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Abstract. In 1979 Paul Erdős posed the problem of whether all finite partial
linear spaces L are embeddable in finite projective planes. Except for the case

when L has a unique embedding in a projective plane with few additional
points, very little has been done which is directly applicable to this problem.

In this paper it is proved that every finite partial linear space L is embeddable
in a finite translation net generated by a partial spread of a vector space of

even dimension. The question of whether every finite partial linear space is
embedded in a finite André net is also explored. It is shown that for each

positive integer n there exist finite partial linear spaces which do not embed
in any André net of dimension less than or equal to n over its kernel.

1. Introduction

We define an incidence system to be a triple L = (P,L, I) consisting of a set
P of ‘points’, a set L of ‘lines’, and an incidence relation I ⊆ P × L. In the cases
where the choice of incidence relation is understood we simply write L = (P,L).
Such an incidence system is a partial linear space if

(i) any two distinct blocks meet in at most one point, and
(ii) each block contains at least two points.

A point-line pair (P, �) in L is called a flag or an antiflag accordingly as P ∈ � or
P /∈ �.

If (i) fails then one typically substitutes the term ‘block’ for ‘line’. We shall be
primarily interested in finite partial linear spaces (those with only finitely many
points and lines). Note that axiom (i) is selfdual (i.e. (i) is equivalent to the
statement that any two distinct points lie on at most one common line), while
(ii) is not. We shall have no real use for axiom (ii), although we have included it
in order to conform to common usage; and it has no bearing on the questions of
embeddability that we will consider.

Let L = (P,L) and L̃ = (P̃, L̃) be two incidence systems. An embedding α :
L → L̃ is a pair of injections

α1 : P → P̃, α2 : L → L̃
such that α1(P ) ∈ α2(�) whenever P ∈ � (for P ∈ P, � ∈ L). Such an embedding
is strong if α1(P ) ∈ α2(�) ⇐⇒ P ∈ �.

In this paper we explore the following question:

Problem 1. Is every finite partial linear space embedded in a finite projective
plane?

This was posed by Paul Erdős in [4]. He did not include an opinion as to its
truth or falsity, only the comment “I have no idea how to attack this problem.” It is
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unclear if the problem was folklore before this time, and Erdős apologizes in advance
in [4] if the problem had been formulated before. It is well known that every partial
linear space embeds in some projective plane, by a process of free closure due to Hall
(see [5]). In particular, every finite partial linear space is embedded in a projective
plane with at most countably many points (moreover, there is a projective plane of
countable order containing all finite projective planes!). The finite analogue posed
by Erdős, however, remains open. Indeed, intuition among finite geometers seems
to indicate a high degree of skepticism as to whether Problem 1 is true.

It should be noted that there are finite partial linear spaces which do not embed
in any classical plane; the simplest examples are those that violate Desargues’
configuration.

One may also ask Problem 1 with respect to strong embeddings. The following
Lemma shows these to be equivalent.

Lemma 1. The following two statements are logically equivalent.

(a) Every finite partial linear space embeds in some finite projective plane.
(b) Every finite partial linear space strongly embeds in some finite projective

plane.

Proof. Suppose (a) holds and let L = (P,L) be a finite partial linear space. For
each pair points P,Q which are not collinear, create a new line �P,Q = {P,Q}
through P and Q. Now L is naturally strongly embedded in L̃ = (P, L̃) where
L̃ = L ∪ {�P,Q : {P,Q} ∈ A} where A is the set of unordered pairs of noncollinear
points in L. By (a), there is an embedding L̃ → Π of L̃ in some finite projective
plane Π. It is not hard to see that this embedding and the composite embedding
L → L̃ → Π are strong, so (b) follows. The converse is immediate.

For this reason we will not require embeddings to be strong embeddings.
To date, there are mainly two types of embedding results which relate to Prob-

lem 1: a) results which demonstrate when certain partial linear spaces that are
parametrically very close to projective planes can be uniquely completed to projec-
tive planes (see [1], [2] for example) and b) studies of partial linear spaces which do
not embed in classical projective planes ( see [7]). These results, of interest in their
own right, seem too restrictive to lead to a solution of Problem 1. We will, how-
ever, prove that the local structure of André planes of bounded kernel is restricted,
though unlike classical planes our proof is non-constructive.

