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Abstract. Define two points of the Euclidean plane R2 to be adjacent

if they are at distance 1 from each other. It is known that the chromatic
number of the resulting graph satisfies 4 6 χ(R2) 6 7. We obtain some
partial results concerning χ(K2) for more general choices of field K. In
particular χ(R2) = χ(K2) for some number field K, i.e. Q ⊆ K ⊂ R with
[K : Q] < ∞; moreover points of K2 are constructible by straightedge
and compass from points of K2

0 where K0 ⊇ Q is a finite extension of
odd degree and χ(K2

0 ) = 2. In the course of studying χ(K2) where K is
the real field R or a number field, we are naturally forced to consider the
case where K is a finite field. Finally, we pose the problem of deciding
whether or not χ(C2) is finite; and similarly χ(K2) for a subfieldK ⊆ C

containing i.

1. A Field-Theoretic Approach to the Problem

Let K be any field (or more generally, any commutative ring with unity). We regard K2

as a graph in which two vertices (a, b), (c, d) ∈ K2 are adjacent iff

(1.1) (a − c)2 + (b − d)2 = 1.

A natural (and in general very difficult) problem is to determine the chromatic number

χ(K2) of this graph. We recall first the relevant definitions: A proper colouring of K2 is

a map ψ : K2 → C (for some set C) such that ψ(a, b) 6= ψ(c, d) for all (a, b), (c, d) ∈ K2

satisfying (1.1). The chromatic number of K2, denoted χ(K2), is the minimum possible |C|
for which there exists a proper colouring ψ : K2 → C. The best that is known concerning

the chromatic number of R2 is that 4 6 χ(R2) 6 7; see [4,pp.177-180], [6,pp.150–152].

We hope to shed fresh light on this open problem. Guided by a suspicion that χ(R2) is

actually equal to 7, our hope is to identify finite subgraphs Γ ⊂ R2 with as few vertices

as possible, and but without any proper 4-colouring. It seems that such subgraphs must

have hundreds, if not thousands, of vertices; and Γ must be chosen wisely if available

† The author is grateful to Bryan L. Shader for discussions which were useful to this research.
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computational resources are to have any hope of showing that χ(Γ) > 4. Our results are

intended to focus the search for good candidates for Γ.

We find that the problem of determining χ(R2) is related to a determination of χ(K2)

for other rings K, and some results concerning such values χ(K2) are presented. In par-

ticular the values of χ(F 2), for finite fields F , play a rôle in this investigation (Section 6).

In Section 10 we pose the apparently open question of whether χ(C2) is finite, although

this does not bear directly on our investigation of χ(R2).

By the preceding remarks, observe that 2 6 χ(K2) 6 χ(L2) 6 7 for all subfields

K ⊆ L ⊆ R. By a theorem of de Bruijn and Erdős, χ(R2) is the maximum of χ(Γ) among

all finite induced subgraphs Γ ⊂ R2. Since every such finite subgraph Γ has coordinates

in a subfield K ⊂ R which is finitely generated over Q, we see that χ(R2) is the maximum

of χ(K2) among all finitely generated subfields K ⊂ R. In fact this maximum is attained

for some number field K, thus:

1.2 Theorem. There exist subfields K,K0 ⊂ R such that

(i) Q ⊆ K0 ⊂ K ⊂ R with [K : Q] <∞;

(ii) χ(K2) = χ(R2);

(iii) [K0 : Q] is odd and χ(K2
0 ) = χ(Q2) = 2;

(iv) [K : K0] = 2n for some n > 1 and points of K2 are constructible by straightedge

and compass from points of K2
0 ; and

(v) the normal closure K̂ of K in C satisfies K̂ ∩ R = K.

Here we prove Theorem 1.2, postponing two key points until Sections 5 and 7. The fact

that χ(R2) = χ(K2) for some subfield K ⊂ R with [K : Q] < ∞ is shown in Section 5.

Let K be such a field; we show how the remaining conclusions of Theorem 1.2 follow. Let

K̂ be the closure of K in C. Then K̂ ∩ R ⊇ K, and we may assume that equality holds;

otherwise replace K by K̂ ∩R to obtain a new extension K for which (ii) and (v), and the

finiteness condition [K : Q] <∞, all hold.

Now there exist subfields

K = Kn ⊃ Kn−1 ⊃ · · · ⊃ K2 ⊃ K1 ⊃ K0 ⊇ Q

where [Kj : Kj−1] = 2 for j = 1, 2, . . . , n, n > 1; and [K0 : Q] is odd. To see this, let

τ ∈ G := Gal(K̂/Q) be the Galois automorphism induced by complex conjugation, so that

K is the fixed field of τ . We have subgroups G > P0 > P1 > P2 > · · · > Pn=〈τ 〉 > 1 where
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P0 is a Sylow 2-subgroup of G and [Pj−1 : Pj ] = 2 for j = 1, 2, . . . , n. The corresponding

fixed fields give the desired tower of fields. Conclusion (iii) follows from Theorem 7.1.

