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OVOIDS FROM THE E8 ROOT LATTICE

ABSTRACT. New families of ovoids are constructed in O+
8 (p) for p prime, using the E8

root lattice, generalising a construction of Conway, Kleidman and Wilson [2]. Using this
construction, it appears likely that O+

8 (p) has unboundedly many ovoids as p → ∞.

1. INTRODUCTION

Conway, Kleidman and Wilson [2] have used the E8 root lattice to construct four infinite

families of ovoids in O+
8 spaces over finite prime fields. This discovery is of great interest to

anyone intrigued by the mysteries of lattices; moreover it is significant to finite geometers

for two reasons.

(i) It shows that O+
8 (p) contains at least one ovoid for any prime p. (Previously no ovoids

were known in O+
8 (q) for q≡ 1 mod 6, q > 7.)

(ii) Because of their ‘unusually’ small stabilisers, ‘slicing’ these ovoids yields large numbers

of nonisomorphic ovoids in O+
6 (p), and hence (via the Klein correspondence) large

numbers of translation planes, perhaps ‘more’ than any previous construction (and

this may be reasonably interpreted in a precise way).

The main point of this paper (see Theorem 2.1) is to generalise the construction of

Conway et al, by showing that for any distinct primes r and p, the E8 root lattice yields

r-ary ovoids in O+
8 (p). There is much work left to do: we have not determined the full

automorphism groups of these ovoids, nor have we determined all isomorphisms between

members of different families. And many such isomorphisms must occur, since Theorem 2.1

gives infinitely many constructions for ovoids in the finite orthogonal space O+
8 (p).

We first introduce the families of r-ary ovoids with r≤ 7 in Theorem 1.1, along with

certain (not necessarily the full) automorphism groups in PGO+
8 (p) for each respective

family. The ovoids Or,p(x) are defined in Section 2, and Theorem 1.1 is proven in Sections

3 and 4.

1



1.1 THEOREM. For any distinct primes r and p, the E8 root lattice yields r-ary ovoids

Or,p(x) in O+
8 (p), constructed as in Section 2. For r ∈ {2, 3} these are the ovoids of

Conway et al [2], namely the ovoids

O2,p

(
1
2
(18)

)
(binary ovoids) for p > 2, admitting 2× Sp6(2);

O3,p(2, 07) (ternary ovoids of the first kind) for p ≡ 1 mod 3, admitting 26:S7;

O3,p

(
1
2 (18)

)
(ternary ovoids of the second kind) for p ≡ 2 mod 3, p> 2, admitting

2×Sp6(2); and

O3,p(17,−1) (ternary ovoids of the third kind) for p ≡ 2 mod 3, admitting S9.

There are six families of quintary ovoids: for p ≡ ±1 mod 5, we have

O5,p

(
1
2 (18)

)
admitting 2×Sp6(2),

O5,p(17,−1) admitting S8, and

O5,p(23, 05) admitting S3 × 24:S5;

while for p ≡ ±2 mod 5, we have

O5,p(2, 07) (for p> 3) admitting 26:S7,

O5,p(16, 02) (for p> 2) admitting 2×U4(2):2, and

O5,p

(
1
2 (7, 16,−1)

)
admitting 2×S7.

There are eleven families of heptary ovoids: for p ≡ 1, 2, 4 mod 7 we have

O7,p(16, 02) (for p> 2) admitting 2×U4(2):2,

O7,p(3, 1, 06) (for p> 2) admitting 25:S6,

O7,p(23, 05) (for p> 2) admitting S3 × 24:S5,

O7,p(25, 03) admitting S4 ×S5, and

O7,p(32, 15,−1) admitting 2×S6;

while for p ≡ 3, 5, 6 mod 7, we have

O7,p

(
1
2 (18)

)
(for p> 3) admitting 2×Sp6(2),

O7,p(2, 07) (for p> 5) admitting 26:S7,

O7,p(17,−1) (for p> 3) admitting S8,

O7,p(3, 17) admitting S7,

O7,p(4, 12, 05) admitting 2× 24:S5, and

O7,p

(
1
2
(53, 34,−3)

)
admitting 2×S3 ×S5.

