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Abstract. We summarize some recent results concerning codes of finite nets, which
are of interest in the search for non-Desarguesian planes of prime order and certain
composite orders. The p-ranks of 3-nets are determined by algebraic properties
of the defining loops, and p-ranks of k-nets admitting certain abelian groups of
translations are bounded by algebraic properties of the groups. Here we discuss
the relationship between the p-ranks of two k-nets, and the p-rank of their direct
product.

1. INTRODUCTION

The application of coding theory to the study of finite projective planes, has traditionally

involved (i) an attempt to determine, at least partially, the weight distribution of the code of

the plane, and (ii) a consideration of possible ‘shapes’ of small-weight codewords in the plane.

There are intelligent reasons for following this approach: for example the extended Fp-code

of a projective plane of order n, is self-dual when p
∣∣∣∣ n, whence the MacWilliams relations

impose restrictions on the weight distribution. Thus, for example, the determination of the

complete binary weight enumerator of any projective plane of order 10 by the combined

work of MacWilliams et al [12] and Lam et al [9], led to the eventual announcement of the

non-existence of a projective plane of order 10 by Lam et al [10].

However this approach has failed to prove any general results concerning non-existence

or classification of planes of suitable orders. Weight distributions are hard to determine!

Consider that at the time of writing, the author is unaware that a determination has been

made of weight enumerators for any planes of orders exceeding 8. We suggest therefore a

different approach to studying the code of a plane, namely the consideration of the contribu-

tion of each successive parallel class of an affine plane (or, more generally, a net) to the total

p-rank. Some justification for this approach is offered by the following result.
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Theorem 1 ([13]). An explicit basis for the Fp-code of AG(2, p) is obtained by choosing all

p lines of some parallel class, followed by any p − 1 lines from any other parallel class, plus

any p − 2 lines from yet another parallel class, and so on, finally taking 0 lines from the last

remaining parallel class (i.e. 1
2p(p+ 1) lines in all).

The fact that the p-rank of AG(2, p) is 1
2
p(p + 1) is well-known; however the only standard

proof of this fact (eg. [11]) relies on the theory of invariant factors (or elementary divisors) of

matrices, a ‘non-constructive’ proof in that it supplies no explicit basis. The arbitrariness in

the choice of lines from successive parallel classes in forming our basis, is a special feature of

desarguesian nets, in which the ‘layers’ of the code may be viewed as MDS codes of length p,

as shown in [13]; this feature has no analogue for general nets, as computational examples of

the author show. However for general nets of order n with p
∣∣∣∣ n, the author has conjectured

that the contribution of the k-th parallel class to the overall p-rank, is at least n − k + 1;

we express this more precisely below as the Main Conjecture. Theorem 1 guarantees that

desarguesian nets of prime order satisfy this conjectured lower bound, with equality.

Recall that a k-net of order n is an incidence structure consisting of n2 points and nk

distinguished subsets called lines, such that

(i) every line has exactly n points;

(ii) parallelism (the property of being either equal or disjoint) is an equivalence relation on

the lines;

(iii) there are k parallel classes, each consisting of n lines, and

(iv) any two non-parallel lines meet exactly once.

(See [1], [3], [5], [8].) Thus an (n+1)-net of order n is the same thing as an affine plane of

order n. The p-rank of a k-net N of order n, denoted rankp N , is the p-rank of its point-

line incidence matrix. In [13] we posed the following conjecture, substantiated by numerous

computational examples:

Main Conjecture (MC). Let Nk be any k-net of order n, and let Nk−1 be any (k− 1)-

subnet thereof (i.e. a (k− 1)-net of order n obtained by omitting one of the k parallel classes

of Nk). If p is any prime such that p
∣∣∣∣ n, then

rankp Nk − rankp Nk−1 ≥ n − k + 1.
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Our main interest in this investigation is that the validity of MC would imply that any

projective plane of order n ≡ 2 mod 4, or of squarefree order n (i.e. n is a product of distinct

primes) is in fact desarguesian of prime order; the reason for this is found in [13]. Combining

results of [13] and [14], we have:

Theorem 2. MC holds in each of the following special cases:

(i) for k ≤ 3;

(ii) for translation nets with abelian translation groups; and

(iii) for 4-nets of prime order p with a central translation, i.e. for 4-nets constructible

from 3× p difference matrices over a group of prime order p.

In proving Theorem 2(iii) we used the uniseriality of Fp[G] for |G| = p; hence a generalization

to |G| = n for p
∣∣∣∣ n is not immediately apparent. The case of 3-nets in Theorem 2(i), follows

directly from the following result shown in [13] using the theory of loop characters:

Theorem 3. Let G be a loop of order n, and let N be the corresponding 3-net. Let p be a

prime such that pe
∣∣∣∣ n (i.e. pe is the highest power of p dividing n). Then

rankp N = 3n − 2− s ≥ 3n − 2− e

where ps = [G : K] and K is the unique minimal normal subloop of G such that G/K is an

elementary abelian p-group.

Using Theorem 3, in [13] we are able to characterize certain 3-nets, in particular those of

squarefree order, by their p-ranks. Also Theorem 2(ii) follows from the following bound

proven in [14], which in particular applies to subnets of translation planes:

Theorem 4. Let Nk be a translation k-net with abelian translation group T = G×G, k≥ 2,

and let Nk−1 be any (k− 1)-subnet thereof. Let A be the augmentation ideal of the group

algebra Fp[G]. Then

rankp Nk − rankp Nk−1 ≥ dimAk−1.