The fact that [Kj : Kj−1] = 2 means that points in K2 are constructible by straight-

edge and compass, or by compass alone, from the points in K2
0 . So it remains only to check

by how much the chromatic number can increase in the case of the quadratic extensions

Kj ⊃ Kj−1.

Two important configurations in the plane which are compass-constructible from Q2

are the equilateral triangle of side length one, and the Moser spindle (see Figure 1.3, in

which adjacent vertices are indicated by line segments of length one). The smallest number

field K for which K2 contains a 3-cycle, is given by K = Q(
√

3); see Proposition 1.4. In

this case it is clear that χ(K2) > 3, and the equality χ(K2) = 3 follows from Corollary 8.3.

More general results concerning χ(K2) for real quadratic extensions K ⊃ Q are presented

in Section 8.

1.3 Figure.

(a) equilateral triangle

(b) Moser spindle • •
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The smallest number field K for which K2 contains a Moser spindle of edge length

one, is the field K = Q(
√

3,
√

11). In this case χ(K2) > 4. We have not determined the

exact value of χ(K2) in this case.

1.4 Proposition. (a) The graph K2 contains a 3-cycle iff K contains 1/2 (i.e. K does

not have characteristic 2) and
√

3.

(b) K2 contains a Moser spindle iff K contains 1/66,
√

3 and
√

11.

Proof. If K contains 1/2 and
√

3 then K2 contains an equilateral triangle with vertices

(0, 0), (1, 0) and 1
2

(
1,
√

3
)
. Conversely, suppose K2 contains an equilateral triangle with

vertices v1, v2, v3 ∈ K2. We may suppose that v1 = (0, 0); otherwise translate K2 → K2,

v 7→ v − v1. Also we may suppose that v2 = (1, 0); otherwise v2 = (a, b) with a, b ∈ K,

a2 + b2 = 1 and we may rotate K2 7→ K2, v 7→ v
[
a
b
−b
a

]
. Finally, v3 = (c, d) must satisfy

c2 + d2 = (c−1)2 + d2 = 1, i.e. c = 1/2 and d2 = 3/4. This proves (a).
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If K contains 1/66,
√

3 and
√

11 then K2 contains a Moser spindle with coordi-

nates (reading top-to-bottom and left-to-right in Figure 1.3) 1
12

(
15 −

√
33, 5

√
3 + 3

√
11

)
,

1
12

(
5 −

√
33, 5

√
3 +

√
11

)
, 1

2

(
1,
√

3
)
, 1

2

(
3,
√

3
)
, 1

6

(
5,
√

11
)
, (0, 0), (1, 0). The converse pro-

ceeds as in the proof of (a).

Examples where K2 contains no 3-cycle, yet χ(K2) > 3 are given in Sections 6 and 8.

In Section 8 we also exhibit finite fields K for which K2 contains no Moser spindle, yet

χ(K2) > 5.

2. Valuations

In this section we review some number theoretic background needed in later sections. Most

of this is standard, but much of this is borrowed from older sources or varied sources with

differing terminology and notation. Accordingly, and because many of the intended readers

have more expertise in graph theory than in number theory, we provide here a brief review

of some of the number theoretic background required in the remainder of the paper. For

further details, we refer the reader to [1], [8].

Let K be a field. A valuation on K is a map
∣∣ ∣∣ : K → [0,∞) satisfying

(V1)
∣∣α

∣∣ = 0 iff α = 0;

(V2)
∣∣αβ

∣∣ =
∣∣α

∣∣∣∣β
∣∣ for all α, β ∈ K; and

(V3)
∣∣α+ β

∣∣ 6
∣∣α

∣∣ +
∣∣β

∣∣ for all α, β ∈ K.

A valuation
∣∣ ∣∣ is non-Archimedean if it satisfies the following stronger form of (V3):

(V3′)
∣∣α+ β

∣∣ 6 max
{∣∣α

∣∣,
∣∣β

∣∣}, and equality holds whenever
∣∣α

∣∣ 6=
∣∣β

∣∣.

Two valuations of K are equivalent iff they yield the same metric topology on K. Let

p range over an index set for the inequivalent valuations
∣∣ ∣∣

p
of K. The extension field

Kp ⊇ K denotes the completion of K relative to
∣∣ ∣∣

p
.