The presently known ovoids in O+
8 (q) are summarised in [2], [4] and herein; and in

case q = p is prime, these are just the unitary ovoids of [4] and the r-ary ovoids Or,p(x).
We list these below (List 1.2) for p≤ 11. The isomorphisms and nonisomorphisms implicit

in List 1.2 are justified in Section 4. Only one ovoid in this list (item (x)) is actually new,
and an explicit coördinate description of this ovoid is given in Section 3. However using
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computer construction, we have found evidence of large numbers of new r-ary ovoids for
large p. Indeed it is now reasonable to hope that as the prime p → ∞, the number of
inequivalent ovoids in O+

8 (p) tends to ∞. Previously, at most four ovoids were known in
O+

8 (p) for any prime p.

1.2 LIST. The known (isomorphism types of) ovoids in O+
8 (p) for primes p ≤ 11 are as

follows, together with their full automorphism groups in PGO+
8 (p).

For p = 2, a unique ovoid:
(i) O3,2(17,−1), admitting S9.

For p = 3, a unique ovoid:
(ii) O2,3

(
1
2 (18)

)
, admitting 2×Sp6(2).

For p = 5, three known ovoids:
(iii) O2,5

(
1
2 (18)

)
= O3,5

(
1
2 (18)

)
admitting 2× Sp6(2),

(iv) the Cooperstein ovoid O3,5(17,−1) admitting S10, and
(v) a unitary ovoid (see [4]) admitting PGU(3, 5).

For p = 7, two known ovoids:
(vi) O2,7

(
1
2 (18)

) ∼= O5,7(16, 02) admitting 2×Sp6(2), and
(vii) the Shult ovoid O3,7(2, 07) ∼= O5,7(2, 07) ∼= O5,7

(
1
2(7, 16,−1)

)
admitting 2× 26:S7.

For p = 11, five known ovoids:
(viii) O2,11

(
1
2
(18)

) ∼= O7,11(16, 02) admitting 2×Sp6(2);

(ix) O3,11

(
1
2(18)

)
= O5,11

(
1
2 (18)

) ∼= O7,11(3, 1, 06) admitting 2×Sp6(2);
(x) O3,11(17,−1) ∼= O5,11(17,−1) ∼= O7,11(25, 03) admitting S9;
(xi) O5,11(23, 05) ∼= O7,11(23, 05) ∼= O7,11(32, 15,−1) admitting S3 × 25:S6; and
(xii) a unitary ovoid (see [4]) admitting PGU(3, 11).

Each of the ovoids (i)–(iv),(vi)–(xi) above admits many (probably infinitely many)
r-ary constructions, although we have chosen here to list no more than three constructions
per ovoid. It is conceivable that new ovoids may yet appear by the r-ary construction
for p∈ {5, 7, 11}, although this seems unlikely, and would require r ≥ 17, since we have
exhaustively considered all possibilities with p≤ 11 and r ≤ 13 by computer.

2. THE CONSTRUCTION

Let E denote the E8 root lattice, i.e. E is the set of all vectors in R
8 of the form

1
2 (a1, a2, . . . , a8) such that ai ∈ Z, a1 ≡ a2 ≡ . . . ≡ a8 mod 2, and

∑
ai ≡ 0 mod 4. It
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is well known that E is self-dual, and that every vector v ∈ E has even norm. (Recall that
the norm of v ∈ E is v ·v, where ‘·’ denotes the standard inner product on R

8.) Let

E2m = {v∈E : v ·v =2m}, NE(2m) = |E2m|,
and for a positive integer n, let nE2m = {nv : v∈E2m}. Observe that E2 is just the set
of 240 root vectors of the lattice E. It is also known (see [3]) that

N
E

(2m) =
{ 1, m = 0;

240σ3(m), m = 1, 2, 3, . . . .
where σk(m) =

∑
dk, summing over all positive d dividing m. For any prime p, the

quotient E/pE is an 8-dimensional vector space over Fp. Let denote the reduction
modulo p, so that x ∈ E = E/pE for x ∈ E, and a ∈ Fp for a ∈ Z. For x ∈ E ................pE, the
point represented by x is the one-dimensional subspace 〈x〉 = Fpx. Now E inherits from
E a quadratic form, namely

Q : E → Fp, Q(x) = 1
2x · x .

