Root Lattice Constructions of Ovoids

G. Eric Moorhouse *

Abstract

Recently the author [5] has constructed new ovoids in $O_{8}^{+}(p)$ for p prime, using the E_{8} root lattice, generalising a construction of Conway et al. [1]. Here we present a nine-dimensional lattice which greatly simplifies the description of these ovoids.

1. Introduction

An orthogonal space is a vector space V equipped with a quadratic form Q. We consider only finite-dimensional vector spaces over a finite field $F=$ $G F(q)$. A singular point in such a space is a 1-dimensional subspace $\langle v\rangle$ such that $Q(v)=0$. Usually we take Q to be nondegenerate, in which case (V, Q) is called an $O_{2 m-1}(q)$-space if $\operatorname{dim} V=2 m-1$, or an $O_{2 m}^{ \pm}(q)$-space if $\operatorname{dim} V=2 m$, using superscript + or - according as Q has Witt defect 0 or 1 . An ovoid in an orthogonal space (V, Q) is a set \mathcal{O} consisting of singular points, such that every maximal totally singular subspace of V contains a unique point of \mathcal{O}. In a space of type $O_{2 m}^{+}(q), O_{2 m-1}(q)$ or $O_{2 m-2}^{-}(q)$, an ovoid is equivalently defined (see [3], [7]) as a set of $q^{m-1}+1$ singular points of which no two are orthogonal. Ovoids are not known to exist in orthogonal spaces of 9 or more dimensions. Ovoids in $O_{3}(q)$ and in $O_{4}^{-}(q)$ necessarily consist of all singular points; viewed projectively, these are nondegenerate plane conics and elliptic quadrics in projective 3 -space. We emphasise that the latter are discrete analogues of classical round objects in Euclidean space, and so the name 'ovoid' seems well-deserved. Ovoids in $O_{6}^{+}(q)$ (including ovoids in $O_{5}(q)$ as a special case under the natural embedding) are equivalent (see [4]) to translation planes of order q^{2} with kernel containing $G F(q)$. These are known to exist in great abundance, and in general do not appear to originate from any Euclidean 'round' objects.

[^0]
MOORHOUSE : ROOT LATTICE CONSTRUCTIONS OF OVOIDS

The known ovoids in $O_{8}^{+}(q)$ are listed in [4], [1] and [5]. The majority of these occur in $O_{8}^{+}(p)$ for p prime, and are constructed by taking lattice points on a certain Euclidean sphere, then reducing modulo p, as we shall describe in Sections 2 and 3. It is intriguing that such discrete geometric objects would appear to owe their existence to properties of the Euclidean metric (seemingly requiring the Cauchy-Schwarz inequality in \mathbb{R}^{8} or \mathbb{R}^{9}), and again justice is done to the term 'ovoid'.

2. An Eight-Dimensional Description

We first indicate, without proof, the ovoid construction from 8-dimensional lattices. This description remains the most useful for computer implementation.

Let E be the root lattice of type E_{8}; that is, E consists of all vectors $\frac{1}{2}\left(a_{1}, a_{2}, \ldots, a_{8}\right)$ with $a_{i} \in \mathbb{Z}$ such that $a_{1} \equiv a_{2} \equiv \cdots \equiv a_{8} \bmod 2$ and $\sum a_{i} \equiv 0$ $\bmod 4$. A detailed description of E, including the following properties, may be found in [2]. Let p be any prime. Then $\bar{E}=E / p E$ is an 8 -dimensional vector space over $F=G F(p)$, and for $v \in E$ we write $\bar{v}=v+p E \in \bar{E}$. We call $\|v\|^{2}$ the norm of $v \in E$, and since E is an even lattice, $\|v\|^{2} \in 2 \mathbb{Z}$. For any positive integer m, the number of vectors in E of norm $2 m$ is $240 \sigma_{3}(m)=240 \sum d^{3}$, summing over all positive integers d dividing m. In particular E has 240 vectors of norm 2, the root vectors of E. Define $Q: \bar{E} \rightarrow F$ by $Q(\bar{v})=\frac{1}{2}\|v\|^{2}$ $\bmod p$. Then Q is a nondegenerate quadratic form on \bar{E} with Witt defect 0 , and Q is preserved by the Weyl group $W=W\left(E_{8}\right)$.

