Root Lattice Constructions of Ovoids

G. Eric Moorhouse *

Abstract

Recently the author [5] has constructed new ovoids in $O_8^+(p)$ for p prime, using the E_8 root lattice, generalising a construction of Conway et al. [1]. Here we present a nine-dimensional lattice which greatly simplifies the description of these ovoids.

1. Introduction

An orthogonal space is a vector space V equipped with a quadratic form Q. We consider only finite-dimensional vector spaces over a finite field F =GF(q). A singular point in such a space is a 1-dimensional subspace $\langle v \rangle$ such that Q(v) = 0. Usually we take Q to be nondegenerate, in which case (V, Q) is called an $O_{2m-1}(q)$ -space if dim V = 2m-1, or an $O_{2m}^{\pm}(q)$ -space if dim V = 2m, using superscript + or - according as Q has Witt defect 0 or 1. An ovoid in an orthogonal space (V, Q) is a set \mathcal{O} consisting of singular points, such that every maximal totally singular subspace of V contains a unique point of \mathcal{O} . In a space of type $O_{2m}^+(q)$, $O_{2m-1}(q)$ or $O_{2m-2}^-(q)$, an ovoid is equivalently defined (see [3], [7]) as a set of $q^{m-1} + 1$ singular points of which no two are orthogonal. Ovoids are not known to exist in orthogonal spaces of 9 or more dimensions. Ovoids in $O_3(q)$ and in $O_4^-(q)$ necessarily consist of all singular points; viewed projectively, these are nondegenerate plane conics and elliptic quadrics in projective 3-space. We emphasise that the latter are discrete analogues of classical round objects in Euclidean space, and so the name 'ovoid' seems well-deserved. Ovoids in $O_6^+(q)$ (including ovoids in $O_5(q)$ as a special case under the natural embedding) are equivalent (see [4]) to translation planes of order q^2 with kernel containing GF(q). These are known to exist in great abundance, and in general do not appear to originate from any Euclidean 'round' objects.

^{*}Department of Mathematics, University of Wyoming, Laramie, WY 82071–3036, U.S.A.

The known ovoids in $O_8^+(q)$ are listed in [4], [1] and [5]. The majority of these occur in $O_8^+(p)$ for p prime, and are constructed by taking lattice points on a certain Euclidean sphere, then reducing modulo p, as we shall describe in Sections 2 and 3. It is intriguing that such discrete geometric objects would appear to owe their existence to properties of the Euclidean metric (seemingly requiring the Cauchy-Schwarz inequality in \mathbb{R}^8 or \mathbb{R}^9), and again justice is done to the term 'ovoid'.

2. An Eight-Dimensional Description

We first indicate, without proof, the ovoid construction from 8-dimensional lattices. This description remains the most useful for computer implementation.

Let E be the root lattice of type E_8 ; that is, E consists of all vectors $\frac{1}{2}(a_1, a_2, \ldots, a_8)$ with $a_i \in \mathbb{Z}$ such that $a_1 \equiv a_2 \equiv \cdots \equiv a_8 \mod 2$ and $\sum a_i \equiv 0 \mod 4$. A detailed description of E, including the following properties, may be found in [2]. Let p be any prime. Then $\overline{E} = E/pE$ is an 8-dimensional vector space over F = GF(p), and for $v \in E$ we write $\overline{v} = v + pE \in \overline{E}$. We call $||v||^2$ the norm of $v \in E$, and since E is an even lattice, $||v||^2 \in 2\mathbb{Z}$. For any positive integer m, the number of vectors in E of norm 2m is $240\sigma_3(m) = 240 \sum d^3$, summing over all positive integers d dividing m. In particular E has 240 vectors of norm 2, the root vectors of E. Define $Q: \overline{E} \to F$ by $Q(\overline{v}) = \frac{1}{2} ||v||^2$ mod p. Then Q is a nondegenerate quadratic form on \overline{E} with Witt defect 0, and Q is preserved by the Weyl group $W = W(E_8)$.