The associated bilinear form is just the reduction of the inner product on E, and we denote
this also by ‘·’, thus:

x ·y = Q(x + y) − Q(x) − Q(y) = x · y .

The quadratic form Q is nondegenerate, and E has Witt defect 0 with this form, and so
E becomes an O+

8 (p) orthogonal space with quadratic form Q(x) = 1
2x · x. Points 〈x〉 and

〈y〉 are perpendicular if x ·y = 0; point 〈x〉 is singular if Q(x) = 0. A k-cap in E is a set
of k mutually nonperpendicular singular points of E. It is well known that any cap in E

has size ≤ p3 +1, and a (p3 +1)-cap in E is called an ovoid.

Now assume that r and p are distinct primes, and for each positive integer i≤ 
 r
2�, let

ni = ni(r) be the integer uniquely determined by 1≤ni ≤
 r
2�, i2n2

i ≡ 1 mod r. Define

Sr,p =
�r/2�⋃
i=1

niE2i(r−i)p, S ′
r,p =

�r/2�⋃
i=1

nipE2i(r−i)/p ⊂ Sr,p

where E2i(r−i)/p =Ø unless p
∣∣ i(r − i). Next, partition Sr,p into its congruence classes

modulo rE, as follows. For each x ∈ E such that −p(x · x)/2 is a nonzero square modulo
r, let nx = nx(r, p) be the unique integer satisfying 1≤nx ≤
 r

2�, (x · x)n2
x ≡ − 2p mod r

(so that nv =1 for all v ∈ Sr,p) and define

[x]r,p = {v∈Sr,p : v≡nxx mod rE}.
Reducing each class [x]r,p modulo p gives

Or,p(x) =
{〈v〉∈E : v∈ [x]r,p ................pE

}
,

where E = E/pE. The deletion of pE in the latter definition, ensures that Or,p(x) consists
of (singular) points of E.
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2.1 THEOREM. Let r and p be distinct primes, and suppose x∈E such that −p(x · x)/2

is a nonzero square modulo r. Then Or,p(x) is an ovoid if and only if
(
nxx+ rE

) ∩S ′
r,p is

empty. If r < p then the latter criterion is necessarily satisfied, and if r > p, there exists

x ∈ E satisfying this criterion.

We use a series of lemmas to prove Theroem 2.1. The binary ovoids of [2] are just the

ovoids O2,p(x) for x ∈ E2, and so for the remainder of Section 2 we assume that r is odd.

2.2 LEMMA. Suppose that u,v ∈ [x]r,p. Then Q(u) = 0, and u ·v ≡ 0 mod p if and

only if u = v.

Proof of Lemma 2.2. The first conclusion is obvious. To prove the second conclusion,

suppose that u,v∈ [x]r,p with u ·v≡ 0 mod p. Since u≡ nxx≡v mod rE, we have

u−v ∈ rE, so that ‖u−v‖2 ≡ 0 mod 2r2. Also ‖u−v‖2 = ‖u‖2 + ‖v‖2 − 2u · v ≡ 0

mod 2p, and so ‖u− v‖2 ≡ 0 mod 2r2p. We have u ∈ niE2i(r−i)p and v ∈ njE2j(r−j)p for

some i, j.

Consider first the case i = j. Then u−v ∈ niE, so ‖u−v‖2 ≡ 0 mod 2n2
i , and

together with the previous congruence, this implies ‖u−v‖2 ≡ 0 mod 2r2pn2
i . However,

‖u−v‖2 ≤ (‖u‖+ ‖v‖)2 =
(
ni

√
2i(r− i)p + ni

√
2i(r − i)p

)2

= 8i(r− i)pn2
i < 2r2pn2

i .

Consequently ‖u−v‖2 = 0, i.e. u = v.

Henceforth assume that i �= j. Then u · v ≡ 0 mod ninj , and so u ·v ≡ 0 mod ninjp.

Write u ·v = ninjpk, where |k| ≤ √
4ij(r−i)(r−j) < r2/2 by the Cauchy-Schwarz inequal-

ity. Furthermore from ‖u−v‖2 ≡ 0 mod 2r2p we obtain

ninjk ≡ i(r− i)n2
i + j(r− j)n2

j mod r2.

