F ), denoted by Z(f). A Hermitian form on V is a polynomial of the

form

h(X,Y) =
∑

0≤i,j≤n

aijXiY
q
j ∈ Fq+1[X,Y]

where aij ∈ F , aq
ji = aij for all i, j ∈ {0, 1, . . . , n}. We will suppose that h(X,Y) is

nondegenerate, i.e. det
(
aij

) = 0. The corresponding Hermitian polarity δ of PG(V ) is

determined by

(point of PG(V )) 〈y〉 δ←→ Z(�y) (hyperplane of PG(V ))
where 0 = y ∈ V and �y(X) := h(X,y) ∈ F1[X]. (Observe the use of upper case letters

for indeterminates, as in Y = (Y0, . . . , Yn), and lower case letters for constants, as in

y = (y0, . . . , yn).) The unitary form corresponding to h(X,Y) is

U(X) := h(X,X) ∈ Fq+1[X] .

It is well known that any member of the triple
(
h(X,Y), δ, U(X)

)
determines the other

two (although h and U are determined only to within nonzero K-multiples). A point 〈x〉
(respectively, hyperplane H) is absolute with respect to δ, if 〈x〉 ∈ 〈x〉δ (resp., Hδ ∈ H).
If n ≥ 2 and U(X) is nondegenerate (i.e. h(X,Y) is nondegenerate), then the polynomial
U(X) is absolutely irreducible.

The standard Hermitian form is given by
∑
XiY

q
i . It is well known that any non-

degenerate Hermitian form is equivalent to the standard form, under a linear change of

coördinates. A nondegenerate Hermitian variety in PG(V ) is a variety of the form Z(U),
where U(X) is a nondegenerate unitary form. This is exactly the set of absolute points

with respect to the corresponding Hermitian polarity δ. A hyperplane H is said to be

tangent to the variety Z(U) if H is absolute with respect to δ. The following may be
found in Theorem 23.2.4 of [5].
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2.1 Lemma. PG(n, F ) contains s = (qn+1+(−1)n)(qn−(−1)n)/(q2−1) absolute points

(or hyperplanes), and m − s = qn(qn+1 + (−1)n)/(q + 1) nonabsolute points (or hyper-

planes).

A projective subspace W of PG(V ) is said to be nondegenerate if Z(U) ∩ W is a

nondegenerate Hermitian variety in W . For example, the nondegenerate hyperplanes of

PG(V ) are precisely the nonabsolute hyperplanes of PG(V ) with respect to δ.

3. Hermitian Curves

Consider the case n = 2, so that Z(U) is a Hermitian curve in PG(2, F ). Recall that there
are many homogeneous polynomials in X = (X, Y, Z) := (X0, X1, X2) of degree ≥ q2+ 1

which vanish on PG(2, F ). We will determine all homogeneous polynomials of degree ≤ q2

which vanish on Z(U). First, observe that these are not necessarily multiples of U(X).
For, given a nonabsolute line Z(�) of PG(2, F ), where 0 = �(X) ∈ F1[X], define

f�(X) := �(X)
q2−q∏
i=1

h(X, ai)

where {〈ai〉 : 1 ≤ i ≤ q2− q} is the set of all nonabsolute points of Z(�), and h(X,Y) is
the Hermitian form corresponding to U(X). Note that deg f�(X) = q2− q+1, and that
the nonabsolute line Z(�) determines f�(X) only to within a nonzero scalar multiple. Now

let 〈v〉 be a point of Z(U). If 〈v〉 lies on Z(�), then �(v) = 0. Otherwise 〈v〉 is an absolute
point not on Z(�), in which case the absolute line 〈v〉δ meets Z(�) in a nonabsolute point
〈ai〉, and h(v, ai) = 0. In any case, f�(v) = 0; that is, f�(X) vanishes on Z(U).
To see that f�(X) is not divisible by U(X), we may suppose that U(X) = Xq+1 +

Y q+1 + Zq+1, the standard unitary form, and that �(X) = X . Then Z(�) = {(0, 0, 1)} ∪
{(0, 1, α) : α ∈ F}, and the absolute points of Z(�) are {(0, 1, α) : α∈F, αq+1= − 1}.
Thus

f�(X) = λXZ
∏
α∈F

h
(
X, (0, 1, α)

) / ∏
αq+1=−1

h
(
X, (0, 1, α)

)

= λXZ
∏
α∈F

(Y + αqZ)
/ ∏
αq+1=−1

(Y + αqZ)

= λX(Y q2
Z − Y Zq2

)
/
(Y q+1+ Zq+1)

for some λ ∈ F ................{0}. By comparing degrees with respect to X , we see that f�(X) is not

divisible by U(X).
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Now U(X) and f�(X) generate a nonprincipal ideal (f�(X), U(X)) ⊂ F [X], any mem-

ber of which vanishes on Z(U).