The binary ovoids of Conway et al. [1] are defined in \bar{E} for p odd by

$$
\mathcal{O}_{2, p}(x)=\mathcal{O}_{2, p}(\mathbb{Z} x+2 E)=\left\{\langle\bar{v}\rangle:\|v\|^{2}=2 p, v \in \mathbb{Z} x+2 E\right\}
$$

where $x \in E$ such that $\frac{1}{2}\|x\|^{2}$ is odd. The sphere of norm 2 p (radius $\sqrt{2 p}$, centre 0) has exactly $2\left(p^{3}+1\right)$ points of the lattice $\mathbb{Z} x+2 E$, and these occur in $p^{3}+1$ antipodal pairs. Reducing modulo p, we obtain $p^{3}+1$ points (onedimensional subspaces) $\langle\bar{v}\rangle$, which are singular since $Q(\bar{v}) \equiv \frac{1}{2}(2 p) \equiv 0 \bmod p$. Moreover [1] no two points of $\mathcal{O}_{2, p}(x)$ are orthogonal, so $\mathcal{O}_{2, p}(x)$ is an ovoid. Since there are just 120 choices of sublattice $\mathbb{Z} x+2 E \subset E$ with $\frac{1}{2}\|x\|^{2}$ odd, all equivalent under W, we obtain 120 binary ovoids in $O_{8}^{+}(p)$, all of which are equivalent. We may take $x \in E$ to be our favourite root vector, and then the stabiliser $W_{x} \cong W\left(E_{7}\right) \cong 2 \times S p_{6}(2)$ acts on the ovoid $\mathcal{O}_{2, p}(x)$. (Remark: if $x \in E$ is a root vector, then $\mathbb{Z} x+2 E=\mathbb{Z} x \oplus 2 E_{7}^{*}$ where E_{7}^{*} is the dual of $E_{7}=E \cap x^{\perp}$ in x^{\perp}. Thus the binary ovoids are computable from a knowledge [2] of the 'shells' of E_{7}^{*}.)

MOORHOUSE : ROOT LATTICE CONSTRUCTIONS OF OVOIDS

More generally, for primes $r \neq p$ we define

$$
\mathcal{O}_{r, p}(x)=\mathcal{O}_{r, p}(\mathbb{Z} x+r E)=\bigcup_{1 \leq i \leq\left\lfloor\frac{r}{2}\right\rfloor}\left\{\langle\bar{v}\rangle:\|v\|^{2}=2 i(r-i) p, v \in \mathbb{Z} x+r E\right\}
$$

where $x \in E$ such that $-\frac{p}{2}\|x\|^{2}$ is a nonzero square modulo r. If $r>p$, it sometimes happens that $\mathcal{O}_{r, p}(x)=\{\langle 0\rangle\}$, but in all other cases $\mathcal{O}_{r, p}(x)$ is an ovoid in \bar{E}, called an r-ary ovoid in $O_{8}^{+}(p)$. In Section 3 we will see an explanation for the 'failed ovoids' of the form $\{\langle 0\rangle\}$. The cases $r \in\{2,3\}$ give the binary and ternary ovoids of Conway et al. [1]; for general r the above definition is a slight simplification of that given in [5]. By varying the choices of r and x, we expect from the computational evidence available that the number of isomorphism classes of r-ary ovoids in $O_{8}^{+}(p)$ is unbounded as $p \rightarrow \infty$, but this has not been proven.

The above definition of $\mathcal{O}_{r, p}(x)$ requires that we take lattice points on a union of $\left\lfloor\frac{r}{2}\right\rfloor$ spheres in \mathbb{R}^{8}. In Section 3 we shall interpret these spheres as hyperplane sections of a single sphere in \mathbb{R}^{9}, achieving a more concise definition of $\mathcal{O}_{r, p}(x)$ and a simplified proof that in fact we obtain ovoids.

3. A Nine-Dimensional Description

Throughout this section, r and p are distinct odd primes, which allows for a simpler presentation. The industrious reader will find that our presentation may be adapted to the general case; however the case $r=2$ has already been treated by the description of the binary ovoids in Section 2, and the case $p=2$ is trivial since $O_{8}^{+}(2)$ has a unique ovoid.

