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Abstract

Recently the author [5] has constructed new ovoids in O+
8 (p) for p

prime, using the E8 root lattice, generalising a construction of Conway
et al. [1]. Here we present a nine-dimensional lattice which greatly
simplifies the description of these ovoids.

1. Introduction

An orthogonal space is a vector space V equipped with a quadratic form
Q. We consider only finite-dimensional vector spaces over a finite field F =
GF (q). A singular point in such a space is a 1-dimensional subspace 〈v〉 such
that Q(v)=0. Usually we take Q to be nondegenerate, in which case (V,Q) is
called an O2m−1(q)-space if dimV =2m−1, or an O±

2m(q)-space if dimV =2m,
using superscript + or − according as Q has Witt defect 0 or 1. An ovoid
in an orthogonal space (V,Q) is a set O consisting of singular points, such
that every maximal totally singular subspace of V contains a unique point of
O. In a space of type O+

2m(q), O2m−1(q) or O
−
2m−2(q), an ovoid is equivalently

defined (see [3], [7]) as a set of qm−1+1 singular points of which no two
are orthogonal. Ovoids are not known to exist in orthogonal spaces of 9
or more dimensions. Ovoids in O3(q) and in O−

4 (q) necessarily consist of
all singular points; viewed projectively, these are nondegenerate plane conics
and elliptic quadrics in projective 3-space. We emphasise that the latter
are discrete analogues of classical round objects in Euclidean space, and so
the name ‘ovoid’ seems well-deserved. Ovoids in O+

6 (q) (including ovoids in
O5(q) as a special case under the natural embedding) are equivalent (see [4])
to translation planes of order q2 with kernel containing GF (q). These are
known to exist in great abundance, and in general do not appear to originate
from any Euclidean ‘round’ objects.
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The known ovoids in O+
8 (q) are listed in [4], [1] and [5]. The majority

of these occur in O+
8 (p) for p prime, and are constructed by taking lattice

points on a certain Euclidean sphere, then reducing modulo p, as we shall
describe in Sections 2 and 3. It is intriguing that such discrete geometric
objects would appear to owe their existence to properties of the Euclidean
metric (seemingly requiring the Cauchy-Schwarz inequality in R

8 or R
9), and

again justice is done to the term ‘ovoid’.

2. An Eight-Dimensional Description

We first indicate, without proof, the ovoid construction from 8-dimensional
lattices. This description remains the most useful for computer implementa-
tion.

Let E be the root lattice of type E8; that is, E consists of all vectors
1
2
(a1, a2, . . . , a8) with ai ∈Z such that a1≡ a2≡ · · · ≡ a8 mod 2 and

∑
ai ≡ 0

mod 4. A detailed description of E, including the following properties, may be
found in [2]. Let p be any prime. Then E = E/pE is an 8-dimensional vector
space over F =GF (p), and for v ∈E we write v = v+ pE ∈ E. We call ||v||2
the norm of v∈E, and since E is an even lattice, ||v||2 ∈ 2Z. For any positive
integer m, the number of vectors in E of norm 2m is 240σ3(m) = 240

∑
d3,

summing over all positive integers d dividing m. In particular E has 240
vectors of norm 2, the root vectors of E. Define Q : E → F by Q(v) = 1

2
||v||2

mod p. Then Q is a nondegenerate quadratic form on E with Witt defect 0,
and Q is preserved by the Weyl group W =W (E8).

The binary ovoids of Conway et al. [1] are defined in E for p odd by

O2,p(x) = O2,p(Zx+2E) = {〈v〉 : ||v||2=2p, v ∈Zx+2E}

where x∈E such that 1
2
||x||2 is odd. The sphere of norm 2p (radius

√
2p,

centre 0) has exactly 2(p3+1) points of the lattice Zx+2E, and these occur
in p3+1 antipodal pairs. Reducing modulo p, we obtain p3+1 points (one-
dimensional subspaces) 〈v〉, which are singular since Q(v) ≡ 1

2
(2p) ≡ 0 mod p.