3.1 Lemma. The ideal (f�(X), U(X)) is independent of the choice of nonabsolute line

Z(�).

Proof. Clearly the verity of the lemma is not affected by the choice of nondegenerate

unitary form U(X), although the ideal I = (f�(X), U(X)) itself certainly depends on the

choice of U(X). For convenience we choose the somewhat less standard form U(X) =

XqY +XY q+ Zq+1. Let Z(�) and Z(�∗) be two nonabsolute lines of PG(2, F ). We first
assume that the intersection point Z(�) ∩ Z(�∗) is absolute. Since the isometry group of
U(X) acts transitively on the set of ordered pairs of nonabsolute lines whose intersection

is an absolute point, we may assume that �(X) = Z, �∗(X) = Y −Z, Z(�) = {〈(1, 0, 0)〉}∪
{〈(α, 1, 0)〉 : α∈F, αq+α=0}, Z(�∗) = {〈(1, 0, 0)〉} ∪ {〈(α, 1, 1)〉 : α∈F, αq+α+1=0}.
As above, we obtain (to within a nonzero scalar multiple)

f�(X) = Z
∏

αq+α �=0

(X + αY ) = Z(Xq2−1− Y q2−1)/(Xq−1+ Y q−1)

and

f�∗(X) = (Y − Z)
∏

αq+α+1 �=0

(X + αY + Z)

= (Y − Z)[Xq2
+ Zq2− (X +Z)Y q2−1]

/
[Xq+ Zq+ (X +Z)Y q−1− Y q].

Some algebraic manipulation shows that

f�(X) + f�∗(X) =

(Xq2−1− Y q2−1)(XqY +XY q + Zq+1)
+ Z(Y − Z)(Xq−1+ Y q−1)[Zq2−1− (XqY +XY q)q−1]

(Xq−1+ Y q−1)[Xq+ Zq+ (X +Z)Y q−1− Y q]
.

Let us denote the numerator and denominator of the latter expression by Numer(X)

and Denom(X). Of course, Denom(X) divides Numer(X) since f�(X) and f�∗(X) are

polynomials. Also, U(X) divides Numer(X), since

Numer(X)
U(X)

= Xq2−1− Y q2−1+ Z(Y − Z)(Xq−1+ Y q−1)
Zq2−1− (XqY +XY q)q−1

Zq+1+XqY +XY q

= Xq2−1− Y q2−1+ Z(Y − Z)(Xq−1+ Y q−1)
q−2∑
i=0

Z(q+1)(q−2−i)(−XqY −XY q)i

∈ Fq2−1[X] .
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Since Denom(X) is a product of factors of degree ≤ q, it is coprime to the irreducible

polynomial U(X). It follows that U(X) divides Numer(X)/Denom(X) = f�(X)+f�∗(X).

Therefore (f�(X), U(X)) = (f�∗(X), U(X)).

Now suppose that Z(�) and Z(�∗∗) are two nonabsolute lines of PG(2, F ) which in-
tersect in a nonabsolute point. Let 〈v〉 and 〈v∗∗〉 be absolute points on Z(�) and Z(�∗∗)
respectively. Then 〈v,v∗∗〉 is a nonabsolute line, which we may call Z(�∗). The previous
argument shows that (f�(X), U(X)) = (f�∗(X), U(X)) = (f�∗∗(X), U(X)). Therefore the

ideal (f�(X), U(X)) is independent of the choice of nonabsolute line Z(�).