Now define k0 = (i+ j)r − 2ij. The reader may verify that

k2
0 =

[
(i+ j)r − 2ij

]2 = (i− j)2r2 + 4ij(r− i)(r − j) .

Since i2n2
i ≡ j2n2

j ≡ 1 mod r, we have
[
i(r − i)n2

i − j(r− j)n2
j

]2 ≡ 0 mod r2, and so

n2
i n

2
jk

2
0 ≡ 4ij(r− i)(r − j)n2

i n
2
j ≡ [

i(r − i)n2
i + j(r− j)n2

j

]2 ≡ n2
i n

2
jk

2 mod r2.

Since gcd(n2
i n

2
j , r2)= 1, we have k2 ≡ k2

0 mod r2, i.e. r2
∣∣ (k + k0)(k− k0). Clearly r � ∣∣ k0,

and so either r2
∣∣ (k + k0) or r2

∣∣ (k− k0), i.e. k ≡ ±k0 mod r2 . Also |k| < r2/2 and

|k0| < r2/2, so necessarily k = ±k0; but then |k| = |k0| =
√

(i− j)2r2 +4ij(r−i)(r−j) >√
4ij(r−i)(r−j) , a contradiction. This completes the proof of Lemma 2.2.
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2.3 LEMMA. If (nxx+ rE) ∩ S ′
r,p �= Ø, then

∣∣[x]r,p
∣∣ =1 and Or,p(x) = Ø. If

∣∣[x]r,p
∣∣≥ 2

then (nxx+ rE) ∩ S ′
r,p = Ø and Or,p(x) is a cap in E of size

∣∣Or,p(x)
∣∣ =

∣∣[x]r,p
∣∣ ≤ p3 +1.

Proof of Lemma 2.3. Suppose first that pv ∈ (nxx+ rE) ∩ nipE2i(r−i)/p. Then Lemma
2.2 gives [x]r,p = {pv} and we are done.

Now suppose that
∣∣[x]r,p

∣∣≥ 2. Then Lemma 2.2 shows that [x]r,p ∩ pE =Ø and that
the reduction [x]r,p → Or,p(x), v �→ v is one-to-one, and furthermore that Or,p(x) is a

cap in E. Since every cap in E has size ≤ p3 +1, the proof of Lemma 2.3 is complete.

2.4 LEMMA.
∣∣Sr,p

∣∣ + p3
∣∣S ′

r,p

∣∣ = r3(r4 − 1)(p3 +1).

Proof of Lemma 2.4. Since p cannot divide both i and r− i,
∣∣S ′

r,p

∣∣ = 240
∑

1≤i≤ r−1
2

p|i

σ3

( i

p

)
σ3

(
r− i) + 240

∑
1≤i≤ r−1

2
p|(r−i)

σ3

(
i
)
σ3

(r− i

p
)

using the multiplicativity of σ3. Also
∣∣Sr,p

∣∣ = 240
∑

1≤i≤(r−1)/2

σ3

(
i(r− i)p

)
.

In case p
∣∣ i, it is easy to show that σ3

(
ip

)
+ p3σ3

( i

p

)
= (p3 +1)σ3

(
i
)
. In case p

∣∣ (r − i) a

similar identity holds, and so term-by-term comparison yields

∣∣Sr,p

∣∣ + p3
∣∣S ′

r,p

∣∣ = 240(p3 + 1)
(r−1)/2∑

i=1

σ3(i)σ3(r− i)

= 120(p3 + 1)
r−1∑
i=1

σ3(i)σ3(r − i) ,

480
p3 + 1

(∣∣Sr,p

∣∣ + p3
∣∣S ′

r,p

∣∣) =
r−1∑
i=1

N
E
(2i)N

E
(2r − 2i)

= −480(r3 +1) +
r∑

i=0

N
E

(2i)N
E

(2r− 2i)

= −480(r3 +1) + NE⊕E(2r)

where NE⊕E(2r) is the number of vectors of norm 2r in the lattice E2 = E ⊕ E. It is
known (see [6]) that N

E⊕E
(2r) = 480σ7(r) = 480(r7 +1), whence Lemma 2.4 follows.