Now suppose K is an algebraic number field, i.e. a finite extension of Q, and let O be

the ring of algebraic integers in K. A fractional ideal of O is an additive subgroup of K

of the form cA for some nonzero ideal A ⊆ O and nonzero c ∈ K. The fractional ideals of

O form a multiplicative group with inverses defined by A−1 = {b ∈ K : bA ∈ O}. Every

fractional ideal admits a unique prime factorization

A =
∏

p

pνp(A)
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where the product ranges over all prime ideals p ⊂ O, and the exponents νp(A) ∈ Z are

almost all zero. Two fractional ideals A,B satisfy A ⊆ B iff νp(A) > νp(B) for all prime

ideals p ⊂ O. Moreover A ∩ B =
∏

p pcp and A + B =
∏

p pdp where cp and dp are the

maximum and the minimum of {νp(A), νp(B)} respectively. We also write νp(α) = νp(αO)

for nonzero α ∈ K, and νp(0) = −∞. For all α, β ∈ K, we have

(i) νp(αβ) = νp(α) + νp(β), and

(ii) νp(α + β) > min{νp(α), νp(β)}, with equality whenever νp(α) 6= νp(β).

The functions νp : K → Z ∪ {−∞} are merely the non-Archimedean valuations of

K, written ‘additively’; in ‘multiplicative’ notation, they are the maps
∣∣ ∣∣

p
: K → [0,∞)

defined by
∣∣α

∣∣
p

=

{
(Np)−νp(α), if α 6= 0;

0, if α = 0

where Np =
∣∣O/p

∣∣ is the order of the residue field O/p.

The number field K has finitely many inequivalent Archimedean valuations, given by

α 7→ |ασ| where σ is a field embedding K → C. The number of such valuations is r1 + r2

where r1 is the number of real embeddings K → C, and r2 is the number of conjugate

pairs of nonreal embeddings; note that [K : Q] = r1 + 2r2.

2.1 Proposition. Let O be the ring of algebraic integers in an algebraic number field K,

and let p ⊂ O be a prime ideal. Define Rp = {a ∈ O : νp(a) > 0}. Then

(a) Rp is the set of all a/b where a, b ∈ O and b /∈ p.

(b) For every k ∈ Z we have pkRp = {a ∈ K : νp(a) > k}. This is an additive subgroup

of K for every k. For every k > 0, it is an ideal of Rp with quotient Rp/p
kRp

∼= O/pk.
(c) Rp is a local ring whose only ideals are those in the infinite chain

Rp ⊃ pRp ⊃ p2Rp ⊃ p3Rp ⊃ · · · ⊃ {0}.

(d) Let k, ` > 0 and let A = p−kRp/p
`Rp. If νp(2) > k, then the squaring operation

x 7→ x2 gives a well-defined map A 7→ A.

Proof. (a) Let U = {a/b : a, b ∈ O, b /∈ p}. Clearly U ⊆ Rp . Conversely, consider a

nonzero element α ∈ Rp, and for each prime ideal q ⊂ O, let cq and dq be the maximum

and minimum (respectively) of {0, νq(α)}. Then αO = AB−1 where A =
∏

q qcq and

B =
∏

q qdq are ordinary ideals A,B ⊆ O. Since νp(α) > 0, we have dp = 0 and so B 6⊆ p.

We may choose b ∈ B................p and a = αb ∈ αB = A.
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(b) The first equality follows easily from the definitions. Let k > 0, and consider any

element a
b
∈ Rp as in (a). Since the ideal p ⊂ O is maximal, we have O = bO + p and

O = Ok = (bO + p)k ⊆ pk + bO. Now

a
b ∈ a

b ⊆ a
b p
k + aO ⊆ pkRp + O

and so Rp = pkRp + O. Now

Rp/p
kRp = (pkRp + O)/pkRp

∼= O/(O ∩ pkRp) = O/pk.

(c) Consider a nonzero ideal J ⊆ Rp , and let k be maximal such that J ⊆ pkRp . (Since

∩k>0p
kRp = 0, such k exists.) Choose r ∈ J ................pk+1Rp. For every s ∈ pkRp

................pk+1Rp we

have νp(s/r) = k − k = 0 so s ∈ rRp ⊂ J , so J = pkRp.

(d) If α ∈ p−kRp and β ∈ p`Rp , then

νp

(
(α+ β)2 − α2

)
= νp(2αβ + β2) > min{νp(2) − k + `, 2`} > `.

The following is well-known.

2.2 Lemma. Every element of K is expressible in the form α/β for some α, β ∈ O, not

both of which are contained in p.

We remark that the choice of α, β ∈ O in Lemma 2.2 depends in general on the choice

of p; one cannot hope to choose αO and βO to be relatively prime unless O is a principal

ideal domain.