We denote I = I(U) := (f�(X), U(X)). We will show (Lemma 3.3) that any homoge-

neous polynomial of degree ≤ q2 which vanishes on Z(U), lies in I. But first, we prove the
following, valid for arbitrary n ≥ 2. (We follow the convention that 00 = 1, and Fd[X] = 0

whenever d < 0. Also, we abbreviate X′ = (X1, X2, . . . , Xn).)

3.2 Lemma. Let U(X) =
∑n

i=0X
q+1
i where n ≥ 2. Suppose that f(X) ∈ Fd[X] vanishes

on Z(U). Use the division algorithm to write f(X) = g(X)U(X) +
∑q

i=0 fi(X′)X i
0 for

uniquely determined polynomials g(X) ∈ Fd−q−1[X] and fi(X′) ∈ Fd−i[X′] = Fd−i[X1,

X2, . . . , Xn]. Then fi(x′)xi
0 = 0 for every absolute point 〈x〉 = 〈(x0,x′)〉 = 〈(x0, x1,

. . . , xn)〉.

(Note: The conclusion says that fi(x′)=0 for i=0, 1, . . . , q if x0 =0; or f0(x′)=0 if

x0=0.)

Proof. Let ω ∈ F be a primitive (q+1)-st root of unity. Suppose that a given point 〈x〉 is
absolute, i.e. U(x) =

∑n
i=0 x

q+1
i = 0. Clearly, all the points 〈(ωjx0,x′)〉 are absolute, for

j = 0, 1, . . . , q. By hypothesis, we have

0 = f(ωjx0,x′) =
q∑

i=0

ωijfi(x′)xi
0

for j = 0, 1, . . . , q. We may regard this as a system of q+1 linear equations in the unknowns

fi(x′)xi
0, having a Vandermonde coefficient matrix whose determinant is

∏
0≤i<j≤q(ω

j −
ωi) = 0. This implies that fi(x′)xi

0 = 0 for i = 0, 1, . . . , q.
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3.3 Lemma. Let f(X) ∈ Fd[X] where d ≤ q2. Then f(X) vanishes on Z(U) if and only

if f(X) ∈ I(U).

Proof. We have seen that every polynomial in I vanishes on Z(U). Conversely, suppose
that f(X) vanishes on Z(U). We may assume that U(X) = Xq+1+ Y q+1+ Zq+1. The

line Z(X) is nonabsolute, and so I = (fX(X), U(X)) where fX(X) = fX(X, Y, Z) =

X(Y q2
Z − Y Zq2

)/(Y q+1+ Zq+1) = XY
∏

αq+1�=−1(αY + Z). As in Lemma 3.2, we may

write f(X) = g(X)U(X) +
∑q

i=0 fi(Y, Z)X i for certain polynomials g(X) ∈ Fd−q−1[X],

fi(Y, Z) ∈ Fd−i[Y, Z]. It suffices now to show that fX(X, Y, Z) divides each of the terms

fi(Y, Z)X i.

It is clear that X divides fi(Y, Z)X i for i = 1, 2, . . . , q. We must show that f0(Y, Z) =

0 ∈ Fd[Y, Z]. For any y, z ∈ F , there exists x ∈ F such that xq+1+ yq+1+ zq+1 =

0. By Lemma 3.2, f0(y, z) = 0. Therefore Y q2
Z − Y Zq2

divides f0(Y, Z). However,

deg f0(Y, Z) = d ≤ q2, so f0(Y, Z) = 0 as claimed.

The remaining linear factors of fX(X, Y, Z) are of the form αY + βZ where αq+1+

βq+1 = 0. Given such α and β, there exists x = 0 such that xq+1+ αq+1+ βq+1= 0. Thus

〈(x, β,−α)〉 is an absolute point. By Lemma 3.2, fi(β,−α)xi = 0, and so αY +βZ divides

fi(Y, Z).

Thus fX(X, Y, Z) divides fi(Y, Z)X i for i = 0, 1, . . . , q, and so f(X) ∈ I.

The following will be used in Section 4.

3.4 Lemma. Let U(X) = Xq+1+ Y q+1+ Zq+1, and f(X) = f(X, Y, Z) ∈ Fd[X] where

d ≤ q2. Suppose that f(X) vanishes at every nonabsolute point of PG(2, F ), and at every

point of the nonabsolute line Z(X). Then

f(X) = λX
∏

α∈GF (q)
α�=1

(αXq+1+ Y q+1+ Zq+1)

for some λ ∈ F .