Concerning Problem 1, given the fact that projective planes exist in great variety
and are perhaps hopeless to classify, and that the classical planes have a very
restricted substructure, it is difficult to intuit the truth or falsity of Problem 1, and
unclear where to begin an investigation. The work in this paper is motivated by
the following statement, which we pose as a conjecture.

Conjecture 1. Every finite partial linear space is embedded in a finite translation
plane.

In this vein we prove that every finite partial linear space is embedded in a finite
translation net generated by a partial spread. We also address the question of
whether every finite partial linear space is embedded in an André plane.

A few additional definitions are needed before we proceed.
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We will denote a vector space of dimension n over the field Fq by V (n, q). A
partial mixed spread S of a vector space V (2n, q) is a collection of subspaces of V
of dimension no greater than n which intersect trivially (in the origin). If all of
the subspaces of S have dimension n then we refer to S as a partial spread . Any
partial spread of V (2n, q) of size qn + 1 is called a spread . A partial linear space L

with point set equal to the vectors of V (2n, q) is said to be generated by a partial
mixed spread S if the lines of L are given by the cosets of the members of S. If
the partial mixed spread S is a partial spread, we refer to the partial linear space
generated by S as a translation net. It is a well-known fact that the translation
net generated by a spread is an affine plane commonly referred to as a translation
plane. Any affine plane is embeddable in a projective plane by the addition of a
line, and consequently the resulting projective plane is finite if and only if the affine
plane is finite (for more details on translation planes the reader is referred to [3]
and [6]).

We now define a certain class of translation planes, referred to as André planes.
Let F = Fq be a finite field, and let E = Fqk be an extension of degree k. Let
G = Gal(E/F ), a cyclic group of order k generated by the automorphism a �→ aq .
Let N : E → F be the norm map a �→ a1+q+q2+···+qk−1

. Denote by F× the set of
nonzero elements of F , and let φ : F× → G be any map satisfying φ(1) = 1. Define
the binary operation ‘∗’ on E by

x ∗m =

{
xφ(N(m))m, if m 	= 0;

0, if m = 0.

The algebraic structure (E,+, ∗) is called an André quasifield, and the following
lines form an affine plane called an André plane.

(1) {a} ×E for a ∈ E (the line “x = a”); and
(2) {(x, x ∗m+ b) : x ∈ E} for m, b ∈ E

André planes form a particular class of translation planes, though we will not
make use of their corresponding representation as spreads in vector spaces. A given
André plane is said to have kernel F if F is the largest field such that the given
plane may be constructed in the manner described above.

Let A(q, k) denote the set of (q − 2)k such affine planes (corresponding to the
(q− 2)k possible choices of φ). This may be described as the class of André planes
of order qk with kernel containing F (hence of dimension at most k over the kernel).
We will also make use of a point-block incidence structure, defined below. With
q, k, E, F, G as above, we define C(q, k) to be the incidence structure having point
set E2 and blocks

(1) {a} ×E for a ∈ E (the line “x = a”); and
(2) {(x, xσm+ b) : x ∈ E} for m, b ∈ E and σ ∈ G (the line “y = xσm+ b”).

In general this structure is not a partial linear space; but clearly every member of
A(q, k) embeds in C(q, k).

2. Main Results

Our first aim is to prove that every finite partial linear space L is embedded in
a translation net generated by a partial spread.
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Theorem 1. Let L = (P,L) be a finite partial linear space, p a prime and n

an integer satisfying n ≥ max{ |P|
2 } ∪ {|�| : � ∈ L} and t an integer such that

pt ≥ |L| − 1. Let t = t1t2 be any factorization of t into two positive integers.
Then L is embedded in a finite translation net generated by a partial spread S in
V (2nt1, pt2). Furthermore, we can take S to satisfy |S| ≥ qn+1−(|L| − 3)

∑n−1
i=0 q

i,
where q = pt2 .

To prove this, we will first embed L in a partial linear space generated by a
partial mixed spread.