Moreover [1] no two points of O2,p(x) are orthogonal, so O2,p(x) is an ovoid.
Since there are just 120 choices of sublattice Zx+2E ⊂ E with 1

2
||x||2 odd,

all equivalent under W , we obtain 120 binary ovoids in O+
8 (p), all of which

are equivalent. We may take x∈E to be our favourite root vector, and then
the stabiliser Wx

∼= W (E7) ∼= 2×Sp6(2) acts on the ovoid O2,p(x). (Remark:
if x∈E is a root vector, then Zx+2E = Zx⊕ 2E∗

7 where E
∗
7 is the dual of

E7 = E∩x⊥ in x⊥. Thus the binary ovoids are computable from a knowledge
[2] of the ‘shells’ of E∗

7 .)
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More generally, for primes r �= p we define

Or,p(x) = Or,p(Zx+ rE) =
⋃

1≤i≤� r
2
�

{
〈v〉 : ||v||2=2i(r−i)p, v∈Zx+rE

}

where x∈E such that −p
2
||x||2 is a nonzero square modulo r. If r > p, it

sometimes happens that Or,p(x) = {〈0〉}, but in all other cases Or,p(x) is
an ovoid in E, called an r-ary ovoid in O+

8 (p). In Section 3 we will see an
explanation for the ‘failed ovoids’ of the form {〈0〉}. The cases r∈{2, 3}
give the binary and ternary ovoids of Conway et al. [1]; for general r the
above definition is a slight simplification of that given in [5]. By varying the
choices of r and x, we expect from the computational evidence available that
the number of isomorphism classes of r-ary ovoids in O+

8 (p) is unbounded as
p→∞, but this has not been proven.
The above definition of Or,p(x) requires that we take lattice points on a

union of � r
2
� spheres in R

8. In Section 3 we shall interpret these spheres
as hyperplane sections of a single sphere in R

9, achieving a more concise
definition of Or,p(x) and a simplified proof that in fact we obtain ovoids.

3. A Nine-Dimensional Description

Throughout this section, r and p are distinct odd primes, which allows for a
simpler presentation. The industrious reader will find that our presentation
may be adapted to the general case; however the case r=2 has already been
treated by the description of the binary ovoids in Section 2, and the case p=2
is trivial since O+

8 (2) has a unique ovoid.

For each odd prime p, define a nine-dimensional Euclidean lattice by

Λ = Λ(p) =
√
2E ⊕√pZ .

That is, Λ consists of vectors
√
2e + λz with e ∈ E and λ ∈ Z, where

z = (0, 0, . . . , 0,
√
p), and ||√2e + λz||2 = 2||e||2 + pλ2. Note that Λ admits

a group of isometries G ∼= 2×W generated by W =W (E8) acting naturally
on the first eight coördinates and fixing z, together with the reflection in the
hyperplane z⊥ = 〈E〉.
Now let r be an odd prime distinct from p. The quotients Λ/pΛ and Λ/rΛ

are 9-dimensional vector spaces over GF (p) and GF (r), respectively. Each
inherits from Λ a G-invariant quadratic form obtained by reducing 2||e||2 +
pλ2 ∈ Z modulo the corresponding prime. The quotient Λ/rΛ is a (non-
degenerate) O9(r)-space.

However, the orthogonal space Λ = Λ/pΛ is degenerate, consisting of an
O+

8 (p)-space over a 1-dimensional radical 〈z〉 = 〈z+ pΛ〉; projectively, Λ/pΛ
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is a ‘hyperbolic cone over a point’. From the definition given in Section 1, we
see that two types of ovoids are possible in Λ = Λ/pΛ:

(i) The singleton {〈z〉} is an ovoid in Λ since every maximal totally singu-
lar subspace of Λ is 5-dimensional and contains 〈z〉. We call this the
degenerate ovoid of Λ.

(ii) Any setO consisting of p3+1 mutually nonperpendicular singular points
of Λ is an ovoid in Λ. Such an ovoid does not contain 〈z〉 and is called
nondegenerate. For such an ovoid, {〈v〉+〈z〉 : 〈v〉 ∈O} is an ovoid in
the O+

8 (p)-space Λ/〈z〉, and conversely, ovoids in O+
8 (p) lift to ovoids

in Λ.

