Root Lattice Constructions of Ovoids

G. Eric Moorhouse *

Abstract

Recently the author [5] has constructed new ovoids in Og (p) for p
prime, using the Ejg root lattice, generalising a construction of Conway
et al. [1]. Here we present a nine-dimensional lattice which greatly
simplifies the description of these ovoids.

1. Introduction

An orthogonal space is a vector space V equipped with a quadratic form
(). We consider only finite-dimensional vector spaces over a finite field F' =
GF(q). A singular point in such a space is a 1-dimensional subspace (v) such
that Q(v) =0. Usually we take @ to be nondegenerate, in which case (V, Q) is
called an Oy, (q)-space if dim V =2m—1, or an O3,,(¢)-space if dim V = 2m,
using superscript + or — according as () has Witt defect 0 or 1. An ovoid
in an orthogonal space (V,Q) is a set O consisting of singular points, such
that every maximal totally singular subspace of V' contains a unique point of
O. In a space of type 03,,(q), Oam_1(q) or O, 5(q), an ovoid is equivalently
defined (see [3], [7]) as a set of ¢"™ !+ 1 singular points of which no two
are orthogonal. Ovoids are not known to exist in orthogonal spaces of 9
or more dimensions. Ovoids in O3(q) and in Oy (¢) necessarily consist of
all singular points; viewed projectively, these are nondegenerate plane conics
and elliptic quadrics in projective 3-space. We emphasise that the latter
are discrete analogues of classical round objects in Euclidean space, and so
the name ‘ovoid’ seems well-deserved. Ovoids in O (¢q) (including ovoids in
Os(q) as a special case under the natural embedding) are equivalent (see [4])
to translation planes of order ¢ with kernel containing GF(q). These are
known to exist in great abundance, and in general do not appear to originate
from any Euclidean ‘round’ objects.
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The known ovoids in Of (q) are listed in [4], [1] and [5]. The majority
of these occur in OF (p) for p prime, and are constructed by taking lattice
points on a certain Euclidean sphere, then reducing modulo p, as we shall
describe in Sections 2 and 3. It is intriguing that such discrete geometric
objects would appear to owe their existence to properties of the Euclidean
metric (seemingly requiring the Cauchy-Schwarz inequality in R® or R?), and
again justice is done to the term ‘ovoid’.

2. An Eight-Dimensional Description

We first indicate, without proof, the ovoid construction from 8-dimensional
lattices. This description remains the most useful for computer implementa-
tion.

Let E be the root lattice of type Ejy; that is, E consists of all vectors
%(&1,@2,...,&8) with a; € Z such that a; =a; = --- =ag mod 2 and Y. a; =0
mod 4. A detailed description of E, including the following properties, may be
found in [2]. Let p be any prime. Then E = E/pFE is an 8-dimensional vector
space over F'=GF(p), and for v € E we write v = v+ pE € E. We call ||[v]|?
the norm of v € E, and since E is an even lattice, ||v||* € 2Z. For any positive
integer m, the number of vectors in E of norm 2m is 24003(m) = 2403 d3,
summing over all positive integers d dividing m. In particular E has 240
vectors of norm 2, the root vectors of E. Define Q : E — F by Q(v) = 3||v||?
mod p. Then () is a nondegenerate quadratic form on £ with Witt defect 0,
and @ is preserved by the Weyl group W =W (Ey).

The binary ovoids of Conway et al. [1] are defined in E for p odd by
Oyp(7) = O9,(Zzx +2E) = {(B) : ||v|*=2p, v € Za+2E}

where z € E such that %|lz[|* is odd. The sphere of norm 2p (radius /2p,
centre 0) has exactly 2(p* + 1) points of the lattice Zx + 2F, and these occur
in p3+ 1 antipodal pairs. Reducing modulo p, we obtain p+ 1 points (one-
dimensional subspaces) (7), which are singular since Q(7) = 3(2p) = 0 mod p.
Moreover [1] no two points of Oy ,(z) are orthogonal, so Oy ,(x) is an ovoid.
Since there are just 120 choices of sublattice Zz +2E C E with £||z||* odd,
all equivalent under W, we obtain 120 binary ovoids in Og (p), all of which
are equivalent. We may take x € E' to be our favourite root vector, and then
the stabiliser W, = W (E7) = 2 x Spe(2) acts on the ovoid Os (). (Remark:
it x € E/ is a root vector, then Zz 4 2F = Zx © 2E7 where E7 is the dual of
E; = ENat in 2. Thus the binary ovoids are computable from a knowledge
2] of the ‘shells’ of E%.)
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More generally, for primes r = p we define

Orp(z) = O, p(Za+rE) = | {<@> 2 Jv]|? = 2i(r—i)p, vEZx—l—rE}

1<i<| %]

where x € E such that —5||z|* is a nonzero square modulo r. If r>p, it
sometimes happens that O, ,(r) = {(0)}, but in all other cases O, ,(x) is
an ovoid in E, called an r-ary ovoid in Og (p). In Section 3 we will see an
explanation for the ‘failed ovoids’ of the form {(0)}. The cases r € {2,3}
give the binary and ternary ovoids of Conway et al. [1]; for general r the
above definition is a slight simplification of that given in [5]. By varying the
choices of r and x, we expect from the computational evidence available that
the number of isomorphism classes of r-ary ovoids in Og (p) is unbounded as
p — 00, but this has not been proven.