The binary ovoids of Conway et al. [1] are defined in \overline{E} for p odd by

$$\mathcal{O}_{2,p}(x) = \mathcal{O}_{2,p}(\mathbb{Z}x + 2E) = \{\langle \overline{v} \rangle : ||v||^2 = 2p, v \in \mathbb{Z}x + 2E\}$$

where $x \in E$ such that $\frac{1}{2}||x||^2$ is odd. The sphere of norm 2p (radius $\sqrt{2p}$, centre 0) has exactly $2(p^3 + 1)$ points of the lattice $\mathbb{Z}x + 2E$, and these occur in $p^3 + 1$ antipodal pairs. Reducing modulo p, we obtain $p^3 + 1$ points (one-dimensional subspaces) $\langle \overline{v} \rangle$, which are singular since $Q(\overline{v}) \equiv \frac{1}{2}(2p) \equiv 0 \mod p$. Moreover [1] no two points of $\mathcal{O}_{2,p}(x)$ are orthogonal, so $\mathcal{O}_{2,p}(x)$ is an ovoid. Since there are just 120 choices of sublattice $\mathbb{Z}x + 2E \subset E$ with $\frac{1}{2}||x||^2$ odd, all equivalent under W, we obtain 120 binary ovoids in $O_8^+(p)$, all of which are equivalent. We may take $x \in E$ to be our favourite root vector, and then the stabiliser $W_x \cong W(E_7) \cong 2 \times Sp_6(2)$ acts on the ovoid $\mathcal{O}_{2,p}(x)$. (Remark: if $x \in E$ is a root vector, then $\mathbb{Z}x + 2E = \mathbb{Z}x \oplus 2E_7^*$ where E_7^* is the dual of $E_7 = E \cap x^{\perp}$ in x^{\perp} . Thus the binary ovoids are computable from a knowledge [2] of the 'shells' of E_7^* .) More generally, for primes $r \neq p$ we define

$$\mathcal{O}_{r,p}(x) = \mathcal{O}_{r,p}(\mathbb{Z}x + rE) = \bigcup_{1 \le i \le \lfloor \frac{r}{2} \rfloor} \left\{ \langle \overline{v} \rangle : \|v\|^2 = 2i(r-i)p, \ v \in \mathbb{Z}x + rE \right\}$$

where $x \in E$ such that $-\frac{p}{2}||x||^2$ is a nonzero square modulo r. If r > p, it sometimes happens that $\mathcal{O}_{r,p}(x) = \{\langle 0 \rangle\}$, but in all other cases $\mathcal{O}_{r,p}(x)$ is an ovoid in \overline{E} , called an r-ary ovoid in $O_8^+(p)$. In Section 3 we will see an explanation for the 'failed ovoids' of the form $\{\langle 0 \rangle\}$. The cases $r \in \{2, 3\}$ give the binary and ternary ovoids of Conway et al. [1]; for general r the above definition is a slight simplification of that given in [5]. By varying the choices of r and x, we expect from the computational evidence available that the number of isomorphism classes of r-ary ovoids in $O_8^+(p)$ is unbounded as $p \to \infty$, but this has not been proven.

The above definition of $\mathcal{O}_{r,p}(x)$ requires that we take lattice points on a *union* of $\lfloor \frac{r}{2} \rfloor$ spheres in \mathbb{R}^8 . In Section 3 we shall interpret these spheres as hyperplane sections of a single sphere in \mathbb{R}^9 , achieving a more concise definition of $\mathcal{O}_{r,p}(x)$ and a simplified proof that in fact we obtain ovoids.

3. A Nine-Dimensional Description

Throughout this section, r and p are distinct *odd* primes, which allows for a simpler presentation. The industrious reader will find that our presentation may be adapted to the general case; however the case r = 2 has already been treated by the description of the binary ovoids in Section 2, and the case p = 2 is trivial since $O_8^+(2)$ has a unique ovoid.