For each odd prime p, define a nine-dimensional Euclidean lattice by

$$
\Lambda=\Lambda(p)=\sqrt{2} E \oplus \sqrt{p} \mathbb{Z}
$$

That is, Λ consists of vectors $\sqrt{2} e+\lambda z$ with $e \in E$ and $\lambda \in \mathbb{Z}$, where $z=(0,0, \ldots, 0, \sqrt{p})$, and $\|\sqrt{2} e+\lambda z\|^{2}=2\|e\|^{2}+p \lambda^{2}$. Note that Λ admits a group of isometries $G \cong 2 \times W$ generated by $W=W\left(E_{8}\right)$ acting naturally on the first eight coördinates and fixing z, together with the reflection in the hyperplane $z^{\perp}=\langle E\rangle$.

Now let r be an odd prime distinct from p. The quotients $\Lambda / p \Lambda$ and $\Lambda / r \Lambda$ are 9-dimensional vector spaces over $G F(p)$ and $G F(r)$, respectively. Each inherits from Λ a G-invariant quadratic form obtained by reducing $2\|e\|^{2}+$ $p \lambda^{2} \in \mathbb{Z}$ modulo the corresponding prime. The quotient $\Lambda / r \Lambda$ is a (nondegenerate) $O_{9}(r)$-space.

However, the orthogonal space $\bar{\Lambda}=\Lambda / p \Lambda$ is degenerate, consisting of an $O_{8}^{+}(p)$-space over a 1-dimensional radical $\langle\bar{z}\rangle=\langle z+p \Lambda\rangle ;$ projectively, $\Lambda / p \Lambda$

MOORHOUSE : ROOT LATTICE CONSTRUCTIONS OF OVOIDS

is a 'hyperbolic cone over a point'. From the definition given in Section 1, we see that two types of ovoids are possible in $\bar{\Lambda}=\Lambda / p \Lambda$:
(i) The singleton $\{\langle\bar{z}\rangle\}$ is an ovoid in $\bar{\Lambda}$ since every maximal totally singular subspace of $\bar{\Lambda}$ is 5 -dimensional and contains $\langle\bar{z}\rangle$. We call this the degenerate ovoid of $\bar{\Lambda}$.
(ii) Any set \mathcal{O} consisting of $p^{3}+1$ mutually nonperpendicular singular points of $\bar{\Lambda}$ is an ovoid in $\bar{\Lambda}$. Such an ovoid does not contain $\langle\bar{z}\rangle$ and is called nondegenerate. For such an ovoid, $\{\langle\bar{v}\rangle+\langle\bar{z}\rangle:\langle\bar{v}\rangle \in \mathcal{O}\}$ is an ovoid in the $O_{8}^{+}(p)$-space $\bar{\Lambda} /\langle\bar{z}\rangle$, and conversely, ovoids in $O_{8}^{+}(p)$ lift to ovoids in $\bar{\Lambda}$.

Our construction in fact gives ovoids in $\bar{\Lambda}=\Lambda / p \Lambda$ of both types (although degenerate ovoids never occur for $r<p$), and thereby ovoids in $O_{8}^{+}(p)$ as described in (ii) above. Let π_{r} and π_{p} denote the natural maps from Λ to points of $\Lambda / r \Lambda$ and $\Lambda / p \Lambda$ respectively. That is, for $v \in \Lambda \sim r \Lambda$, we have $\pi_{r}(v)=\langle v+r \Lambda\rangle \leq \Lambda / r \Lambda$, and similarly for p in place of r. Consider the points of the lattice Λ which lie on the sphere of radius $r \sqrt{p}$, other than the 'poles' $\pm r z$, denoted thus:

$$
\Lambda_{r^{2} p}=\left\{v \in \Lambda:\|v\|^{2}=r^{2} p\right\}-\{ \pm r z\}
$$

Our main result, as follows, will be proven later in this section.

Theorem 3.1 (i) $\pi_{r}\left(\Lambda_{r^{2} p}\right)$ is the set of singular points of $\Lambda / r \Lambda$ outside the hyperplane $H=\pi_{r}(E)$.
(ii) Let $X=\langle x+r \Lambda\rangle$ be a singular point of $\Lambda / r \Lambda$ outside H, and let $\mathcal{X}=$ $\left\{v \in \Lambda_{r^{2} p}: \pi_{r}(v)=X\right\}$. Then $\pi_{p}(\mathcal{X})$ is an ovoid of $\Lambda / p \Lambda$.
(iii) An ovoid of the form $\pi_{p}(\mathcal{X})$ as in (ii) is nondegenerate whenever $r<p$. If $r>p$ then $\pi_{p}(\mathcal{X})$ is nondegenerate for some X, \mathcal{X}.