Proof. Since f(X) vanishes at all q2+ 1 points of Z(X), and deg f(X) ≤ q2, we have

f(X) = Xg(X) for some g(X) ∈ Fd−1[X].

Consider an absolute line of the form Z(Y + cZ), where cq+1= −1. This line has q2
nonabsolute points 〈(1, λc,−λ)〉, λ ∈ F , and g(X) vanishes at each of these q2 points. Since
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deg g(X) ≤ q2− 1, we have (Y + cZ) ∣∣ g(X). Thus f(X) = Xr(X)
∏

cq+1=−1(Y + cZ) =

X(Y q+1+ Zq+1)r(X) for some r(X) ∈ Fd−q−2[X].

For all α ∈ GF (q)................{0, 1}, the polynomial Xr(X) of degree ≤ q2−q−1 vanishes at ev-
ery point of the nondegenerate Hermitian curve Z(αXq+1+Y q+1+Zq+1). By Lemma 3.3,

we have (αXq+1+Y q+1+Zq+1)
∣∣Xr(X), and so (αXq+1+Y q+1+Zq+1)

∣∣ r(X). The result
now follows.

4. A Nullstellensatz

Our goal in this section is to prove the following extension of Lemma 3.3.

4.1 Theorem. Suppose that f(X) ∈ Fd[X] vanishes at every point of a nondegenerate

Hermitian variety Z(U) of PG(n, q2).

(i) If n = 1, then U divides f .

(ii) If n = 2 and d ≤ q2, then f ∈ I(U).
(iii) If n ≥ 3 and d ≤ q2, then U divides f .

Proof. Suppose first that n = 1, and that U(X0, X1) = Xq
0X1 − X0X

q
1 . Then Z(U) =

{〈(1, 0)〉} ∪ {〈(α, 1)〉 : α ∈ K} = PG(1, K), embedded as a Baer subline of PG(1, F ). If

f(α, β) = 0, where (α, β) = (0, 0), then f(X) is divisible by βX0 − αX1. Thus if f(X)

vanishes on Z(U), then f(X) is divisible by X0

∏
α∈K(αX0 −X1) = U(X), as required.

For n = 2, conclusion (ii) follows from Lemma 3.3. We proceed to prove conclusion (iii)

by induction on n. In the remainder of the proof, we will always assume the standard

Hermitian form U(X) =
∑n

i=0X
q+1
i . Also, we may assume without loss of generality that

d = q2; otherwise replace f(X) ∈ Fd[X] by X
q2−d
0 f(X) ∈ Fq2 [X].

Suppose first that n = 3. We may assume without loss of generality (see Lemma 3.2)

that f(X) =
∑q

i=0 fi(X′)X i
0 where fi(X′) ∈ Fq2−i[X′] = Fq2−i[X1, X2, X3], and we must

show that each fi(X′) = 0. We first show that f0(X′) = 0 ∈ Fq2 [X′]. Given any x1, x2, x3 ∈
F , there exists x0 ∈ F such that

∑3
i=0 x

q+1
i = 0. By Lemma 3.2, we have f0(x1, x2, x3) = 0.

Since f0(X′) ∈ Fq2 [X′] vanishes everywhere, we have f0 = 0 as claimed.

Now suppose that 1 ≤ i ≤ q, and we show that fi(X′) = 0. We use X′ = (X1, X2, X3)

as coördinates for the nondegenerate hyperplane H = Z(X0), with the standard unitary
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form UH(X′) =
∑3

i=1X
q+1
i . Let 〈(0, x1, x2, x3)〉 be any nonabsolute point of H. If x1 = 0,

then there exists α ∈ F ................{0} such that 〈(αx1, x1, x2, x3)〉 is an absolute point of PG(3, F );
by Lemma 3.2, we have fi(x1, x2, x3)(αx1)i = 0. Since α = 0, we have fi(x1, x2, x3)xi

1 = 0.

Clearly, fi(X′)X i
1 also vanishes at every point of the nonabsolute line ZH(X1) of H.