The latter dimensions dimAk−1 may be determined directly from the structure of G, as in

[6].
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In Section 2 we prove the following, which supplies some additional support for MC:

Theorem 5. A minimal counterexample to MC is not a direct product of k-nets of smaller

orders. That is, if Nk and N ′
k are k-nets of orders n and n′ resp. such that p

∣∣∣∣ n and p 	 ∣∣ n′,

and if MC holds for Nk, then MC holds also for any direct product Nk ×N ′
k (a k-net of order

nn′, where p
∣∣∣∣ nn′).

Our proof of Theorem 5 uses only linear algebra, unlike the previous results which use loop

characters and group algebras. At this stage we are not sure whether an all-out assault on

MC should employ ordinary linear algebra, or deeper properties of loops and quasigroups.

But there is some hope that a generalization of Theorem 3 may be possible for k-nets with

k ≥ 3: such nets correspond to suitably ‘joined’ quasigroups with left identity, and for such

structures there is available a theory of ordinary characters [7], and a homomorphism theory

(see [4]).

2. DIRECT PRODUCTS OF NETS

Given two k-nets, Nk of order n and N ′
k of order n′, we proceed to describe how a k-net of

order nn′ may be constructed, called a direct product of Nk and N ′
k; see [3] for details. Let

the point sets of Nk, N ′
k be denoted by P, P ′ respectively, and the parallel classes of lines by

{�ir : 1≤ r≤n}, {�′is : 1≤ s≤n′}, 1≤ i≤ k, resp. Then {�ir × �is : 1≤ r≤n, 1≤ s≤n′}, for
1≤ i≤ k, are the parallel classes of lines of a k-net of order nn′ with point set P × P ′. We

denote this net by Nk ×N ′
k, although it depends in general not simply on Nk and N ′

k, but

also on the ordering of parallel classes within Nk and within N ′
k.

With the above notation, and with no assumption on what power of p divides n or n′,

we have the following:

Lemma 6. nn′ − rankp

(Nk ×N ′
k

)
+ rankp

(Nk−1 ×N ′
k−1

)
≤

(
n − rankp Nk + rankp Nk−1

)(
n′ − rankp N ′

k + rankp N ′
k−1

)
.

We offer some remarks before proving Lemma 6. Firstly, if p 	 ∣∣ n′ then n′ − rankp N ′
k +

rankp N ′
k−1 = 1 by [13,Prop.2.1], and so it is clear that Theorem 5 follows from Lemma 6.

Secondly, as evidence of the ‘tightness’ of the inequality in Lemma 6, we point out that
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equality holds in certain cases, for example when p 	 ∣∣ nn′ (again by [13,Prop.2.1]), or when

k ≤ 3. To verify equality when k = 3, if N3 and N ′
3 are coördinatized by loops G and G′

respectively, then observe that N3 ×N ′
3 is coördinatized by G × G′, and apply Theorem 3.

We next establish notation for the codes of the relevant nets, and proceed to prove

Lemma 6. Let F
P
p denote the set of all functions P → Fp, considered as an n2-dimensional

vector space over Fp. Let χir ∈ F
P
p be the characteristic function of �ir, i.e.

χir(P ) =
{
1, P ∈ �ir;
0, P ∈ P, P /∈ �ir.

For 1 ≤ i ≤ k, let Xi be the n-dimensional subspace of F
P
p spanned by the characteristic

functions from the i-th parallel class of Nk, i.e.

Xi = Fpχi1 ⊕ Fpχi2 ⊕ . . .⊕ Fpχin.

Then the Fp-code of Nk is

Cp(Nk) =
k∑

i=1

n∑
r=1

Fpχir =
k∑

i=1

Xi.

We may suppose that Nk−1 includes just the first k − 1 parallel classes of Nk, so that

Cp(Nk−1) =
∑k

i=1 Xi. In obvious similar notation for the second k-net, we have

Cp(N ′
k) =

k∑
i=1

n′∑
s=1

Fpχ
′
is
=

k∑
i=1

X ′
i.

The natural identification of F
P×P′
p with F

P
p ⊗ F

P′
p gives

Cp(Nk ×N ′
k) =

k∑
i=1

Xi ⊗ X ′
i.

By [2] we have

(1)

[(k−1∑
i=1

Xi

)
∩ Xk

]
⊗

[(k−1∑
j=1

X ′
j

)
∩ X ′

k

]
=

[(k−1∑
i=1

Xi

)
⊗

(k−1∑
j=1

X ′
j

)]
∩

[
Xk ⊗ X ′

k

]

⊇
(k−1∑

i=1
Xi ⊗ X ′

i

)
∩

(
Xk ⊗ X ′

k

)
.

The dimension of the latter subspace is

dim
(k−1∑

i=1

Xi ⊗ X ′
i

)
+ dim

(
Xk ⊗ X ′

k

)
− dim

( k∑
i=1

Xi ⊗ X ′
i

)

= rankp

(Nk−1 ×N ′
k−1

)
+ nn′ − rankp

(Nk ×N ′
k

)
.
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Similar expressions for the dimension on the left side of (1) yield the desired result.
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