The situation of Theorem 3.1 may be appreciated from Figure 1, where typical points of the quadric in $\Lambda / r \Lambda$ outside the hyperplane H, are denoted by $\bullet, *$ and \diamond. These points are lifted back to the sphere $\Lambda_{r^{2} p}$ and then projected down to the degenerate quadric in $\Lambda / p \Lambda$, obtaining in each case an ovoid, although the ovoid obtained from \diamond is degenerate. Observe that, as pictured, the lattice points in $\Lambda_{r^{2} p}$ lie on certain hyperplanes of \mathbb{R}^{9} parallel to z^{\perp}.

Figure 1. Two Projections of $\Lambda_{r^{2} p}$

We further illustrate the construction with an example in which $p=3$ and $r=5$. Now $\Lambda_{r^{2} p}=\left\{\sqrt{2} e \pm z: e \in E,\|e\|^{2}=36\right\} \cup\left\{\sqrt{2} e \pm 3 z: e \in E,\|e\|^{2}=24\right\}$. For $X=\pi_{5}\left(\sqrt{2}\left(2^{6}, 0^{2}\right)+3 z\right)$ we obtain

$$
\begin{aligned}
\mathcal{X}=\left\{ \pm\left(\sqrt{2}\left(2^{6} ; 0^{2}\right)+3 z\right), \pm\left(\sqrt{2} \cdot \frac{1}{2}(-7,\right.\right. & \left.\left.3^{5} ;-5,5\right)+z\right) \\
& \left. \pm\left(\sqrt{2}\left(4^{2},-1^{4} ; 0^{2}\right)+z\right), \ldots\right\}
\end{aligned}
$$

where '...' denotes similar vectors obtained by arbitrarily permuting the first six coördinates of E, and permuting the last two coördinates of E. Then $|\mathcal{X}|=56$ and \mathcal{X} projects to a nondegenerate ovoid of size 28 in $\Lambda / 3 \Lambda$, antipodal points of \mathcal{X} giving the same ovoid point. Choosing $X^{\prime}=\pi_{5}\left(\sqrt{2}\left(6,0^{7}\right)+z\right)$, however, we obtain $\mathcal{X}^{\prime}=\left\{ \pm\left(\sqrt{2}\left(6,0^{7}\right)+z\right)\right\}$, which projects to the degenerate ovoid of $\Lambda / 3 \Lambda$.

Observe that by definition if $u=\sqrt{2} e+\lambda z \in \Lambda_{r^{2} p}$ then $\|u\|^{2}=2\|e\|^{2}+$ $p \lambda^{2}=r^{2} p$, which implies that $|\lambda|<r$ and λ is odd, so that $\pi_{r}(u)$ is a singular

MOORHOUSE : ROOT LATTICE CONSTRUCTIONS OF OVOIDS

point of $\Lambda / r \Lambda$ which does not lie in the hyperplane $H=\pi_{r}(E)$; this proves half of conclusion (i) of Theorem 3.1.

Lemma 3.2 If $u \cdot v \equiv 0 \bmod p$ for some $u, v \in \Lambda_{r^{2} p}$ such that $\pi_{r}(u)=\pi_{r}(v)$, then $u= \pm v$.

Proof: The hypotheses imply that $u-\alpha v \in r \Lambda$ for some $\alpha \in \mathbb{Z}$ not divisible by r. Thus $2 \alpha u \cdot v=\|u\|^{2}+\alpha^{2}\|v\|^{2}-\|u-\alpha v\|^{2} \equiv 0 \bmod r^{2}$, so $u \cdot v \equiv 0$ $\bmod r^{2}$. Also $u \cdot v \equiv 0 \bmod p$ by hypothesis, so $u \cdot v \equiv 0 \bmod r^{2} p$. But $|u \cdot v| \leq\|u\|\|v\|=r^{2} p$ by Cauchy-Schwarz, so $|u \cdot v|=0$ or $r^{2} p$. If $|u \cdot v|=r^{2} p$, then again by Cauchy-Schwarz, $u= \pm v$ and we are done. Otherwise $u \cdot v=0$. But it is easy to see that $u \cdot v$ must be odd. For we have $u=\sqrt{2} e+\lambda z, v=$ $\sqrt{2} e^{\prime}+\mu z$ for some $e, e^{\prime} \in E$ and odd integers λ, μ satisfying $2\|e\|^{2}+p \lambda^{2}=$ $2\left\|e^{\prime}\right\|^{2}+p \mu^{2}=r^{2} p$; thus $u \cdot v=2 e \cdot e^{\prime}+p \lambda \mu \equiv 1 \bmod 2$, a contradiction.