By Lemma 3.4, we have fi(X′)X i
1 = λX1

∏
1 �=β∈GF (q)(βX

q+1
1 + Xq+1

2 + Xq+1
2 ). Thus

f2 = f3 = . . . = fq = 0 and f1(X′) = λ
∏

β(βX
q+1
1 + Xq+1

2 + Xq+1
2 ) for some λ ∈ F .

However, a similar argument shows that f1(X′) = µX2

∏
β(X

q+1
1 + βXq+1

2 +Xq+1
3 ). Thus

f1 = 0. This completes the proof in the case n = 3.

Now suppose that n ≥ 4. Let ε ∈ F such that εq+1= −1. For each c ∈ F , consider

the hyperplane Hc = Z(X0 − εX1 − cX2). The restriction of U(X) to Hc is given by

Uc(X′) = cqεXq
1X2 + cεqX1X

q
2 + (1+ c

q+1)Xq+1
2 +

∑n
i=3X

q+1
i . We see that Uc(X′) (and

so also Hc) is nondegenerate whenever c = 0. Furthermore, if c = d are nonzero elements of
F , then clearly the polynomials Uc(X′) and Ud(X′) have no common factor. As before, we

may suppose that f(X) =
∑q

i=0 fi(X′)X i
0 where fi(X′) ∈ Fq2−i[X′] = Fq2−i[X1, . . . , Xn].

Suppose that Uc(x′) = Uc(x1, . . . , xn) = 0. Then U(εx1+ cx2,x′) = 0, so by Lemma 3.2,

we have fi(x′)(εx1+cx2)i = 0. By induction, Uc(X′) divides fi(X′)(εX1+cX2)i ∈ Fq2 [X′].

Since Uc(X′) has no linear factors, this implies that Uc(X′)
∣∣ fi(X′). Thus

∏
0 �=c∈F Uc(X′)

divides fi(X′). Comparing degrees gives fi(X′) = 0.

5. Determining the p-ranks

Define F †
d [X] to be the subspace of Fd[X] spanned by all monomials of the form Xi :=

X i0
0 X

i1
1 · · ·X in

n such that i0+ · · ·+ in = d and p does not divide the multinomial coefficient(
d
i

)
:=

(
d

i0, i1, ··· ,in

)
= d!

i0!i1!···in! . We state a few properties of F
†
q2−1[X] without proof; for

proofs and details, see [2]. The group G = GL(n+1, F ) acts naturally on F1[X] with

respect to the basis X = (X0, X1, . . . , Xn). This action extends uniquely to an action on

the algebra F [X], for which each homogeneous part Fd[X] is an FG-submodule. The space

F †
d [X] is invariant under linear changes of coördinates; that is, F

†
d [X] is an FG-submodule

of Fd[X].

Let Vp−1 := Fp−1[X], considered as an FG-module in the usual way, i.e. T ∈ G acts on
f(X) ∈ Vp−1 via f(X) �→ f(TX) := f(TX0, . . . , TXn). Let σ : F → F be the Frobenius

automorphism x �→ xp, and allow σ to act naturally on G and on F [X] by applying σ to
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each matrix entry and to each polynomial coefficient. For each k = 0, 1, . . . , 2e− 1, a new
FG-module V(k)

p−1 is obtained by twisting Vp−1 by the automorphism σk. That is, V(k)
p−1

has the same elements as Vp−1, but the action of T ∈ G on V(k)
p−1 is given by

f(X) �→ f(Tσ−k

X) := f(Tσ−k

X0, . . . , T
σ−k

Xn), f(X) ∈ V(k)
p−1 .

Then we have an isomorphism of FG-modules

e−1⊗
k=0

(V(k)
p−1 ⊗ V(e+k)

p−1

) → F †
q2−1[X]

determined by

(
f0(X)⊗ fe(X)

)⊗ (
f1(X)⊗ fe+1(X)

)⊗ · · · ⊗ (
fe−1(X)⊗ f2e−1(X)

)
�→

e−1∏
k=0

fk(Xpk

)fe+k(Xpe+k

) =
e−1∏
k=0

(
fσ−k

k (X)
)pk(

fσ−e−k

e+k (X)
)pe+k

where Xpk

:= (Xpk

0 , . . . , Xpk

n ). (The advantage of pairing V(k)
p−1 with V(e+k)

p−1 will become

apparent later.) In particular, dimF †
q2−1[X] =

(
p+n−1

n

)2e
. The following is an analogue of

Lemma 2.7 of [2], and so we provide here only the outline of a proof.