It is generally known that an O+
8 (r) space has r3(r4 + r− 1) singular vectors, and

r3(r4 − 1)(r − 1) nonsingular vectors, whose Q-values are evenly distributed among the

r− 1 nonzero values of Fr . Partition Sr,p into its congruence classes modulo rE as

Sr,p =
⋃
v∈T

[v]r,p,
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where T =T (r, p) is a set of representatives of the distinct nonempty classes [v]r,p in Sr,p.

Now |T | ≤ r3(r4 − 1), in which equality holds if and only if Sr,p meets each of the r3(r4 − 1)

cosets v+ rE in E such that v ·v ≡ −2p mod r. Also Lemma 2.3 gives
∣∣[v]r,p

∣∣ =1 for

v ∈ S ′
r,p ⊆ T , and

∣∣[v]r,p
∣∣ ≤ p3 +1 for v ∈ T ................S ′

r,p. Thus

∣∣Sr,p

∣∣ ≤ ∣∣S ′
r,p

∣∣ + (p3 +1)
∣∣T ................S ′

r,p

∣∣
= (p3 +1)

∣∣T ∣∣ − p3
∣∣S ′

r,p

∣∣
≤ (p3 +1)r3(r4 − 1) − p3

∣∣S ′
r,p

∣∣ .

But by Lemma 2.4, we must have equality in the above. This gives
∣∣[v]r,p

∣∣ = p3 + 1 and

Or,p(v) is and ovoid in E whenever v ∈ T ................S ′
r,p; also |T | = r3(r4 − 1) and Sr,p meets every

coset v+ rE such that v ·v ≡ −2p mod r. Thus [x]r,p = [v]r,p for some v∈T , and the

first conclusion of Theorem 2.1 follows.

If r <p then p � ∣∣ i(r− i) for all positive i≤ 
 r
2
�, so S ′

r,p = Ø. If r >p then there exists

i≤ 
 r
2
� such that p � ∣∣ i(r − i), so S ′

r,p ⊆′ Sr,p. This proves the second conclusion of the

Theorem.

3. AUTOMORPHISMS OF OVOIDS

By definition, the full stabiliser of the ovoid O = Or,p(x) is the largest subgroup of

G = PGO+
8 (p) leaving O invariant, denoted NG(O). The full automorphism group of O is

Aut(O) = NG(O)
/
CG(O), where CG(O) is the pointwise stabiliser of O, so CG(O) ⊇ Z =

Z(G). The most obvious subgroups of Aut(O) are those induced by subgroups of the Weyl

group W of the lattice E, as given by the following proposition, whose proof is left to the

reader.

3.1 PROPOSITION. Suppose Or,p(x) is an ovoid (i.e. r and p are distinct primes, x∈E

such that −p(x · x)/2 is a nonzero square modulo r, and (nxx+ rE) ∩ S ′
r,p = Ø). Then

(i) Or,p(axg +ru) ∼= Or,p(x) whenever g ∈W , u∈E and r � ∣∣ a ∈ Z, and in particular,

(ii) Aut
(Or,p(x)

)
contains Wx+rE〈−1〉/〈−1〉, where Wx+rE is the stabiliser in W of

the coset x+ rE in E.

The subgroups of Aut(O) listed in Theorem 1.1 for r≤ 7 are just those guaranteed

by Proposition 3.1(ii). We have Wx+rE ⊇ Wx with equality in case r∈ {5, 7} where x

is the unique shortest vector in x+ rE, so these groups may be found by referring to

Proposition 3.2 and Table 3.3. Note that W is transitive on E2m for 2m ∈ {2, 4, 6, 10, 12},
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and in Table 3.3 we have chosen a representative x∈E2m and denoted the stabiliser Wx by

W2m. For 2m ∈ {8, 14, . . . , 30}, W is no longer transitive on E2m, and in this case E∗
2m ⊂

E2m is the W -orbit having the indicated representative x, and W ∗
2m =Wx. (Warning:

Wx+rE ⊇′ Wx is possible for r≤ 3. For example, Wx+2E = Wx〈−1〉 for any x∈E2; and in

case x∈E∗
8 , we have Wx+3E

∼=S9 and Wx
∼=S8. These cases are treated in [2].)