Define $\Lambda_{r^{2} p}^{\prime}=\Lambda_{r^{2} p} \cap(p \Lambda+\mathbb{Z} z)$, the set of all vectors in $\Lambda_{r^{2} p}$ which project to the radical of $\Lambda / p \Lambda$.

Lemma 3.3 $\left|\Lambda_{r^{2} p}\right|+p^{3}\left|\Lambda_{r^{2} p}^{\prime}\right|=2 r^{3}\left(r^{4}-1\right)\left(p^{3}+1\right)$.
Proof: This is proven in exactly the same way as Lemma 2.4 of [5], using the multiplicativity of σ_{3}, and the fact [6] that $E \oplus E$ has $480 \sigma_{7}(m)$ vectors of norm $2 m$ for every positive integer m.

A cap in an orthogonal space is a set of singular points which are mutually nonperpendicular. Any cap in $O_{8}^{+}(p)$ has size at most $p^{3}+1$, and caps attaining this maximum size are ovoids (see [3], [7]). Consequently, caps in $\Lambda / p \Lambda$ have size at most $p^{3}+1$, and caps attaining this maximum size are nondegenerate ovoids; the radical point is a maximal cap of size 1 .

Let \mathcal{S} be the set of singular points of $\Lambda / r \Lambda$. Well-known counting arguments give $|\mathcal{S}|=\left(r^{8}-1\right) /(r-1)$ and $|\mathcal{S} \cap H|=\left(r^{3}+1\right)\left(r^{4}-1\right) /(r-1)$ since the hyperplane H is of type $O_{8}^{+}(r)$; thus $|\mathcal{S} \backslash H|=|\mathcal{S}|-|\mathcal{S} \cap H|=r^{3}\left(r^{4}-1\right)$. By Lemma 3.2, for each point $X \in \mathcal{S} \backslash H$, its preimage $\mathcal{X}=\left\{v \in \Lambda_{r^{2} p}\right.$: $\left.\pi_{r}(v)=X\right\}$ (which could conceivably be empty) projects to a cap $\pi_{p}(\mathcal{X})$ of $\Lambda / p \Lambda$. Also $\left|\pi_{p}(\mathcal{X})\right|=|\langle\bar{z}\rangle|=1$ if $\mathcal{X} \subseteq \Lambda_{r^{2} p}^{\prime}$; otherwise $\mathcal{X} \subseteq \Lambda_{r^{2} p}-\Lambda_{r^{2} p}^{\prime}$ and $0 \leq\left|\pi_{p}(\mathcal{X})\right| \leq p^{3}+1$. Furthermore, Lemma 3.2 shows that the projection $\mathcal{X} \rightarrow \pi_{p}(\mathcal{X})$ is two-to-one. Therefore

$$
\begin{aligned}
\left|\Lambda_{r^{2} p}\right|-\left|\Lambda_{r^{2} p}^{\prime}\right| & =\left|\Lambda_{r^{2} p}-\Lambda_{r^{2} p}^{\prime}\right|=\sum_{\substack{X \in \mathcal{S}-H ; \\
\mathcal{X \subseteq \Lambda} \Lambda_{r^{2}}-\Lambda_{r^{\prime} p}^{\prime}}}|\mathcal{X}| \leq \sum_{\substack{X \in \mathcal{S}-H ; \\
\mathcal{X} \subseteq \Lambda_{r^{2} p}-\Lambda_{r^{\prime} p}^{\prime}}} 2\left(p^{3}+1\right) \\
& =2\left(p^{3}+1\right)|\mathcal{S}-H|-2\left(p^{3}+1\right)\left|\left\{X \in \mathcal{S} \sim H: \mathcal{X} \subseteq \Lambda_{r^{2} p}^{\prime}\right\}\right| \\
& =2\left(p^{3}+1\right) r^{3}\left(r^{4}-1\right)-\left(p^{3}+1\right)\left|\Lambda_{r^{2} p}^{\prime}\right|,
\end{aligned}
$$