The above definition of O, ,(z) requires that we take lattice points on a
union of |%] spheres in R®. In Section 3 we shall interpret these spheres
as hyperplane sections of a single sphere in R?, achieving a more concise
definition of O, ,(z) and a simplified proof that in fact we obtain ovoids.

3. A Nine-Dimensional Description

Throughout this section, r and p are distinct odd primes, which allows for a
simpler presentation. The industrious reader will find that our presentation
may be adapted to the general case; however the case r =2 has already been
treated by the description of the binary ovoids in Section 2, and the case p =2
is trivial since Og (2) has a unique ovoid.

For each odd prime p, define a nine-dimensional Euclidean lattice by
A=A(p) =V2Ea /DZ.

That is, A consists of vectors v2e + Az with e € F and A € Z, where
z=(0,0,...,0,,/p), and [[v2e + Az|* = 2|le||> + pA?. Note that A admits
a group of isometries G = 2 x W generated by W = W (Ejy) acting naturally
on the first eight codrdinates and fixing z, together with the reflection in the
hyperplane 2+ = (E).

Now let r be an odd prime distinct from p. The quotients A/pA and A/rA
are 9-dimensional vector spaces over GF(p) and GF(r), respectively. Each
inherits from A a G-invariant quadratic form obtained by reducing 2||e||* +
pA\? € Z modulo the corresponding prime. The quotient A/rA is a (non-
degenerate) Og(r)-space.

However, the orthogonal space A = A/pA is degenerate, consisting of an
Of (p)-space over a l-dimensional radical (Z) = (z+ pA); projectively, A/pA
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is a ‘hyperbolic cone over a point’. From the definition given in Section 1, we
see that two types of ovoids are possible in A = A/pA:

(i) The singleton {(z)} is an ovoid in A since every maximal totally singu-
lar subspace of A is ' 5-dimensional and contains (z). We call this the
degenerate ovoid of A.

(i) Any set O consisting of p*>+1 mutually nonperpendicular singular points
of A is an ovoid in A. Such an ovoid does not contain (z) and is called
nondegenerate. For such an ovoid, {(7)+(Z) : (7) € O} is an ovoid in
the Of (p)-space A/(Z), and conversely, ovoids in Of (p) lift to ovoids
in A.

Our construction in fact gives ovoids in A = A/pA of both types (although
degenerate ovoids never occur for 7 <p), and thereby ovoids in Og (p) as
described in (ii) above. Let m, and m, denote the natural maps from A to
points of A/rA and A/pA respectively. That is, for v € A~rA, we have
m-(v) = (v+rA) < A/rA, and similarly for p in place of r. Consider the
points of the lattice A which lie on the sphere of radius r,/p, other than the
‘poles’ £rz, denoted thus:

Aoy ={veA : |o|>=r*p}~{Erz}.

Our main result, as follows, will be proven later in this section.

Theorem 3.1 (1) m.(A,2,) is the set of singular points of A/r A outside the
hyperplane H = m,.(E).

(ii) Let X = (x+rA) be a singular point of A/r\ outside H, and let X =
{vel,, : m.(v)=X}. Then mp(X) is an ovoid of A/pA.

(i1i) An ovoid of the form m,(X) as in (ii) is nondegenerate whenever r < p.
If r>p then m,(X) is nondegenerate for some X, X.

The situation of Theorem 3.1 may be appreciated from Figure 1, where
typical points of the quadric in A/rA outside the hyperplane H, are denoted
by e, * and o. These points are lifted back to the sphere A,2, and then
projected down to the degenerate quadric in A/pA, obtaining in each case an
ovoid, although the ovoid obtained from ¢ is degenerate. Observe that, as
pictured, the lattice points in A,2, lie on certain hyperplanes of R? parallel
to z+.
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Figure 1. Two Projections of A2,

We further illustrate the construction with an example in which p =3 and
r=>5. Now A2, = {/2etz: e € E, |le|?=36}U{V2et32: e € E, ||e||* =24}.
For X = 75(1/2(2%,0%) + 32) we obtain

X = { £(v2(2%0°)+32), £(V2-4(-7,3% —5,5)+2),
+(V2(42, —140%)+2), ... }

where ‘. .." denotes similar vectors obtained by arbitrarily permuting the first
six coordinates of E, and permuting the last two coordinates of E. Then
|X| =56 and X projects to a nondegenerate ovoid of size 28 in A/3A, antipo-
dal points of X giving the same ovoid point. Choosing X’ = m5(1/2(6,07) + 2),
however, we obtain X’ = {4(1/2(6,07)+2)}, which projects to the degenerate
ovoid of A/3A.

Observe that by definition if u = v2e+ Az € A2, then [Ju|® = 2|le|* +
pA?=1r2p, which implies that |A| <r and X is odd, so that m,(u) is a singular
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point of A/rA which does not lie in the hyperplane H = =,.(F); this proves
half of conclusion (i) of Theorem 3.1.