For each odd prime p, define a nine-dimensional Euclidean lattice by

$$\Lambda = \Lambda(p) = \sqrt{2}E \oplus \sqrt{p}\mathbb{Z}.$$

That is, Λ consists of vectors $\sqrt{2}e + \lambda z$ with $e \in E$ and $\lambda \in \mathbb{Z}$, where $z = (0, 0, \dots, 0, \sqrt{p})$, and $\|\sqrt{2}e + \lambda z\|^2 = 2\|e\|^2 + p\lambda^2$. Note that Λ admits a group of isometries $G \cong 2 \times W$ generated by $W = W(E_8)$ acting naturally on the first eight coördinates and fixing z, together with the reflection in the hyperplane $z^{\perp} = \langle E \rangle$.

Now let r be an odd prime distinct from p. The quotients $\Lambda/p\Lambda$ and $\Lambda/r\Lambda$ are 9-dimensional vector spaces over GF(p) and GF(r), respectively. Each inherits from Λ a G-invariant quadratic form obtained by reducing $2||e||^2 + p\lambda^2 \in \mathbb{Z}$ modulo the corresponding prime. The quotient $\Lambda/r\Lambda$ is a (nondegenerate) $O_9(r)$ -space.

However, the orthogonal space $\overline{\Lambda} = \Lambda/p\Lambda$ is degenerate, consisting of an $O_8^+(p)$ -space over a 1-dimensional radical $\langle \overline{z} \rangle = \langle z + p\Lambda \rangle$; projectively, $\Lambda/p\Lambda$

is a 'hyperbolic cone over a point'. From the definition given in Section 1, we see that two types of ovoids are possible in $\overline{\Lambda} = \Lambda/p\Lambda$:

- (i) The singleton $\{\langle \overline{z} \rangle\}$ is an ovoid in $\overline{\Lambda}$ since every maximal totally singular subspace of $\overline{\Lambda}$ is 5-dimensional and contains $\langle \overline{z} \rangle$. We call this the *degenerate ovoid* of $\overline{\Lambda}$.
- (ii) Any set \mathcal{O} consisting of p^3+1 mutually nonperpendicular singular points of $\overline{\Lambda}$ is an ovoid in $\overline{\Lambda}$. Such an ovoid does not contain $\langle \overline{z} \rangle$ and is called *nondegenerate*. For such an ovoid, $\{\langle \overline{v} \rangle + \langle \overline{z} \rangle : \langle \overline{v} \rangle \in \mathcal{O}\}$ is an ovoid in the $O_8^+(p)$ -space $\overline{\Lambda}/\langle \overline{z} \rangle$, and conversely, ovoids in $O_8^+(p)$ lift to ovoids in $\overline{\Lambda}$.

Our construction in fact gives ovoids in $\overline{\Lambda} = \Lambda/p\Lambda$ of both types (although degenerate ovoids never occur for r < p), and thereby ovoids in $O_8^+(p)$ as described in (ii) above. Let π_r and π_p denote the natural maps from Λ to points of $\Lambda/r\Lambda$ and $\Lambda/p\Lambda$ respectively. That is, for $v \in \Lambda \sim r\Lambda$, we have $\pi_r(v) = \langle v + r\Lambda \rangle \leq \Lambda/r\Lambda$, and similarly for p in place of r. Consider the points of the lattice Λ which lie on the sphere of radius $r\sqrt{p}$, other than the 'poles' $\pm rz$, denoted thus:

$$\Lambda_{r^2p} = \{ v \in \Lambda : \|v\|^2 = r^2p \} \sim \{\pm rz\}.$$

Our main result, as follows, will be proven later in this section.