MOORHOUSE : ROOT LATTICE CONSTRUCTIONS OF OVOIDS

in which equality holds by Lemma 3.3. Therefore $\left|\pi_{p}(\mathcal{X})\right|=p^{3}+1$ whenever $\mathcal{X} \subset \Lambda_{r^{2} p}-\Lambda_{r^{2} p}^{\prime}$, thereby proving (i) and (ii) of Theorem 3.1. It is clear that $\Lambda_{r^{2} p}^{\prime}=\emptyset$ whenever $r<p$, and that in any case $\Lambda_{r^{2} p} \supsetneq \Lambda_{r^{2} p}^{\prime}$, whence not all ovoids $\pi_{p}(\mathcal{X})$ are degenerate, so (iii) follows as well, completing the proof of Theorem 3.1.

One checks without difficulty that for $x=\sqrt{2} e+\lambda z \in \Lambda_{r^{2} p}$, the ovoid of $\bar{\Lambda}=\Lambda / p \Lambda$ constructed from x as in Theorem 3.1, projects to the ovoid $\mathcal{O}_{r, p}(e)$ of $\bar{\Lambda} / \bar{z}$ described in Section 2, in the nondegenerate case $(e \notin p E)$.

4. Further Remarks

Let X, \mathcal{X}, etc. be as in Theorem 3.1, and as before, let $G \cong 2 \times W$ be the isometry group of Λ, having natural orthogonal representations on both $\Lambda / r \Lambda$ and on $\Lambda / p \Lambda$. The stabiliser G_{X} acts on the ovoid $\pi_{r}(\mathcal{X})$, with kernel of order 2 or 4 in the nondegenerate case. In general, however, the stabilisers of these ovoids in the full orthogonal group, remain undetermined; cf. [5].

It is disappointing that the r-ary ovoid construction does not seem to work in $O_{8}^{+}\left(p^{e}\right)$ for $e>1$. This contrasts sharply with the situation in $O_{6}^{+}\left(p^{e}\right)$, where ovoid constructions generally proliferate as e increases. The problem with $O_{8}^{+}\left(p^{e}\right)$ is more than a lack of inspiration: although $O_{8}^{+}(p)$ has at least one $S p_{6}(2)$-invariant ovoid for every odd prime p (say, $\mathcal{O}_{2, p}\left(\frac{1}{2}\left(1^{8}\right)\right.$), and evidently many more as p increases), we have checked that no $S p_{6}(2)$-invariant ovoids exist in $O_{8}^{+}\left(p^{e}\right)$ for $p^{e} \in\left\{2^{2}, 2^{3}, 2^{4}, 3^{2}, 3^{3}, 5^{2}\right\}$. (For $p^{e}=9$, this is proven in [1].)

Can variations of the above constructions give new ovoids from other lattices, or perhaps even nonexistence results for higher-dimensional ovoids? Certainly any ovoid may be lifted back from $L / p L$ to a lattice L, with great freedom in the choice of lifting and of L itself. We cannot expect all such preimages to be as elegant as the spheres arising in our construction; nevertheless can it be shown that every ovoid lifts to some subset of a lattice with high density? And could the apparent lack of ovoids in $O_{10}^{+}(q)$ be due to a lack of a suitably dense lattice packing in \mathbb{R}^{10} ? These are mere speculations.

References

[1] Conway J. H., Kleidman P. B. and Wilson R. A., New families of ovoids in O_{8}^{+}. Geom. Ded. 26 (1988), 157-170.
[2] Conway J. H. and Sloane N. J. A., Sphere Packings, Lattices and Groups. Springer, New York and Berlin, 1988.
[3] Hirschfeld J. W. P. and Thas J. A., General Galois Geometries. Oxford Univ. Press, Oxford and New York, 1991.

MOORHOUSE : ROOT LATTICE CONSTRUCTIONS OF OVOIDS

[4] Kantor W. M., Ovoids and translation planes. Can. J. Math. 34 (1982), 1195-1207.
[5] Moorhouse G. E., Ovoids from the E 8 root lattice. Geom. Ded., to appear.
[6] Serre J.-P., A Course in Arithmetic. Springer, New York and Berlin, 1973, p. 110.
[7] Thas J. A., Ovoids and spreads of finite classical polar spaces. Geom. Ded. 10 (1981), 135-144.

[^0]: *Department of Mathematics, University of Wyoming, Laramie, WY 82071-3036, U.S.A.