3.2 PROPOSITION. Table 3.3 lists several W -orbits on E and their stabilisers. Further-

more,

(i) 2E4 ∪ E6 ∪ 2E∗
14 is a set of representatives of the 78000 distinct cosets x + 5E

in E such that x ·x≡ 1 mod 5, and E2 ∪ 2E∗
8 ∪ E12 is a set of reps of the 78000

cosets x + 5E in E with x ·x≡ 2 mod 5.

(ii) 2E2 ∪ 3E4 ∪ E∗
8 ∪ 2E∗

16 ∪ 3E∗
18 ∪ 2E∗

30 is a set of representatives of the 823200

distinct cosets x+7E such that x · x≡ 1 mod 7, and 2E6∪E10∪3E12∪2E∗
20∪E∗

24

is a set of reps of the 823200 cosets x + 7E with x ·x≡ 3 mod 7.

The proof of Proposition 3.2 is omitted. Coset representatives for rE with other

norms modulo r∈{5, 7} are obtained by appropriately scaling the representatives given

in Proposition 3.2; for example, for the 78000 cosets x+ 5E with x ·x≡ 3 mod 5, as a

set of coset representatives we may choose 2E2 ∪ E∗
8 ∪ 2E12. Since 1 and 2 represent

the squares and nonsquares in F5 (similarly 1 and 3 in F7), the representatives given in

Prop. 3.2 suffice for x · x �≡ 0 mod r. We remark that the analogue of Proposition 3.2 was

obtained by computer for r =11, 13, with significantly more numerous W -orbits, yielding

exactly 34 families of 11-ary ovoids and 55 families of 13-ary ovoids.

The entries in Table 3.3 may be verified with little more than a knowledge that

|W | = 696, 729, 600 and |E2m| = 240σ3(m) for m≥ 1. In most cases the stabiliser of

the chosen representative in W can be readily identified within the monomial subgroup

27:S8 < W .

The ovoids listed in List 1.2, and their full automorphism groups, are previously

known, with the exception of O5,11(23, 05). Transforming O5,11(23, 05) by
(5

4
2

4
5
2

2
2
2

)
⊕I5 ∈

PGO+
8 (11) gives an equivalent ovoid O in O+

8 (11). (Here In is the n×n identity matrix.)

One may verify that O admits G1G2 < PGO+
8 (11) where G1 =

〈(
5
8

3
5

)⊕I6 ,
(

0
1

1
0

)⊕I6

〉 ∼=
S3 and G2

∼= 25:S6 acting monomially on the last six coördinates. Furthermore O has

four orbits under G1G2 = G1 ×G2, with respective lengths 36+240+480+576 = 1332

and representatives 〈(12, 05, 3)〉, 〈(02, 14, 3, 8)〉, 〈(12, 03, 53)〉 and 〈(1, 10, 4, 55)〉. From this

description and [5], one easily checks that G1 ×G2 is in fact the full automorphism group

of O.
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Orbit of W Representative Length of Orbit Stabiliser in W

E2
1
2 (18) 240 W2

∼= 2 × Sp6(2)

E4 (2, 07) 2160 W4
∼= 26:S7

E6 (16, 02) 6720 W6
∼= 2 × U4(2):2

E∗
8 = E8

................2E2 (17,−1) 17280 W ∗
8
∼= S8

E10 (3, 1, 06) 30240 W10
∼= 25:S6

E12 (23, 05) 60480 W12
∼= S3 × 24:S5

E∗
14 ⊂ E14

1
2 (7, 16,−1) 69120 W ∗

14
∼= 2× S7

E∗
16 = E16

................2E4 (3, 17) 138240 W ∗
16

∼= S7

E∗
18 = E18

................3E2 (4, 12, 05) 181440 W ∗
18

∼= 2 × 24:S5

E∗
20 ⊂ E20 (25, 03) 241920 W ∗

20
∼= S4 × S5

E∗
24 = E24

................2E6 (32, 15,−1) 483840 W ∗
24

∼= 2× S6

E∗
30 ⊂ E30

1
2(53, 34,−3) 483840 W ∗

30
∼= 2 × S3 × S5

TABLE 3.3: Selected W -orbits on E

The full automorphism groups for r =2, 3 were determined by Conway et al [2], using

largely the classification of maximal subgroups of G found in [5]. We have not yet pro-

gressed this far in the case r ≥ 5. One problem is that as r increases, the stabilisers in W

typically decrease, and so we can expect that there are many more overgroups in G to be

eliminated.