- **Theorem 3.1** (i) $\pi_r(\Lambda_{r^2p})$ is the set of singular points of $\Lambda/r\Lambda$ outside the hyperplane $H = \pi_r(E)$.
 - (ii) Let $X = \langle x + r\Lambda \rangle$ be a singular point of $\Lambda/r\Lambda$ outside H, and let $\mathcal{X} = \{v \in \Lambda_{r^{2}p} : \pi_{r}(v) = X\}$. Then $\pi_{p}(\mathcal{X})$ is an ovoid of $\Lambda/p\Lambda$.
- (iii) An ovoid of the form $\pi_p(\mathcal{X})$ as in (ii) is nondegenerate whenever r < p. If r > p then $\pi_p(\mathcal{X})$ is nondegenerate for some X, \mathcal{X} .

The situation of Theorem 3.1 may be appreciated from Figure 1, where typical points of the quadric in $\Lambda/r\Lambda$ outside the hyperplane H, are denoted by •, * and \diamond . These points are lifted back to the sphere Λ_{r^2p} and then projected down to the degenerate quadric in $\Lambda/p\Lambda$, obtaining in each case an ovoid, although the ovoid obtained from \diamond is degenerate. Observe that, as pictured, the lattice points in Λ_{r^2p} lie on certain hyperplanes of \mathbb{R}^9 parallel to z^{\perp} .

Figure 1. Two Projections of Λ_{r^2p}

We further illustrate the construction with an example in which p=3 and r=5. Now $\Lambda_{r^2p} = \{\sqrt{2}e \pm z : e \in E, \|e\|^2 = 36\} \cup \{\sqrt{2}e \pm 3z : e \in E, \|e\|^2 = 24\}$. For $X = \pi_5(\sqrt{2}(2^6, 0^2) + 3z)$ we obtain

$$\mathcal{X} = \left\{ \pm(\sqrt{2}(2^6; 0^2) + 3z), \ \pm(\sqrt{2} \cdot \frac{1}{2}(-7, 3^5; -5, 5) + z), \\ \pm(\sqrt{2}(4^2, -1^4; 0^2) + z), \ldots \right\}$$

where '...' denotes similar vectors obtained by arbitrarily permuting the first six coördinates of E, and permuting the last two coördinates of E. Then $|\mathcal{X}| = 56$ and \mathcal{X} projects to a nondegenerate ovoid of size 28 in $\Lambda/3\Lambda$, antipodal points of \mathcal{X} giving the same ovoid point. Choosing $X' = \pi_5(\sqrt{2}(6,0^7) + z)$, however, we obtain $\mathcal{X}' = \{\pm(\sqrt{2}(6,0^7) + z)\}$, which projects to the degenerate ovoid of $\Lambda/3\Lambda$.

Observe that by definition if $u = \sqrt{2}e + \lambda z \in \Lambda_{r^2p}$ then $||u||^2 = 2||e||^2 + p\lambda^2 = r^2p$, which implies that $|\lambda| < r$ and λ is odd, so that $\pi_r(u)$ is a singular

point of $\Lambda/r\Lambda$ which does not lie in the hyperplane $H = \pi_r(E)$; this proves half of conclusion (i) of Theorem 3.1.

Lemma 3.2 If $u \cdot v \equiv 0 \mod p$ for some $u, v \in \Lambda_{r^2p}$ such that $\pi_r(u) = \pi_r(v)$, then $u = \pm v$.

Proof: The hypotheses imply that $u - \alpha v \in r\Lambda$ for some $\alpha \in \mathbb{Z}$ not divisible by r. Thus $2\alpha u \cdot v = ||u||^2 + \alpha^2 ||v||^2 - ||u - \alpha v||^2 \equiv 0 \mod r^2$, so $u \cdot v \equiv 0 \mod r^2$. Also $u \cdot v \equiv 0 \mod p$ by hypothesis, so $u \cdot v \equiv 0 \mod r^2 p$. But $|u \cdot v| \leq ||u|| ||v|| = r^2 p$ by Cauchy-Schwarz, so $|u \cdot v| = 0$ or $r^2 p$. If $|u \cdot v| = r^2 p$, then again by Cauchy-Schwarz, $u = \pm v$ and we are done. Otherwise $u \cdot v = 0$. But it is easy to see that $u \cdot v$ must be odd. For we have $u = \sqrt{2}e + \lambda z$, $v = \sqrt{2}e' + \mu z$ for some $e, e' \in E$ and odd integers λ, μ satisfying $2||e||^2 + p\lambda^2 = 2||e'||^2 + p\mu^2 = r^2 p$; thus $u \cdot v = 2e \cdot e' + p\lambda \mu \equiv 1 \mod 2$, a contradiction. \Box