Theorem 2. Let L = (P, L) be a finite partial linear space. Let q be a prime power
and V be a vector space of dimension equal to 2n where n ≥ max{ |P|

2
}∪{|�| : � ∈ L}.

Let B = {e1, . . . , e2n} be a basis of V . Let φ : P → B be any injective map. Define
for � ∈ L the set φ(�) = {∑P∈� λPφ(P ) :

∑
P∈� λP = 0}. Then S = {φ(�) : � ∈ L}

is a partial mixed spread of V . Furthermore, L is embedded in the partial linear
space generated by S.

We then proceed to extend this partial mixed spread to a partial spread.

Theorem 3. Let q be a prime power and S a partial mixed spread of V (2n, q) with
|S| − 1 ≤ q. Then there exists a partial spread S̃ of V such that every element of S
is a subspace of some element of S̃, with no two elements of S being subspaces of
the same element of S̃.

We then include a result which may be viewed as the translation plane analogue
of the free-plane construction.

Theorem 4. Let L be a finite partial linear space and F1 ⊂ F2 ⊂ . . . be a chain of
finite field extensions with Fi 	= Fi+1 for all i, and let F = ∪Fi. Then L is embedded
in a translation plane of finite dimension over F . In particular, L is embedded in
a translation plane of finite dimension over the algebraic closure of any finite field.

We then investigate embeddings in André planes. We remind the reader that
A(q, k) is the set of all André planes of order qk containing Fq in their kernel, and
that C(q, k) is an incidence structure which contains an embedded copy of every
member of A(q, k).

Theorem 5. For every k there exists a partial linear space which does not embed
in any C(q, t) for t ≤ k, regardless of the choice of q.

This gives us an immediate corollary about André nets.

Corollary 1. For every k there exists a partial linear space which does not embed
in any member of A(q, t) for t ≤ k, regardless of the choice of q.

This leads us to the conclusion that arbitrarily large dimensions are necessary if
one is to obtain existence results for embeddings using André planes.

Given the nature of Theorem 5 it is natural to ask whether every partial linear
space is embeddable into C(q, k) for sufficiently large k. In actuality, it happens that
any finite point block incidence structure is strongly embedded in C(q, k). Denote
by Π(n) the product of the first n primes, so that for example Π(3) = 2·3·5 = 30.

Theorem 6. Let L be a finite point-block incidence system with m points and n
blocks. Then L is strongly embedded in C(q, k) for some k ≤ Π(n)
ln(m+1)/ ln q�.
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3. Proofs of the Theorems

We begin by proving our second and third theorems, from which Theorem 1 will
follow.
Proof of Theorem 2

Let L = (P,L), q, n, B and φ satisfy the conditions of the theorem. Let �, �̃ ∈ L.
If φ(�), φ(�̃) meet in a point R then R =

∑
P∈l λPφ(P ) =

∑
Q∈�̃ λQφ(Q). As � and

�̃ meet in at most one point, at most one of the coefficients λP is nonzero. However,∑
P∈� λP = 0 and therefore all the coefficients λP are zero, and R is the origin.

Let S = {φ (�) : � ∈ L}. Since the dimension of each element of S is at most n, S
is a partial mixed spread of V . We now verify that L is embedded in the partial
linear space generated by S. For each line �, we choose a point P� such that P� ∈ �.
Define t� = φ (�) + φ(P�) and let T = {t� : � ∈ L}. Note that φ(P�) ∈ t� and if Q is
any other point of a line �, note that φ(Q)− φ(P�) ∈ φ(�), so φ(Q) ∈ t�. Therefore,
the map ψ : L → T defined by ψ : P �→ φ(P ) and ψ : � �→ t� gives the desired
embedding.