2.3 Lemma. Every solution of ξ2 + η2 = 1 in K is expressible in the form (ξ, η) =

(α/γ, β/γ) where α, β, γ ∈ O and at most one of α, β, γ lies in p.

Proof. We may assume that ξη 6= 0.

First suppose that νp(ξ) > 0. Then νp(η) > 0 and by Lemma 2.2, we may write

ξ = α/γ, η = β/δ for some α, β, γ, δ ∈ O with γ, δ /∈ p. We may assume that γ = δ;

otherwise rewrite ξ and η using γδ /∈ p as a common denominator. Now α and β are not

both in p, and the result follows.

Otherwise νp(ξ) = νp(η) < 0 and ξ = α/γ, η = β/δ for some α, β, γ, δ ∈ O with

νp(α) = νp(β) = 0 and νp(γ) = νp(δ) > 0. Again by Lemma 6.1, we have γ/δ = γ′/δ′
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for some γ′, δ′ ∈ O with γ′, δ′ /∈ p. Then ξ = αδ′/δ′γ and η = βγ′/δ′γ where αδ′, βγ′ /∈ p.

3. Connectedness

While the graph R2 is clearly connected, in general the graph K2 fails to be connected.

For example, it may be shown that Q2 has infinitely many connected components, each of

which is a translate of R2 where R is the subring consisting of all a/b such that a, b ∈ Z

and every prime divisor of b is of the form 4k+ 1. This fact, which will not be used in the

sequel, is shown by a straight-forward exercise.

3.1 Lemma. Denote by K2
0 the connected component of K2 containing (0, 0). Then

χ(K2) = χ(K2
0 ).

Proof. By considering the translation group of K2, it is clear that every connected com-

ponent of K2 is isomorphic to K2
0 .

It follows from Proposition 3.5 that for finitely generated subfields K ⊂ R, the graph

K2 is never connected. However, this fact is not strictly required in later sections of this

paper, which consider only the proper colourings of the connected component K2
0 .

We first dispose of the rather trivial case in which K has characteristic 2.

3.2 Proposition. SupposeK has characteristic 2. ThenK2
0 is a complete bipartite graph.

In particular, K2 is bipartite and χ(K2) = 2. Moreover, K2 is disconnected for |K| > 2.

Proof. Let D = {(a, a) : a ∈ K}, so that (0, 1) + D = {(a, a+1) : a ∈ K}. Consider a

pair of adjacent points (a, a), (x, y) ∈ K2, so that (x+ a)2 + (y + a)2 = (x+ y)2 = 1, i.e.

x+ y = 1. It follows that the neighbours of every point (a, a) ∈ D are precisely the points

of (0, 1) +D; similarly, the neighbours of every point of (0, 1) +D are precisely the points

ofD. ThusK2
0 = D∪((0, 1)+D) is bipartite, and is properly contained inK2 for |K| > 2.

Henceforth we focus attention on the case K has characteristic zero or an odd prime.

In this case K has zero or two roots of X2 = −1; if such roots exist, they are primitive

fourth roots of unity denoted by ±i.
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3.3 Lemma. Suppose K contains primitive fourth roots of unity. Then K2 is connected.

Proof. By hypothesis, K contains 1/2. For each nonzero t ∈ K, the points ut = 1
2

(
t +

t−1, i(t − t−1)
)

and vt = 1
2

(
t + t−1,−i(t − t−1)

)
are neighbours of (0, 0) in K2. Thus K2

0

contains the point wt = ut + vt = (t+ t−1, 0) and the point

w(1+i)t + w(1−i)t −wt = (t, 0).

Similarly (0, t) ∈ K2
0 for every nonzero t ∈ K. Since K2

0 is an additive subgroup of K2, it

follows that K2
0 = K2.

3.4 Proposition. If K is a finite field of odd order, then K2 is connected.

Proof. Let |K| = q = pe where p is an odd prime. Denote by S the set of all t ∈ K such

that (t, 0) ∈ K2
0 ; thus S is an additive subgroup of K. The number of neighbours of (0, 0)

in K2 is q + (−1)(q−1)/2; see [5,p.93]. Pairs (a, b), (a,−b) of neighbours of (0, 0) give rise

to points (2a, 0) = (a, b) + (a,−b) ∈ K2
0 , so that |S| > (q − 1)/2. Since |S| = pr for some

integer r, it follows that S = K. Similarly, K2
0 contains (0, t) for every t ∈ K, and so

K2
0 = K2.