Define $\Lambda'_{r^2p} = \Lambda_{r^2p} \cap (p\Lambda + \mathbb{Z}z)$, the set of all vectors in Λ_{r^2p} which project to the radical of $\Lambda/p\Lambda$.

Lemma 3.3
$$|\Lambda_{r^2p}| + p^3 |\Lambda'_{r^2p}| = 2r^3(r^4 - 1)(p^3 + 1)$$

Proof: This is proven in exactly the same way as Lemma 2.4 of [5], using the multiplicativity of σ_3 , and the fact [6] that $E \oplus E$ has $480\sigma_7(m)$ vectors of norm 2m for every positive integer m.

A cap in an orthogonal space is a set of singular points which are mutually nonperpendicular. Any cap in $O_8^+(p)$ has size at most $p^3 + 1$, and caps attaining this maximum size are ovoids (see [3], [7]). Consequently, caps in $\Lambda/p\Lambda$ have size at most $p^3 + 1$, and caps attaining this maximum size are nondegenerate ovoids; the radical point is a maximal cap of size 1.

Let S be the set of singular points of $\Lambda/r\Lambda$. Well-known counting arguments give $|S| = (r^8 - 1)/(r - 1)$ and $|S \cap H| = (r^3 + 1)(r^4 - 1)/(r - 1)$ since the hyperplane H is of type $O_8^+(r)$; thus $|S \sim H| = |S| - |S \cap H| = r^3(r^4 - 1)$. By Lemma 3.2, for each point $X \in S \sim H$, its preimage $\mathcal{X} = \{v \in \Lambda_{r^2p} :$ $\pi_r(v) = X\}$ (which could conceivably be empty) projects to a cap $\pi_p(\mathcal{X})$ of $\Lambda/p\Lambda$. Also $|\pi_p(\mathcal{X})| = |\langle \overline{z} \rangle| = 1$ if $\mathcal{X} \subseteq \Lambda'_{r^2p}$; otherwise $\mathcal{X} \subseteq \Lambda_{r^2p} \sim \Lambda'_{r^2p}$ and $0 \leq |\pi_p(\mathcal{X})| \leq p^3 + 1$. Furthermore, Lemma 3.2 shows that the projection $\mathcal{X} \to \pi_p(\mathcal{X})$ is two-to-one. Therefore

$$\begin{split} |\Lambda_{r^2p}| - |\Lambda'_{r^2p}| &= |\Lambda_{r^2p} \cdot \Lambda'_{r^2p}| = \sum_{\substack{X \in \mathcal{S} - H:\\ \mathcal{X} \subseteq \Lambda_{r^2p} - \Lambda'_{r^2p}}} |\mathcal{X}| \leq \sum_{\substack{X \in \mathcal{S} - H:\\ \mathcal{X} \subseteq \Lambda_{r^2p} - \Lambda'_{r^2p}}} 2(p^3 + 1) \\ &= 2(p^3 + 1)|\mathcal{S} \cdot \mathcal{H}| - 2(p^3 + 1)|\{X \in \mathcal{S} \cdot \mathcal{H} : \mathcal{X} \subseteq \Lambda'_{r^2p}\}| \\ &= 2(p^3 + 1)r^3(r^4 - 1) - (p^3 + 1)|\Lambda'_{r^2p}|, \end{split}$$