Proof of Theorem 3
Let q be a prime power, and let S be a partial mixed spread of a vector space

V of dimension 2n satisfying |S| − 1 ≤ q. If S is already a partial spread we are
done. If not, let s ∈ S be such that d < n, where d is the dimension of s. We then
show the existence of a d+ 1-dimensional subspace of V which contains s but does
not intersect with any of the other members of S. Let T be the set of all d + 1-
dimensional subspaces of V which contain s. Since members of T correspond to
1-spaces of V/S, we have |T | =

∑2n−d−1
i=0 qi. By the dimension theorem, no member

of T can intersect any member of S\{s} in more than a 1-dimensional subspace, and
every two distinct members of T must intersect precisely in s. Since each member
of S has dimension at most n, we have that the total number of members of T
which intersect S\{s} in a 1-dimensional subspace is at most (|S| − 1)

∑n−1
i=0 q

i.
Since (|S|−1) ≤ q and d < n, we have

∑2n−d−1
i=0 qi−(|S|−1)

∑n−1
i=0 q

i > 0, so there
exists s̃ of dimension d+ 1 containing s and with S̃ = (S\{s}) ∪ {s̃} a new partial
mixed spread of V . We may repeat this process as long as there is a subspace which
has dimension less than n, resulting in the desired partial spread of V .

We now are ready to prove Theorem 1.

Proof of Theorem 1
Let L = (P,L) be a finite partial linear space, p a prime and n an integer

satisfying n ≥ max{ |P|
2 } ∪ {|�| : � ∈ L} and t an integer such that pt ≥ |L| − 1.

Let V be a vector space of dimension 2n ever Fpt , and W be a vector space of
dimension 2nt1 over Fpt2 . Since pt ≥ |L|−1, by 3 there exists a partial spread S of
V that generates a translation net containing an embedded copy of L. Let t = t1t2
be any factorization of t into two positive integers. Since Fpt is a vector space
of dimension t1 over Fpt2 , there is a natural (though not unique) way to identify
vectors of V with vectors of W . Since the resulting vectors are closed under scalar
multiplication from Fpt2 , this identification maps subspaces of V to subspaces of
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W . The image of S is then a partial spread of W .

We now give a proof of Theorem 4.

Proof of Theorem 4
Let L = (P,L) be a finite partial linear space. Let F1 ⊂ F2 ⊂ . . . be a chain of

finite field extensions with Fi 	= Fi+1 for all i, and let F = ∪Fi. Let k be a positive
integer such that |Fk| > |L| − 1. Using the previous results, we can find an integer
n and partial spread S of V (2n, Fk) such that L is embedded in the translation
net generated by S. We give an algorithm whose limiting structure is the desired
spread of V (2n, F ). Given a partial mixed spread T of V (2n, Fi) for some i:

(i) If T is not a partial spread, we find a field extension Fj such that |T | − 1 ≤
|Fj|. Using Theorem 1 we construct a partial spread T̃ of V (2n, Fj) whose
members contain the members of T . Go to step (ii).

(ii) If T is a partial spread, let v be a vector of V (2n, Fi) which is in no member
of T and which is minimal with respect to the size of the field generated
by its components. Let t be the one dimensional subspace generated by v,
and T̃ = T ∪ {t}. Go to step (i).

Clearly any given vector of V (2n, F ) will eventually be contained in a subspace of
dimension n.

We now turn our attention to the theorems concerning André planes. Before
proving 5, we will require the following Lemma.

Lemma 2. Let k ≥ 1 and let L be a partial linear space. Then there exists a partial
linear space L̃ such that for every k-coloring of the lines of L, there is an embedding
α : L → L̃ such that the lines of α(L) ⊆ L̃ all have the same color.

Proof of Lemma 2:
Consider the incidence graph ΓL of L = (P,L): this is the bipartite graph

with vertex set P ∪ L, and whose edges correspond to the flags of L. Since L is
a partial linear space, ΓL has no cycle of length 4. By a result of Nešetřil and
Rödl (see [8], Theorem 6.3), there exists a bipartite graph Γ̃ with no 4-cycle, such
that for every k-coloring of the edges of Γ̃, there is a monochromatic subgraph
isomorphic to ΓL. Now we may view Γ̃ as the bipartite incidence graph Γ

L̃
of some

partial linear space L̃. Consider any k-coloring γ : L̃ → {1, 2, . . . , k} of the lines of
L̃ = (P̃, L̃). This induces a k-coloring of the flags of L̃ (i.e. edges of Γ̃): simply take
γ(P, �) = γ(�) ∈ {1, 2, . . . , k} for every flag (P, �) of L̃. Now there is an embedding
α : L → L̃ such that all flags of α(L) ⊆ L̃ have the same color ∈ {1, 2, . . . , k}. Then
every line α(�) ∈ α(L) has this same color.