The converse of Lemma 3.3 fails in general: many choices of field K (such as R, and

many finite fields) do not contain i, yet yield a connected graph K2. Nevertheless the

converse of Lemma 3.3 does hold for number fields:

3.5 Proposition. Let K be a number field. Then K2 is connected iff K contains a fourth

root of unity.

Proof. Let O be the ring of algebraic integers in K. For each prime ideal p ⊂ O we denote

by Kp the completion of K relative to
∣∣ ∣∣

p
.

Suppose K is not connected. By Lemma 3.3, we see that −1 is not a square in K.

By the Global Square Theorem [8,p.182] there exist infinitely many prime ideals p ⊂ O
such that −1 is not a square in Kp , the completion of K at p. (In order to derive this

conclusion from [8,p.182] we have used the fact that K has only finitely many inequivalent

Archimedean valuations.) Choose a prime ideal p ⊂ O not containing 2, such that −1 is

not a square in Kp . We observe that −1 is not a square in the residue field O/p. For
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suppose there exists a ∈ O such that f(a) ≡ 0 mod p, where f(X) = X2+1 ∈ O[X]. Then

νp(f(a)) > 2νp(f
′(a)) = 0 so by Hensel’s Lemma [1,p.49], f has a zero in Kp , contrary to

the choice of p. This verifies our claim that −1 is not a square in the residue field O/p.

Now consider any neighbour (α, β) of (0, 0) in K2. By Lemma 2.3, we may write

(α, β) = (a/c, b/c) for some a, b, c ∈ O, where at most one of a, b, c is in p. Clearly c /∈ p,

for otherwise a/b gives a zero of f(X) in O/p. This shows that every neighbour of (0, 0)

in K2 lies in R2 where R = {x ∈ K : νp(x) > 0}, a proper subring of K. By induction, it

follows that K2
0 ⊆ R2, a proper subset of K2.

4. Graph Homomorphisms

Let Γ and Γ′ be graphs (ordinary graphs, undirected with no loops or multiple edges).

We write φ : Γ → Γ′ if φ maps vertices of Γ to vertices of Γ′. Such a map is a graph

homomorphism if φ(x) and φ(y) are adjacent in Γ′, whenever x and y are adjacent vertices

in Γ. Denote by Kk a complete graph on k vertices. Any graph homomorphism Γ → Kk

defines a proper k-colouring of the vertices of Γ; so if there exists a graph homomorphism

Γ → Kk, then the minimum such k is the chromatic number χ(Γ).

It is clear that the composite of two graph homomorphisms (when defined) is a graph

homomorphism. This has the following easy consequence.

4.1 Lemma. Suppose φ : Γ → Γ′ is a graph homomorphism. Then χ(Γ) 6 χ(Γ′).

Proof. We may assume that k = χ(Γ′) < ∞ and that ψ : Γ′ → Kk is a graph homomor-

phism. The composite map Γ
φ−→ Γ′ ψ−→ Kk is a graph homomorphism, so χ(Γ) 6 k.

4.2 Lemma. Let A be an additive group, on whose elements is defined a translation-

invariant graph (i.e. for all x, y, z ∈ A, if x is adjacent to y then x+ z is adjacent to y+ z).

Then

(i) χ(A) = χ(A0) where A0 is the connected component of A containing the identity

0 ∈ A.

(ii) Let B be another such additive group on which a translation-invariant graph is de-

fined. Suppose φ : A → B is additive (i.e. a group homomorphism) and that φ maps

neighbours of 0 ∈ A to neighbours of 0 ∈ B. Then χ(A) 6 χ(B).
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Proof. Any two connected components of A are related by a translation of A and hence

are isomorphic. Moreover, each connected component may be coloured independently of

the others. This proves (i), and (ii) follows from Lemma 4.1.

5. Taming the Transcendentals

Our main goal in this section is to prove Theorem 1.2(i). First, as a warmup exercise, we

show the following related fact, whose proof is slightly less technical: χ(L2) = χ(K2) for

every purely transcendental extension L ⊇ K of subfields of R. This follows by induction

from the following result (in fact by a finite induction in the case L is finitely generated

over K; and this is the case we really care about, in view of the de Bruijn-Erdős result).

5.1 Lemma. Let L ⊇ K be subfields of R, and suppose L = K(η) where η ∈ L is

transcendental over K. Then χ(L2) = χ(K2).

Proof. Let (α1, α2) ∈ L2 be a neighbour of (0, 0), i.e. α2
1 + α2

2 = 1. We may express

αj = fj(η)/g(η) for some polynomials f1(X), f2(X), g(X) ∈ K[X] such that f1(X)2 +

f2(X)2 = g(X)2. Moreover we may assume f1(X), f2(X), g(X) are pairwise relatively

prime. Now if X divides g(X), then since K ⊆ R, f1(0)2 +f2(0)2 = g(0)2 = 0 implies that

f1(0) = f2(0) so that X divides f1(X) and f2(X) also. This is impossible, so X does not

divide g(X).