5.1 Lemma. rankp A1 = 1 +
(
p+n−1

n

)2e − dim {f(X) ∈ F †
q2−1[X] : f vanishes at every

point of Z(U)}.

Sketch of Proof. Let M1 =
(
xy�

)q2−1 be the ((q2−1)s+1) × q2(n+1) matrix having rows

indexed by the row vectors x ∈ Fn+1 such that U(x) = 0, and columns indexed by all the

row vectors y ∈ Fn+1. Then rankpM1 = rankp(J − A1), since J −A1 is obtained from

M1 by deleting duplicate rows and columns, and deleting the all-zero row and column.

The number of absolute points on a given hyperplane H is (qn + (−1)n−1)(qn−1−
(−1)n−1)/(q2− 1) ≡ 1 mod p if H is nonabsolute, or 1 + q(qn−1+ (−1)n−2)(qn−2−
(−1)n−2)/(q2− 1) ≡ 1 mod p if H is absolute. So the sum (modulo p) of the rows of
A1 is 1 = (1, 1, . . . , 1). Furthermore, every point lies on m ≡ 1 mod p hyperplanes, so
the row space of J −A1 lies in 1⊥. It follows that Row(A1) = 〈1〉 ⊕Row(J −A1), and so

rankpA1 = 1 + rankp(J −A1) = 1 + rankpM1.
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Now we have rankpM1 = q2(n+1)−dimN , where N is the right null space of M1. Let

a =
(
ay : y∈Fn+1

)
. Then M1a� = b� =

(
bx : x∈Fn+1, U(x)= 0

)� where
bx =

∑
y∈F n+1

ay(xy�)q
2−1

=
∑

y∈F n+1

ay
∑

Σi=q2−1

(
q2− 1

i

)
xiyi

=
∑

Σi=q2−1

(
q2− 1

i

)[ ∑
y∈F n+1

ayyi

]
xi.

Thus a� ∈ N if and only if the polynomial fa(X) :=
∑

Σi=q2−1

(
q2−1

i

)[∑
y∈F n+1 ayyi

]
Xi

∈ F †
q2−1[X] vanishes at every point of Z(U). It follows from Lemma 2.3 of [2] that

dimN = dimF †
q2−1[X] − dim {f(X) ∈ F †

q2−1[X] : f vanishes at every point of Z(U)}.
Since dimF †

q2−1[X] =
(
p+n−1

n

)2e
, the result follows.

For convenience, we henceforth assume the following.

5.2 Assumption. U(X) is a nondegenerate unitary form, of the form

Xq+1
0 +

∑n
i=1

∑n
j=1 aijXiX

q
j where aq

ji = aij and det
(
aij : 1 ≤ i, j ≤ n

) = 0.
We produce a convenient basis of F †

q2−1[X], by first producing a basis for each of

the factors V(k)
p−1 ⊗ V(e+k)

p−1 , k = 0, 1, . . . , e − 1. We abbreviate the degree of a monomial
Xi = X i0

0 · · ·X in
n by

∑
i := i0 + · · · + in; of course, i0, . . . , in are non-negative inte-

gers. If Xj = Xj0
0 · · ·Xjn

n is another such monomial, we abbreviate Xi+pej = Xi+qj =

X i0+qj0
0 · · ·X in+qjn

n . Let {g1(X), . . . , gb′(X)} be the set of polynomials of the form
U(X)Xi+qj such that

∑
i =

∑
j = p−2; here b′ = (

p+n−2
n

)2
. Also let {gb′+1(X), . . . , gb(X)}

be the set of monomials of the form Xi+qj such that
∑

i =
∑

j = p − 1 and i0j0 = 0;
here b =

(
p+n−1

n

)2
. Define B := {∏e−1

k=0 grk
(X)p

k

: 1≤ r0, r1, . . . , re−1≤ b
}
. Observe that

grk
(X)p

k

= gσk

rk
(Xpk

). It follows directly from earlier discussion that B is a basis for
F †

q2−1[X]. We also define B′ :=
{∏e−1

k=0 grk
(X)p

k ∈B : at least one rk≤ b′
}
. Let EU,X be

the span of B′. The following is immediate.

