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It is well known that affine transformations of Euclidean spaces transform straight

lines into straight lines. In this article, we show that for holomorphic transformations

of C, there is a strong converse: it is sufficient to consider the transformation of one

straight line. More precisely, if f : C → C is an entire function such that f(z) can take

a value on a given straight line L2 only when z belongs to a certain other straight line

L1, then f must be an affine transformation.
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The classical book of R. P. Boas [1], and the monograph of B. Ja. Levin [3] provide

extensive results on entire functions, but neither book treats the result of this paper.

Some other interesting results in this area have been published in [2], [4], [5].

Lemma. Let f : C → C be an entire function such that

f(z) ∈ R ⇒ z ∈ R ∀z ∈ C. (1)

Then f is a polynomial of the first degree with real coefficients:

f(z) = a1z + a0 ∀z ∈ C,
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for some a1, a0 ∈ R.

Proof. Without loss in generality, assume f is a nonconstant entire function. Let

Cu = {z ∈ C|�(z) > 0}, Cl = {z ∈ C|�(z) < 0},

denote the upper and lower complex half-planes, and let

u(x, y) = u(z) = 	(f(z)), v(x, y) = v(z) = �(f(z)) ∀z = (x, y) ∈ C.

The hypothesis f−1(R) ⊆ R implies that

Cu ⊆ f−1(Cu) ∪ f−1(Cl), Cl ⊆ f−1(Cu) ∪ f−1(Cl).

Since f is continuous, f−1(Cu) and f
−1(Cl) are open. If f

−1(Cu) was empty, then
1

f−i

would be a bounded entire function, and therefore by Liouville’s theorem f would be a

constant. Likewise, if f−1(Cl) was empty, by Liouville’s theorem applied to 1
f+i

, f would

be a constant. Thus, f−1(Cu) and f
−1(Cl) are nonempty. So either

Cu ⊆ f−1(Cu) and Cl ⊆ f−1(Cl),

or

Cu ⊆ f−1(Cl) and Cl ⊆ f−1(Cu),

because Cu and Cl are connected. That is to say, either

v(x, y) > 0 and v(x,−y) < 0 ∀x ∈ R, y ∈]0,∞[,

or

v(x, y) < 0 and v(x,−y) > 0 ∀x ∈ R, y ∈]0,∞[.




(2)

Plainly, this implies that

v(x, 0) = 0 ∀x ∈ R.

Thus v(0, 0) = 0 and ∂v
∂x
(x, 0) = 0 for all x ∈ R, and since f ′(x) = ∂u

∂x
(x, 0) + i∂v

∂x
(x, 0),

it follows that f(0) ∈ R and f ′(0) ∈ R. Therefore, replacing f by 1
f ′(0)(f − f(0)) if
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f ′(0) �= 0, or f by f − f(0) if f ′(0) = 0, the new function satisfies (1); hence, there is

no loss in generality to normalize f in such a way that f(0) = 0, and f ′(0) = 1 or 0. If

f ′(0) = 1, then we have

f(z) = z + a2z
2 + a3z

3 + · · · ,

and we shall show that a2 = a3 = · · · = 0. By (2), if �(z) �= 0, then either

�(z) �(f(z)) > 0,

or

�(z) �(f(z)) < 0.

We can suppose that �(z) �(f(z)) > 0; otherwise we consider −f instead of f . Let
r > 0. Replacing f(z) by 1

r
f(rz) gives

�(z) �(f(rz)) > 0.

Define ϕ(0) = 1, and ϕ(z) = (1− z2)f(rz)
rz

if z �= 0. Then ϕ is an entire function, and for

all z with |z| = 1, z �∈ R, we have

	(ϕ(z)) = 2

r
�(z) �(f(rz)) > 0,

and if z = ±1 then clearly 	(ϕ(z)) = 0. Therefore by the Maximum Principle for

harmonic functions, ϕ maps the unit disc into the right half plane. Let

ϕ(z) = 1 + d1z + d2z
2 + d3z

3 + · · ·

Then ψ = ϕ−1
ϕ+1

is a mapping from the unit disc into the unit disc, and ψ(0) = 0. Thus

by Schwarz’s Lemma

|ψ′(0)| ≤ 1.

That is,

|d1| = |ϕ′(0)| ≤ 2.
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For any positive integer n, on an analytic branch of z
1
n this can be applied to

1

n

n∑
k=1

ϕ(z
1
n e

2πik
n ) = 1 + dnz + d2nz

2 + · · · .

So, we obtain |dn| ≤ 2. Since

ϕ(z) = (1− z2)
f(rz)

rz
,

and

f(z) = z + a2z
2 + a3z

3 + · · · ,

we get

d1 = a2r, d2 = a3r
2 − 1, d3 = a4r

3 − a2r, · · · ,

and since r > 0 is arbitrary, the inequality |dn| ≤ 2 implies an = 0 for all n ≥ 2.

Therefore f has the form

f(z) = a1z + a0 ∀z ∈ C,

with a0, a1 ∈ R, a0 = f(0) and a1 = f ′(0). If f ′(0) = 0, replacing f by f − f(0) and

letting ϕ(0) = 0, ϕ(z) = (1 − z2)f(rz)
rz

if z �= 0, as before it follows that ϕ is an entire

function mapping the unit disc into the right half plane. However, since ϕ(0) = 0, by

the Minimum Principle for harmonic functions ϕ is a constant, and since f is an entire

function it follows that f ≡ 0.

The two cases of f ′(0) = 1 or 0 in the above proof may be considered simultaneously

by letting ϕ(0) = a1 ∈ R; however, the computation and the ideas of the proof are made

more transparent when treated as above.

Our first proof of the above Lemma was based on the big Picard theorem. The

elementary proof presented here was suggested by the referee. The authors are indebted

to the referee for this proof, and for the careful review of this article.
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Theorem. Let L1, L2 ⊆ C be two straight lines in R2 ∼ C. Let f : C → C be an

entire function such that

f(z) ∈ L2 ⇒ z ∈ L1 ∀z ∈ C. (3)

Then f is a polynomial of the first degree.

Proof. Let z1 ∈ L1, z2 ∈ L2, and θ1, θ2 ∈ [0, 2π[ be such that θi is the angle (in the

usual sense) between the x-axis and Li for i ∈ {1, 2}. Then

L1 = {z1 + teiθ1 |t ∈ R}, L2 = {z2 + teiθ2 |t ∈ R}. (4)

Let

g(z) = (f(z1 + zeiθ1)− z2)e
−iθ2 ∀z ∈ C. (5)

Clearly g is an entire function. Let z ∈ C be such that g(z) ∈ R. Then by (5) and (4),

we have

f(z1 + zeiθ1) = z2 + g(z)eiθ2 ∈ L2.

Hence by (3), we get (z1 + zeiθ1) ∈ L1. Consequently, by (4), there exists t ∈ R such

that

z1 + zeiθ1 = z1 + teiθ1 .

This implies z = t ∈ R. Thus

g(z) ∈ R ⇒ z ∈ R ∀z ∈ C.

Therefore, by the Lemma, there exist α, β ∈ R such that

g(z) = αz + β ∀z ∈ C. (6)

By extracting f from (5), we get

f(w) = z2 + g((w − z1)e
−iθ1)eiθ2 ∀w ∈ C.
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It follows by (6) that

f(w) = z2 + {α((w − z1)e
−iθ1) + β}eiθ2

= aw + b ∀w ∈ C,

where

a = αei(θ2−θ1) and b = z2 + (β − αz1e
−iθ1)eiθ2 .
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