By induction, it follows that every point of L2 in L2
0 , the connected component of

(0, 0), is of the form (f1(η)/g(η), f2(η)/g(η)) for some f1(X), f2(X), g(X) ∈ K[X] such

that g(0) 6= 0. We therefore have a well-defined map φ : L2
0 → K2 given by

(f1(η)/g(η), f2(η)/g(η)) 7→ (f1(0)/g(0), f2(0)/g(0)).

It is easy to see that φ maps adjacent vertices of L2
0 to adjacent vertices of K2. By Lemmas

4.1 and 4.2, we obtain χ(L2) = χ(L2
0) 6 χ(K2). Since χ(K2) 6 χ(L2) also, the result

follows.

Finally, we prove that χ(R2) = χ(K2) for some number field K ⊂ R, as claimed in

Theorem 1.2(i). Recall that there exists a subfield L ⊂ R which is finitely generated over

Q, such χ(L2) = χ(R2). By the Noether Normalization Lemma, there exists a subfield
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E ⊆ L such that [L : E] < ∞, and the extension L ⊇ Q is finitely generated and purely

transcendental. Let e > 1 be the transcendence degree of E ⊇ Q, and let η1, η2, . . . , ηe ∈ E

be a minimal set of generators for E over Q. The ringO = Q[η1, η2, . . . , ηe] is isomorphic (as

a Q-algebra) to the polynomial ring Q[X1,X2, . . . ,Xe] under the evaluation map Xj 7→ ηj .

Moreover, E is the quotient field of O.

There exists λ ∈ L such that L = E[λ] (see [8,p.34]). Let h(Y ) ∈ E[Y ] be the

minimal (monic) polynomial such that h(λ) = 0, i.e. the unique irreducible monic poly-

nomial in E[Y ] having λ as a zero. Choose a nonzero polynomial d(X1,X2, . . . ,Xe) ∈
O[X1,X2, . . . ,Xe] such that

0 6= d(η1, η2, . . . , ηe) ∈ O and d(η1, η2, . . . , ηe)h(Y ) ∈ O[Y ];

this simply means that d(η1, . . . , ηe) is a common denominator for all coefficients in the

polynomial h(Y ) ∈ E[Y ]. We therefore have

d(η1, η2, . . . , ηe)h(Y ) = θ(η1, . . . , ηe, Y )

for some nonzero polynomial θ(X1 ,X2, . . . ,Xe, Y ) ∈ Q[X1,X2, . . . ,Xe, Y ].

Let Γ ⊂ K2 be a finite subgraph such that χ(Γ) = χ(K2) = χ(R2). The vertices

P1, P2, . . . , Pk ∈ Γ have the form

Pj =
(αj
γ
,
βj
γ

)
, j = 1, 2, . . . , n

where αj , βj ∈ O[λ] and 0 6= γ ∈ O. (Thus γ ∈ O is a common denominator for the

coordinates of all Pj .) We have

αj = aj(η1, . . . , ηe, λ), βj = bj(η1, . . . , ηe, λ), γ = c(η1, . . . , ηe)

for some
aj(X1, . . . ,Xe, Y ), bj(X1, . . . ,Xe, Y ) ∈ Q[X1, . . . ,Xe, Y ];

c(X1, . . . ,Xe) ∈ Q[X1, . . . ,Xe].

Choose r1, r2, . . . , re ∈ Q such that c(r1, r2, . . . , re) 6= 0 and the polynomial θ(r1 , r2, . . . ,

re, Y ) ∈ Q[Y ] is irreducible over Q. The existence of r-tuples (r1, r2, . . . , re) ∈ Qe sat-

isfying both of these conditions is assured; in fact most rational r-tuples work. To see

this, first note that the set of all (z1, z2, . . . , ze) ∈ Ce for which c(z1, z2, . . . , ze) = 0 is

a Zariski-closed proper subset V1 ⊂ Ce. Similarly, by Hilbert’s Irreducibility Theorem
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(see e.g. [9, Chapter 1]), the set of all (z1, z2, . . . , ze) ∈ Ce such that the polynomial

θ(z1 , z2, . . . , ze, Y ) ∈ Q[Y ] is reducible over Q, is a proper Zariski-closed subset V2 ⊂ Ce.

Since V1 ∪ V2 ⊂ Ce is a proper Zariski-closed subset, its complement contains (infinitely

many) rational points. Choose one such (r1, r2, . . . , re) ∈ Qe r (V1 ∪ V2).