Our construction in fact gives ovoids in Λ = Λ/pΛ of both types (although
degenerate ovoids never occur for r < p), and thereby ovoids in O+

8 (p) as
described in (ii) above. Let πr and πp denote the natural maps from Λ to
points of Λ/rΛ and Λ/pΛ respectively. That is, for v ∈ Λ................ rΛ, we have
πr(v) = 〈v+ rΛ〉 ≤ Λ/rΛ, and similarly for p in place of r. Consider the
points of the lattice Λ which lie on the sphere of radius r

√
p, other than the

‘poles’ ±rz, denoted thus:

Λr2p = {v∈Λ : ||v||2= r2p}................{±rz}.

Our main result, as follows, will be proven later in this section.

Theorem 3.1 (i) πr(Λr2p) is the set of singular points of Λ/rΛ outside the
hyperplane H = πr(E).

(ii) Let X = 〈x+ rΛ〉 be a singular point of Λ/rΛ outside H, and let X =
{v∈Λr2p : πr(v)=X}. Then πp(X ) is an ovoid of Λ/pΛ.

(iii) An ovoid of the form πp(X ) as in (ii) is nondegenerate whenever r < p.
If r > p then πp(X ) is nondegenerate for some X,X .

The situation of Theorem 3.1 may be appreciated from Figure 1, where
typical points of the quadric in Λ/rΛ outside the hyperplane H , are denoted
by •, * and �. These points are lifted back to the sphere Λr2p and then
projected down to the degenerate quadric in Λ/pΛ, obtaining in each case an
ovoid, although the ovoid obtained from � is degenerate. Observe that, as
pictured, the lattice points in Λr2p lie on certain hyperplanes of R

9 parallel
to z⊥.
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Figure 1. Two Projections of Λr2p

We further illustrate the construction with an example in which p=3 and
r=5. Now Λr2p = {

√
2e±z : e∈E, ||e||2=36}∪{√2e±3z : e∈E, ||e||2=24}.

For X = π5(
√
2(26, 02)+ 3z) we obtain

X =
{
±(√2(26; 02)+3z), ±(√2·1

2
(−7, 35;−5, 5)+z),

±(√2(42,−14; 02)+z), . . .
}

where ‘. . .’ denotes similar vectors obtained by arbitrarily permuting the first
six coördinates of E, and permuting the last two coördinates of E. Then
|X |=56 and X projects to a nondegenerate ovoid of size 28 in Λ/3Λ, antipo-
dal points of X giving the same ovoid point. ChoosingX ′ = π5(

√
2(6, 07)+ z),

however, we obtain X ′ = {±(√2(6, 07)+z)}, which projects to the degenerate
ovoid of Λ/3Λ.

Observe that by definition if u =
√
2e+ λz ∈ Λr2p then ||u||2 = 2||e||2+

pλ2= r2p, which implies that |λ|<r and λ is odd, so that πr(u) is a singular
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point of Λ/rΛ which does not lie in the hyperplane H = πr(E); this proves
half of conclusion (i) of Theorem 3.1.

Lemma 3.2 If u · v ≡ 0 mod p for some u, v ∈ Λr2p such that πr(u) = πr(v),
then u = ±v.

Proof: The hypotheses imply that u−αv ∈ rΛ for some α ∈ Z not divisible
by r. Thus 2αu·v = ||u||2+α2||v||2− ||u−αv||2 ≡ 0 mod r2, so u·v ≡ 0
mod r2. Also u·v ≡ 0 mod p by hypothesis, so u·v ≡ 0 mod r2p. But
|u·v| ≤ ||u||||v|| = r2p by Cauchy-Schwarz, so |u·v| = 0 or r2p. If |u · v| = r2p,
then again by Cauchy-Schwarz, u = ±v and we are done. Otherwise u · v = 0.
But it is easy to see that u · v must be odd. For we have u = √2e+λz, v =√
2e′+µz for some e, e′ ∈ E and odd integers λ, µ satisfying 2||e||2+ pλ2 =

2||e′||2+ pµ2 = r2p; thus u · v = 2e·e′+ pλµ ≡ 1 mod 2, a contradiction. ✷

Define Λ′
r2p = Λr2p∩ (pΛ+Zz), the set of all vectors in Λr2p which project

to the radical of Λ/pΛ.

Lemma 3.3 |Λr2p|+ p3|Λ′
r2p| = 2r3(r4− 1)(p3+1).