Lemma 3.2 Ifu-v =0 mod p for some u,v € A2, such that w,(u) = m,(v),
then u = +£v.

Proof: The hypotheses imply that u —av € rA for some o € Z not divisible
by r. Thus 2auwv = |[ul|*+ ?||v||* = ||lu—av|]* = 0 mod r?, so uv = 0
mod 2. Also u-v = 0 mod p by hypothesis, so u-v = 0 mod r?p. But
lu-v] < |Jul|||v]] = r*p by Cauchy-Schwarz, so |u-v| = 0 or r?p. If |u-v| = r?p,
then again by Cauchy-Schwarz, u = v and we are done. Otherwise u-v = 0.
But it is easy to see that u-v must be odd. For we have u = v2e + Az, v =
V2¢' + pz for some e, e’ € E and odd integers A, u satisfying 2||e[|? 4+ pA? =
2|[€'||> + pu? = r?p; thus u-v = 2e-¢’ + pAu = 1 mod 2, a contradiction. O

Define A;,gp = A2, N (pA +Zz), the set of all vectors in A,2, which project
to the radical of A/pA.

Lemma 3.3 |A2p| 4 p*[Al | = 27%(r" = 1)(p* +1).

Proof: This is proven in exactly the same way as Lemma 2.4 of [5], using
the multiplicativity of o3, and the fact [6] that E@® E has 48007(m) vectors
of norm 2m for every positive integer m. a

A cap in an orthogonal space is a set of singular points which are mutu-
ally nonperpendicular. Any cap in Og (p) has size at most p>+ 1, and caps
attaining this maximum size are ovoids (see [3], [7]). Consequently, caps in
A/pA have size at most p®+ 1, and caps attaining this maximum size are
nondegenerate ovoids; the radical point is a maximal cap of size 1.

Let S be the set of singular points of A/rA. Well-known counting argu-
ments give |S| = (r® —1)/(r—1) and |[SNH| = (r*+1)(r*—1)/(r — 1) since
the hyperplane H is of type Of (r); thus |[S~H| =|S|—|SNH| = r*(r* —1).
By Lemma 3.2, for each point X € S~ H, its preimage X = {veE A2, :
m,(v) =X} (which could conceivably be empty) projects to a cap m,(X) of
A/pA. Also |my(X)| = [(Z)| = 1if X C Al,; otherwise X C A2~ Al
and 0 < |m,(X)| < p® + 1. Furthermore, Lemma 3.2 shows that the projection
X — m,(X) is two-to-one. Therefore

ol = Moyl = Ay~ Al | = D0 X< >0 200°+1)
XeS—H: XES—H:

XQATQP—A/Q XQATQP—A’

T4p T

(0 + IS~ H| ~ 20 + D{X €S~H : X C ALy}
(0 + )P (= 1) — (5 + DIAL |,

A2

2p

2
2
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in which equality holds by Lemma 3.3. Therefore |m,(X)| = p® + 1 whenever
X C Ay2p~AL,, thereby proving (i) and (ii) of Theorem 3.1. It is clear that

;,gp = () whenever r <p, and that in any case A2, 2 A;,gp’ whence not all
ovoids m,(X') are degenerate, so (iii) follows as well, completing the proof of
Theorem 3.1.

One checks without difficulty that for = v2e+ Az € A,2,, the ovoid
of A = A/pA constructed from z as in Theorem 3.1, projects to the ovoid
O,.p(€) of A/Z described in Section 2, in the nondegenerate case (e ¢ pE).

4. Further Remarks

Let X, X, etc. be as in Theorem 3.1, and as before, let G = 2 x W be the
isometry group of A, having natural orthogonal representations on both A/rA
and on A/pA. The stabiliser Gx acts on the ovoid 7,.(X), with kernel of order
2 or 4 in the nondegenerate case. In general, however, the stabilisers of these
ovoids in the full orthogonal group, remain undetermined; cf. [5].

It is disappointing that the r-ary ovoid construction does not seem to work
in Og (p°) for e > 1. This contrasts sharply with the situation in Og (p¢), where
ovoid constructions generally proliferate as e increases. The problem with
Od (p°) is more than a lack of inspiration: although Og (p) has at least one
Spe(2)-invariant ovoid for every odd prime p (say, Og,p(%(lss)), and evidently
many more as p increases), we have checked that no Spg(2)-invariant ovoids
exist in OF (p©) for p¢ € {22,23,2, 32,33, 52}. (For p¢ =9, this is proven in [1].)

Can variations of the above constructions give new ovoids from other
lattices, or perhaps even nonexistence results for higher-dimensional ovoids?
Certainly any ovoid may be lifted back from L/pL to a lattice L, with great
freedom in the choice of lifting and of L itself. We cannot expect all such
preimages to be as elegant as the spheres arising in our construction; never-
theless can it be shown that every ovoid lifts to some subset of a lattice with
high density? And could the apparent lack of ovoids in Of;(q) be due to a
lack of a suitably dense lattice packing in R!°? These are mere speculations.
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