in which equality holds by Lemma 3.3. Therefore $|\pi_p(\mathcal{X})| = p^3 + 1$ whenever $\mathcal{X} \subset \Lambda_{r^2p} \frown \Lambda'_{r^2p}$, thereby proving (i) and (ii) of Theorem 3.1. It is clear that $\Lambda'_{r^2p} = \emptyset$ whenever r < p, and that in any case $\Lambda_{r^2p} \supseteq \Lambda'_{r^2p}$, whence not all ovoids $\pi_p(\mathcal{X})$ are degenerate, so (iii) follows as well, completing the proof of Theorem 3.1.

One checks without difficulty that for $x = \sqrt{2}e + \lambda z \in \Lambda_{r^2p}$, the ovoid of $\overline{\Lambda} = \Lambda/p\Lambda$ constructed from x as in Theorem 3.1, projects to the ovoid $\mathcal{O}_{r,p}(e)$ of $\overline{\Lambda/z}$ described in Section 2, in the nondegenerate case $(e \notin pE)$.

4. Further Remarks

Let X, \mathcal{X} , etc. be as in Theorem 3.1, and as before, let $G \cong 2 \times W$ be the isometry group of Λ , having natural orthogonal representations on both $\Lambda/r\Lambda$ and on $\Lambda/p\Lambda$. The stabiliser G_X acts on the ovoid $\pi_r(\mathcal{X})$, with kernel of order 2 or 4 in the nondegenerate case. In general, however, the stabilisers of these ovoids in the full orthogonal group, remain undetermined; cf. [5].

It is disappointing that the *r*-ary ovoid construction does not seem to work in $O_8^+(p^e)$ for e > 1. This contrasts sharply with the situation in $O_6^+(p^e)$, where ovoid constructions generally proliferate as *e* increases. The problem with $O_8^+(p^e)$ is more than a lack of inspiration: although $O_8^+(p)$ has at least one $Sp_6(2)$ -invariant ovoid for every odd prime *p* (say, $\mathcal{O}_{2,p}(\frac{1}{2}(1^8))$), and evidently many more as *p* increases), we have checked that no $Sp_6(2)$ -invariant ovoids exist in $O_8^+(p^e)$ for $p^e \in \{2^2, 2^3, 2^4, 3^2, 3^3, 5^2\}$. (For $p^e = 9$, this is proven in [1].)

Can variations of the above constructions give new ovoids from other lattices, or perhaps even nonexistence results for higher-dimensional ovoids? Certainly any ovoid may be lifted back from L/pL to a lattice L, with great freedom in the choice of lifting and of L itself. We cannot expect all such preimages to be as elegant as the spheres arising in our construction; nevertheless can it be shown that every ovoid lifts to some subset of a lattice with high density? And could the apparent lack of ovoids in $O_{10}^+(q)$ be due to a lack of a suitably dense lattice packing in \mathbb{R}^{10} ? These are mere speculations.

References

- Conway J. H., Kleidman P. B. and Wilson R. A., New families of ovoids in O₈⁺. Geom. Ded. 26 (1988), 157–170.
- [2] Conway J. H. and Sloane N. J. A., Sphere Packings, Lattices and Groups. Springer, New York and Berlin, 1988.
- [3] Hirschfeld J. W. P. and Thas J. A., General Galois Geometries. Oxford Univ. Press, Oxford and New York, 1991.

MOORHOUSE : ROOT LATTICE CONSTRUCTIONS OF OVOIDS

- [4] Kantor W. M., Ovoids and translation planes. Can. J. Math. 34 (1982), 1195–1207.
- [5] Moorhouse G. E., Ovoids from the E_8 root lattice. Geom. Ded., to appear.
- [6] Serre J.-P., A Course in Arithmetic. Springer, New York and Berlin, 1973, p. 110.
- Thas J. A., Ovoids and spreads of finite classical polar spaces. Geom. Ded. 10 (1981), 135–144.