Proof: This is proven in exactly the same way as Lemma 2.4 of [5], using
the multiplicativity of σ3, and the fact [6] that E⊕E has 480σ7(m) vectors
of norm 2m for every positive integer m. ✷

A cap in an orthogonal space is a set of singular points which are mutu-
ally nonperpendicular. Any cap in O+

8 (p) has size at most p
3+1, and caps

attaining this maximum size are ovoids (see [3], [7]). Consequently, caps in
Λ/pΛ have size at most p3+1, and caps attaining this maximum size are
nondegenerate ovoids; the radical point is a maximal cap of size 1.

Let S be the set of singular points of Λ/rΛ. Well-known counting argu-
ments give |S| = (r8− 1)/(r− 1) and |S ∩H| = (r3+1)(r4− 1)/(r− 1) since
the hyperplane H is of type O+

8 (r); thus |S................H| = |S|− |S ∩H| = r3(r4− 1).
By Lemma 3.2, for each point X ∈ S ................H , its preimage X = {v∈Λr2p :
πr(v)=X} (which could conceivably be empty) projects to a cap πp(X ) of
Λ/pΛ. Also |πp(X )| = |〈z〉| = 1 if X ⊆ Λ′

r2p; otherwise X ⊆ Λr2p
................ Λ′

r2p

and 0≤ |πp(X )| ≤ p3+1. Furthermore, Lemma 3.2 shows that the projection
X → πp(X ) is two-to-one. Therefore

|Λr2p| − |Λ′
r2p| = |Λr2p

................Λ′
r2p| =

∑
X∈S−H:

X⊆Λ
r2p

−Λ′
r2p

|X | ≤ ∑
X∈S−H:

X⊆Λ
r2p

−Λ′
r2p

2(p3+1)

= 2(p3+1)|S ................H| − 2(p3+1)|{X ∈S ................H : X ⊆ Λ′
r2p}|

= 2(p3+1)r3(r4− 1)− (p3+1)|Λ′
r2p| ,
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in which equality holds by Lemma 3.3. Therefore |πp(X )| = p3+1 whenever
X ⊂ Λr2p

................Λ′
r2p, thereby proving (i) and (ii) of Theorem 3.1. It is clear that

Λ′
r2p = Ø whenever r <p, and that in any case Λr2p ⊇′ Λ′

r2p , whence not all
ovoids πp(X ) are degenerate, so (iii) follows as well, completing the proof of
Theorem 3.1.

One checks without difficulty that for x =
√
2e+λz ∈ Λr2p, the ovoid

of Λ = Λ/pΛ constructed from x as in Theorem 3.1, projects to the ovoid
Or,p(e) of Λ/z described in Section 2, in the nondegenerate case (e /∈ pE).

4. Further Remarks

Let X, X , etc. be as in Theorem 3.1, and as before, let G ∼= 2×W be the
isometry group of Λ, having natural orthogonal representations on both Λ/rΛ
and on Λ/pΛ. The stabiliser GX acts on the ovoid πr(X ), with kernel of order
2 or 4 in the nondegenerate case. In general, however, the stabilisers of these
ovoids in the full orthogonal group, remain undetermined; cf. [5].

It is disappointing that the r-ary ovoid construction does not seem to work
in O+

8 (p
e) for e> 1. This contrasts sharply with the situation in O+

6 (p
e), where

ovoid constructions generally proliferate as e increases. The problem with
O+

8 (p
e) is more than a lack of inspiration: although O+

8 (p) has at least one
Sp6(2)-invariant ovoid for every odd prime p (say, O2,p(

1
2
(18)), and evidently

many more as p increases), we have checked that no Sp6(2)-invariant ovoids
exist in O+

8 (p
e) for pe ∈ {22, 23, 24, 32, 33, 52}. (For pe=9, this is proven in [1].)

Can variations of the above constructions give new ovoids from other
lattices, or perhaps even nonexistence results for higher-dimensional ovoids?
Certainly any ovoid may be lifted back from L/pL to a lattice L, with great
freedom in the choice of lifting and of L itself. We cannot expect all such
preimages to be as elegant as the spheres arising in our construction; never-
theless can it be shown that every ovoid lifts to some subset of a lattice with
high density? And could the apparent lack of ovoids in O+

10(q) be due to a
lack of a suitably dense lattice packing in R

10? These are mere speculations.
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