5.3 Lemma. EU,X is a subspace of F †
q2−1[X] of dimension be − (b− b′)e = (

p+n−1
n

)2e −[(
p+n−1

n

)2− (
p+n−2

n

)2]e
. Moreover, every member of EU,X is divisible by U(X).
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Each
∏e−1

k=0 grk
(X)p

k ∈ B, when expanded into monomials in X, contains a unique

monomial Xi of highest degree in X0. This defines a bijection θ : B →
{
Xi : Σi= q2− 1

and p  ∣∣ (
q2−1

i

)}
from the basis B to the standard basis of F †

q2−1[X]. Furthermore, θ(B′) is

the set of all monomials Xi = X i0
0 · · ·X in

n of degree q
2−1 such that in the p-ary expansion

i0 =
∑2e−1

k=0 i0,kp
k, we have i0,ki0,e+k > 0 for some k ∈ {0, 1, . . . , e−1}; for by definition,

i0,ji0,e+j > 0 ⇔ U(X)
∣∣ grj
(X)p

j ⇔ U(X)
∣∣ grj
(X) ⇔ rj ≤ b′.

5.4 Lemma. Let n ≥ 2, and let U(X) be as in Assumption 5.2. Define EU,X as above.

Then the following three statements are equivalent.

(i) rankp A1 =
[(

p+n−1
n

)2 − (
p+n−2

n

)2]e+ 1 .

(ii) EU,X = F
†
q2−1[X] ∩ U(X)Fq2−q−2[X].

(iii) If f(X) ∈ F †
q2−1[X] contains no monomials in θ(B′), and U(X)

∣∣ f(X), then f(X) = 0.

Moreover, these conditions hold for n = 2.

Before proving Lemma 5.4, we observe that condition (i) is independent of the choice of

U(X) satisfying Assumption 5.2; hence Lemma 5.4 implies that (ii) and (iii) are likewise

independent of the choice of U(X).

Proof of Lemma 5.4. We first verify conditions (i) and (ii) when n = 2. In this case, A11

is an identity matrix of size q3+1, so that rankp A1 = q3+1, and (i) holds. By Lemma 5.1,

this gives

dim{f(X) ∈ F †
q2−1[X] : f vanishes at P1, P2, . . . , Ps}

=
(
p+1
2

)2e − p3e =
(
p+1
2

)2e − [(
p+1
2

)2 − (
p
2

)2]e = dim EU,X ,

so that (ii) holds as well.

Next we show that (i) ⇔ (ii). We may suppose that n ≥ 3. Combining Theorem 4.1
and Lemmas 5.1 and 5.3, we have

rankp A1 = 1 +
(
p+n−1

n

)2e − dim(
F †

q2−1[X] ∩ U(X)Fq2−q−2[X]
)

≤ 1 + (
p+n−1

n

)2e − dim EU,X

= 1 +
[(

p+n−1
n

)2 − (
p+n−2

n

)2]e
,

and equality holds iff EU,X = F
†
q2−1[X] ∩ U(X)Fq2−q−2[X]. Thus (i)⇔ (ii).

Assume that (ii) holds, and suppose f(X) ∈ F †
q2−1[X] contains no monomials in

θ(B′), and U(X)
∣∣ f(X). If f(X) = 0, then expand f(X) in terms of the basis B′, and
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let
∏e−1

k=0 grk
(X)p

k ∈ B′ be a basis element appearing (with nonzero coefficient) in this

expansion of f(X), for which the degree in X0 is maximal. By our choice of
∏

k grk
(X)p

k

,

no other elements of the basis B′ contribute the same monomial θ
(∏

k grk
(X)p

k)
, and so

f(X) contains a monomial in θ(B′), contrary to the hypothesis. Thus (ii)⇒ (iii).
Conversely, assume (iii) holds, and suppose that f(X) ∈ F †

q2−1[X] is divisible by U(X).