4. ISOMORPHISMS BETWEEN OVOIDS

We first describe an isomorphism invariant of ovoids in O+
2n(q) spaces for q odd, which is

highly effective in distinguishing non-isomorphic ovoids by computer. For n=3 this is an

isomorphism invariant of the corresponding translation plane of order q2, and is due to

Conway; see [1].

Let {vi : 1≤ i≤ qn−1+1} be nonzero vectors in O+
2n(q) representing the points of a

given ovoid O. For 1 ≤ i, j ≤ qn−1+1, define aij to be 0 if i= j, or ±1 according as the

bilinear form value (vi , vj) is or is not a square in Fq. The square matrix A =
(
aij

)
is

determined by O to within conjugation by a ±1-monomial matrix, as is AAT. Let |AAT|
denote the (qn−1+1)× (qn−1+1) matrix over Z, obtained by replacing each entry of AAT
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by its absolute value. The fingerprint of O is the list of those integers occurring as entries

in |AAT|, together with their frequencies, and this is an isomorphism invariant of O. It is

not known whether two nonisomorphic ovoids in O+
2n(q) for q odd and n≥ 3 can have the

same fingerprint, although for n=2 such examples are easily obtained.

These fingerprints successfully distinguished between the known ovoids for p ∈ {5, 7,

11}, thereby confirming the nonisomorphisms implicit in List 1.2. For example for p=7

the two fingerprints obtained were, respectively,

(vi) 64032018151222322563440320821512202201623456343344,

(vii) 237632106720142240018201602667203420160582240118280146840242840343344.

Obtaining isomorphisms between ovoids having the same fingerprint was not particularly

easy unless the ovoids happened to coincide. Those isomorphisms claimed in List 1.2

were found by computer, using a Monte Carlo approach. Here we state only one of these

isomorphisms explicitly, by way of example: the orthogonal transformation

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 6 1 1 1 6 6 6
6 4 4 3 3 4 4 4
6 4 3 3 4 4 4 4
6 4 3 3 3 4 4 3
6 3 3 3 3 4 4 4
6 4 3 3 3 3 4 4
6 4 3 3 3 4 3 4
1 3 4 3 4 3 3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ PGO+
8 (7)

takes O5,7

(
1
2 (7, 16,−1)

)
to O3,7(2, 07).

6. FURTHER QUESTIONS

This construction raises more questions than it answers. Some are as follows.

(i) Does the number of inequivalent r-ary ovoids in O+
8 (p) tend to ∞ as p → ∞?

(ii) The subgroups of Aut(O) promised by Proposition 3.1 can be made arbitrarily small

for large p. How small can Aut(O) be? Especially, do there exist ovoids with trivial

automorphism group?

(iii) Settle the isomorphism questions, especially between r-ary and s-ary ovoids in O+
8 (p)

for distinct primes r, s and p. Also show, if possible, that Or,p(x) is never a unitary ovoid.

(iv) Does O+
8 (p) contain ovoids other than Or,p(x) and (in case p ≡ 0 or 2 mod 3, p≥ 11)

unitary ovoids?

10



(v) Can other lattices be used in place of the E8 root lattice, giving large caps, if not

ovoids?

(vi) Is there any way to extend this to O+
8 (pe) in place of O+

8 (p)? Although O+
8 (9) has no

Sp6(2)-invariant ovoids (see [2]), one must wonder why the possibilities do not improve as

the exponent e increases. At least the possibilities for ovoids in O+
6 (pe) improve greatly as

e increases.

(vii) What is really going on in this construction? Is the occurrence of E ⊕E in Section 2

just a computational convenience, or is there some overlying object in E ⊕E which yields

the r-ary ovoids as sections?
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