We are now ready to prove Theorem 5.

Proof of Theorem 5:
Let L be a partial linear space which does not embed in any Desarguesian plane

(for example, a partial linear space violating Desargues Theorem). Let L̃ = (P̃, L̃)
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be as in the Lemma. Suppose β : L̃ → C(q, k) is an embedding, so that β consists
of a pair of embeddings

β1 : P̃ → E2,

β2 : L̃ → {blocks of C(q, k)}.
Consider the coloring γ : L̃ → G defined as follows: γ(�) = σ whenever β2(�) is a
block of the form y = xσm+ b; and we set γ(�) = 1 whenever β2(�) is a block of the
form x = a. By Lemma 2, there exists an embedding α : L → L̃ such that under
the composite embedding β ◦ α : L → C(q, k), all blocks have the same σ ∈ G.
Now consider the isomorphism ψ : C(q, k) → C(q, k) defined by (x, y) �→ (xσ−1

, y).
Then ψ maps all blocks of β(α(L)) ⊆ C(q, k) to blocks of the form y = xm+ b or
x = a. Thus ψ ◦ β ◦ α is an embedding from L into the Desarguesian affine plane
over E, a contradiction.

We now turn our attention to Theorem 6.

It is convenient to represent an arbitrary point-block incidence system (with m
points and n blocks, say) by its incidence matrix. Thus we take A =

(
aij

)
to be an

arbitrary m× n matrix of 0’s and 1’s. [Aside: The corresponding incidence system
is a partial linear space iff ATA has no off-diagonal entry exceeding 1; and diagonal
entries must exceed 1, if we require every line to have at least two points.] Let
F = Fq , and let F be the algebraic closure of F . By a realization of A over F , we
mean a tuple (c1, c2, . . . , cm ; σ1, σ2, . . . , σn) where ci ∈ F and σj ∈ G(F/F ), such
that cσj

i = ci iff aij = 1. We show that such realizations always exist; and that for
fixed q, such realizations allow us to embed an arbitrary finite incidence structure
in C(q, k) for some k.

Lemma 3. Let p1, p2, . . . , pn be distinct primes, and let αi ∈ Fq be a primitive
(qpi − 1)-th root of unity. Then Fq(α1α2 · · ·αn) = FqN where N = p1p2 · · ·pn .

Proof. Clearly we may assume n ≥ 2. Let α = α1α2 · · ·αn ∈ FqN and suppose that
Fq(α) ⊂ FqN is a proper subfield. Then α ∈ FqN/pi for some i ∈ {1, 2, . . . , n}, and
we may suppose that i = 1. Since α2α3 · · ·αn ∈ Fqp2p3 ···pn we obtain

α1 ∈ Fqp2p3 ···pn ∩ Fqp1 = Fq ,
a contradiction.

Recall that Π(n) the product of the first n primes. The Prime Number Theorem
is equivalent to the statement that lnΠ(n) ∼ n as n → ∞; and since the j-
th prime is at most 2j by Bertrand’s Postulate, we have the strict upper bound
lnΠ(n) ≤ ln 2

2 n(n+ 1) for all n ≥ 1; see [NZM, pp.366–367] for details.

Lemma 4. For every m×n matrix A of 0’s and 1’s and every finite field F , there
exists a realization (c1, . . . , cm ; σ1, . . . , σn) of A over F . Moreover we may assume
that c1, . . . , cm lie in an extension E ⊇ F of degree [E : F ] ≤ Π(n); and that the
automorphisms σ1, . . . , σn ∈ G(E/F ) induced by σ1, . . . , σn are distinct.

Proof. Let p1 < p2 < · · · < pn be the first n primes, and letN = Π(n) = p1p2 · · ·pn.
For each i = 1, 2, . . . , n, let αi ∈ F be a primitive (qpi − 1)-th root of unity. Let
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σ1, . . . , σn ∈ G(Fq/Fq) such that σj has fixed field F
qN/pj ; for example we may take

σj : x �→ xqN/pj .
Now simply take ci =

∏n
j=1 α

1−aij

j . By Lemma 3 we see that cσj

i = ci iff
aij = 1.