Let K = Q[κ] where κ is a zero of θ(r1 , r2, . . . , re, Y ) ∈ Q[Y ]. We have a Q-algebra

homomorphism defined by

Q[η1, η2, . . . , ηe, λ] = O[λ] → Q[κ] = K

f(η1, η2, . . . , ηe, λ) 7→ f(r1 , r2, . . . , re, κ).

It is easy to check that this induces a graph homomorphism from Γ into L2. Indeed, if

Pj ∼ Pk in Γ, then

(αj − αk)
2 + (βj − βk)

2 = γ2,

i.e.

(
aj(η1, . . . , ηe, λ) − ak(η1, . . . , ηe, λ)

)2
+

(
bj(η1, . . . , ηe, λ) − bk(η1, . . . , ηe, λ)

)2

= c(η1, . . . , ηe)
2.

This means that

(
aj(η1, . . . ,ηe, Y ) − ak(η1, . . . , ηe, Y )

)2
+

(
bj(η1, . . . , ηe, Y ) − bk(η1, . . . , ηe, Y )

)2

− c(η1, . . . , ηe)
2 = q(Y )θ(η1 , . . . , ηe, Y )

for some q(Y ) ∈ Q[Y ]. This in turn implies that

(
aj(X1, . . . ,Xe, Y ) − ak(X1, . . . ,Xe, Y )

)2
+

(
bj(X1, . . . ,Xe, Y ) − bk(X1, . . . ,Xe, Y )

)2

− c(X1, . . . ,Xe)
2 = q(Y )θ(X1 , . . . ,Xe, Y )

and so

(
aj(r1, . . . ,re, Y ) − ak(r1, . . . , re, Y )

)2
+

(
bj(r1 , . . . , re, Y ) − bk(r1 , . . . , re, Y )

)2

− c(r1, . . . , re)
2 = q(Y )θ(r1 , . . . , re, Y )

whence

(
aj(r1, . . . , re, κ) − ak(r1, . . . , re, λ)

)2
+

(
bj(r1, . . . , re, κ) − bk(r1, . . . , re, κ)

)2

= c(r1, . . . , re)
2,

12



i.e.

(aj(r1, . . . , re, κ)

c(r1, . . . , re)
,
ak(r1, . . . , re, κ)

c(r1, . . . , re)

)
∼

(aj(r1, . . . , re, κ)

c(r1, . . . , re)
,
ak(r1 , . . . , re, κ)

c(r1, . . . , re)

)

in L2. By Lemma 4.1,

χ(R2) = χ(L2) = χ(Γ) 6 χ(K2) 6 χ(R2)

and so equality must hold throughout.

6. Finite Fields

Let q be a prime power. The graph F2
q , with adjacency relation defined by (1.1) as before,

has q2 vertices, and is regular of degree






q, for q even;

q − 1, if q ≡ 1 mod 4;

q + 1, if q ≡ 3 mod 4;

see [5,p.93]. With some computer assistance we obtain some information on the chromatic

number for small values of q:

6.1 Table. Chromatic number of F2
q for small q

q 2 3 4 5 7 8 9 11 13 16 17
χ(F2

q) 2 3 2 3 4 2 3 5 5 or 6 2 5, 6 or 7

For example, in the cases K = F3 or F7, optimal proper colourings are given by the

respective arrays

0 1 2
1 2 0
2 0 1

and

0 1 3 1 2 0 2
1 2 0 2 0 1 3
2 0 1 3 1 2 0
3 1 2 0 2 0 1
0 2 0 1 3 1 2
1 3 1 2 0 2 0
2 0 2 0 1 3 1

.

6.2 Lemma. (a) If q is even, then F2
q is a union of q/2 disjoint complete bipartite graphs

Kq,q , and χ(F2
q) = 2.
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(b) If q is odd, then χ(F2
q) > 3. If q ≡ ±1 mod 12, then χ(F2

q) > 4.

Proof. (a) See Proposition 3.2. Indeed for q be even, there exists an F2-linear map

θ : Fq → F2 such that θ(1) = 1; one checks that the map F2
q → F2 given by (x, y) 7→ θ(x+y)

is a proper 2-colouring.

(b) Suppose q = pe is odd. Then the p points (a, 0) ∈ F2
q for a ∈ Fp form a cycle of odd

length p. Now suppose that q ≡ ±1 mod 12, so that Fq contains
√

3. Let v1 = (1, 0) ∈ F2
q ,

v2 = 1
2

(
1,
√

3
)
∈ F2

q and let u ∈ F2
q be arbitrary. Consider the subgraph of F2

q shown. In

any proper 3-colouring of F2
q , it is easy to see that the vertices u and u + 3v1 must have

the same colour.