We must show that f(X) ∈ EU,X. If f(X) contains no monomials in θ(B′), then f(X) = 0

and we are done. Otherwise, choose a monomial Xi = X i0
0 · · ·X in

n = θ
(∏e−1

k=0 grk
(X)p

k) ∈
θ(B′) appearing in f(X) (with coefficient c = 0, say) for which i0 is maximal. Then
f(X) − c

∏
k grk
(X)p

k ∈ F †
q2−1[X] is also divisible by U(X), and has one fewer mono-

mial of degree i0 in X0, than does f(X). After a finite number of iterations, we obtain

f(X)− g(X) ∈ F †
q2−1[X] having no monomials in θ(B′), where g(X) ∈ EU,X; then by as-

sumption, f(X)− g(X) = 0, and so (iii)⇒ (ii).

Proof of Theorem 1.1. We must show that the conditions of Lemma 5.4 hold for all n ≥ 2.
The case n = 2 is already settled. Hence we assume n ≥ 3 and proceed by induction on n.
Suppose that f(X) ∈ F †

q2−1[X] contains no monomials in θ(B′), and U(X)
∣∣ f(X). We

must show that f(X) = 0. Let H := Z(X0), and as before, abbreviate X′ = (X1, X2,

. . . , Xn). Let W be any nondegenerate hyperplane of H (so that W has codimension 2

in PG(V )). Then W = H ∩ Z(�) for some nonzero �(X′) ∈ F1[X′] which depends on the

choice of W only to within a nonzero scalar multiple. Choose this nonzero scalar multi-

ple so that the last of X1, . . . , Xn appearing in �(X′) (with nonzero coefficient), appears

with coefficient 1. For the sake of argument, we assume that �(X′) = Xn −
∑n−1

i=1 ciXi.

(The argument is similar if �(X′) = Xk −
∑k−1

i=1 ciXi, 1 ≤ k < n.) Now Z(�) = W ⊕
〈(1, 0, 0, 0, . . . , 0)〉 is a nondegenerate hyperplane of PG(V ). Thus UW (X0, . . . , Xn−1) :=

U(X0, . . . , Xn−1,
∑
ciXi) is a nondegenerate unitary form in (X0, . . . , Xn−1), and UW

divides fW (X0, . . . , Xn−1) := f(X0, . . . , Xn−1,
∑
ciXi). Observe that UW satisfies As-

sumption 5.2 for n − 1 in place of n. Every monomial appearing in f(X) is of the

form Xi = X i0
0 X

i1
1 · · ·X in

n where i0,0i0,e = i0,1i0,e+1 = · · · = i0,e−1i0,2e−1 = 0 for

the digits in the p-ary expansion i0 =
∑2e−1

k=0 i0,kp
k. Hence every monomial appearing

in fW (X0, . . . , Xn−1) is of the form X i0
0 X

i′1
1 · · ·X

i′n−1
n−1 where i0 is as before. Further-

more, fW (X0, . . . , Xn−1) ∈ F †
q2−1[X] by Lemma 2.5(i) of [2]. By induction, we have

fW (X0, . . . , Xn−1) = 0, i.e. �(X′)
∣∣ f(X). The number of distinct linear factors of f(X)
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obtained in this way, equals the number of nondegenerate hyperplanes of H, which by

Lemma 2.1, equals (qn− (−1)n)(qn−1+(−1)n)/(q2− 1) ≥ q2(q2− q+1), and this exceeds
q2 − 1. Thus f(X) = 0 as required.

Finally, we identify the row space of A1 over F , as a module for H, the isometry group

of U(X) (i.e. H = {T ∈ GL(n+1, F ) : U(TX) = U(X)}, the unitary group). First recall
(cf. [2]) that

Row(A) ∼= 〈1〉 ⊕ F †
q2−1[X]

as FG-modules where G = GL(n + 1, F ); ‘Row’ denotes row space over F ; and 〈1〉 is
the one-dimensional trivial module. Also recall that F †

q2−1[X] is the subspace of Fq2−1[X]

spanned by all polynomials of the form �(X)q
2−1 where �(X) ∈ F1[X]. The following may

be shown by arguments similar to those found in [2].

5.5 Theorem. Let LU,X be the subspace of Fq2−1[X] spanned by all polynomials of

the form �(X)q
2−1, where �(X) ∈ F1[X] such that Z(�) is a hyperplane tangent to the

Hermitian variety Z(U). Then

Row(A1) ∼= 〈1〉 ⊕ LU,X
∼= 〈1〉 ⊕ (

F †
q2−1[X]

/ EU,X

)
as FH-modules.
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