We are now ready to prove Theorem 6.

Proof of Theorem 6 Let F = Fqr where r = 
ln(m+1)/ ln q�. This ensures
that the number of nonzero elements in F satisfies qr − 1 ≥ m. Also let A
be the point-line incidence matrix of L. By Lemma 4, there exists a realization
(c1, . . . , cm ; σ1, . . . , σn) of A over F such that c1, . . . , cm lie in an extension E ⊇ F
of degree at most Π(n); moreover the automorphisms σ1, . . . , σn ∈ G(E/F ) in-
duced by σ1, . . . , σn ∈ G(F/F ) are distinct. We may also assume that the elements
c1, . . . , cm ∈ E are distinct; otherwise replace ci by γici where γ1, . . . , γm ∈ F
are nonzero scalars chosen so that γ1c1, . . . , γmcm are distinct. Now L strongly
embeds in C(q, k) where k = [E : F ] ≤ Π(n) as follows: points are realized by
(ci, ci) ∈ E2 for i = 1, 2, . . . , m; and blocks are realized by the subsets y = xσj (i.e.
{(x, xσj) : x ∈ E}) for j = 1, 2, . . . , m.

4. Concluding Remarks

Suppose that the answer to Problem 1 is ’no’ and there is a finite partial linear
space L which does not embed in any finite projective plane. What consequences
would this have? Theorem 2 allows us to embed L into a mixed translation net
generated by a partial mixed spread S in some space V (2n, q). While Theorem 1
shows that we may embed this further into a translation net generated by a partial
spread with asymptotically qn lines, it must be the case that we cannot complete
this to a spread. Such partial spreads are called maximal partial spreads, and they
are well-studied (see [3]). However, we can embed this partial mixed spread into a
larger dimensional vector space by adjoining zeros to the end of all of the vectors
in the subspaces in S. As the dimension grows, the number of inequivalent spreads
increases dramatically (at least exponentially), however none of these spreads can
contain the elements of S in separate spread elements. The dimensions of the
elements of S are fixed, however, while the dimension of the space is arbitrarily
large. For example, imagine a set of twenty 17-dimensional subspaces of a 1000-
dimensional vector space V over F2 which are contained in no spread of V . Then
imagine increasing the dimension to a million, then a billion, etc. with all the
spreads of each vector space conspiring carefully so as not to contain the twenty
seventeen-dimensional members of S. Based on the intuition that this scenario
cannot occur, we pose the following stronger conjecture:

Conjecture 2. For every prime p and partial linear space L, there exists an integer
t such that L is embedded in a translation plane of order qt.

The construction of the partial spread of Theorem 1 requires that the dimension
2n be sufficiently large. It is not clear if this restriction is necessary in general. The
following problem is still open:
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Problem 2. Determine whether there is a finite partial linear space that is not
embedded in any translation net generated by a partial spread of V (4, q), regardless
of the choice of q.

Since spreads are difficult objects to construct and classify, it is unclear if a
constructive proof of Conjecture 1 can be given using Theorem 1, particularly if
arbitrarily large dimensions are needed. However, non-constructive techniques to
attack this problem are so far lacking. In fact, to the authors’ knowledge, the only
proofs that spreads exist in even dimensional vector spaces are constructive. Non-
constructive proofs of this well-known fact may give new techniques which could
be used to attack problem 1.

On the other hand, if André planes suffice for the embedding of all finite partial
linear spaces, a constructive proof may be possible. The following is a weaker form
of the question concerning embeddings in André planes.

Problem 3. Prove that every finite partial linear space is embedded in a net gen-
erated by a partial spread whose components are defined by equations of the form
y = mxρ + b where ρ is a field automorphism.

Lastly, we pose the following problem:

Problem 4. Find a smallest partial linear space which does not embed in any
André plane of dimension two over its kernel.

The answer to this question may shed some light on Problem 2.
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