• • • •

• • •

...........................................................................................................................................................................................................................................................................................................................................
......
......
......
......
......
.....
......
......
.....
......
......
.....
......
......
.....
................................................................................................................................................................................................................................................................................................................................

......................................................................................................
......
......
......
......
......
.....
......
......
.....
......
......
.....
......
......
.....
............................................................................................................

......
......
......
......
......
.....
......
......
.....
......
......
.....
......
......
.....
......

u u+3v1u+v1 u+2v1

u+v2
u+v1+v2 u+2v1+v2

By induction, it follows that vertices u and u+ 3kv1 have the same colour for each integer

k; but then choosing k ∈ Z such that 3k ≡ 1 mod p gives a contradiction.

It seems likely that for odd prime powers q, the value of χ(F2
q) should tend to ∞ as

q → ∞; this guess is supported by Table 6.1.

7. Extensions of Odd Degree

The following fact was cited twice in Section 1.

7.1 Theorem. Let K ⊇ Q be a finite extension of odd degree. Then χ(K2) = 2. (In

particular, χ(Q2) = 2.)

Proof. Clearly χ(K2) > 2. Let O be the ring of algebraic integers in K. Consider the

prime factorization of the ideal 2O in O:

2O = pe11 pe22 · · · pek

k

where p1, p2, . . . , pk are the distinct prime ideals of O containing 2. Now O/pj ∼= F2fj for

some integers fj > 0. Since

e1f1 + e2f2 + · · · + ekfk = [K : Q]
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is odd, at least one of the terms ejfj is odd. Fix such an index j and write p = pj , e = ej ,

f = fj . Let R be the subring of K consisting of all fractions a/b with a, b ∈ O and b /∈ p.

Then R is a local ring with unique maximal ideal Rp and residue field

R/Rp ∼= O/p ∼= E := F2f .

In view of Lemma 4.2, the theorem will follow from the following two facts, which we will

justify below:

(i) The connected component of (0, 0) in K2 lies in R2.

(ii) There is a proper colouring ψ : R2 → F where F = F2 .

Consider any neighbour of (0, 0) in K2, which we may write as (α/γ, β/γ) where

α, β, γ ∈ O. Suppose that γ ∈ p. By Lemma 2.3, we may assume that neither α nor β lies

in p. Since

νp(α+ β + γ) + νp(α+ β − γ) = νp((α + β + γ)(α + β − γ)) = νp(2αβ) = νp(2) = e

is odd, we have

νp(α+ β + γ) 6= νp(α + β − γ) and min{νp(α+ β + γ), νp(α+ β − γ)} 6
e− 1

2
.

Thus
e+ 1 6 e + νp(γ) = νp(2γ)

= νp((α + β + γ) − (α+ β − γ))

= min{νp(α + β + γ), νp(α + β − γ)}

6 (e − 1)/2,

a contradiction. This verifies our claim that γ /∈ p, so every neighbour of (0, 0) lies in R2.

Now (i) follows by induction.

Let Tr : E → F = F2 denote the trace map. Since [E : F ] = f is odd, we have

Tr(1) = 1. Also Tr(x2) = Tr(x) for all x ∈ E since x 7→ x2 is an automorphism of E.

Now define ψ : R2 → F by ψ(ξ, η) = Tr(ξ + η + Rp) where ξ + η + Rp ∈ R/Rp = E. If

(ξ, η) ∈ R2 is a neighbour of (0, 0) then ξ2 + η2 = 1; writing x, y ∈ E for the reductions of

ξ, η ∈ R modulo Rp respectively, then

ψ(ξ, η) = Tr(x + y) = Tr(x2 + y2) = Tr(1) = 1.
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Since ψ : R2 → F is additive, (ii) follows by induction.

The verification of (ii) in the latter proof, may be viewed as another application of

Lemma 4.1. Namely, if we consider F as a graph on two vertices with a single edge, then

φ : R2 → F is a graph homomorphism. This point of view provides the key to the next

section.

8. Quadratic Extensions of Q

Consider a real quadratic extension of Q, i.e. a field of the form K = Q(
√
d) for some

squarefree integer d > 2. By combining Corollary 8.3 and Lemma 8.4 below, we obtain

the following upper bound for χ(K2). For a lower bound, see Theorem 8.6.

8.1 Theorem. If d 6≡ 47, 59 or 83 mod 84, then χ(K2) 6 4.

The ring of algebraic integers in K is

O =

{
Z[
√
d], d ≡ 2 or 3 mod 4;

Z[(1 +
√
d)/2], d ≡ 1 mod 4.

Each prime p ∈ Z either ramifies, splits, or remains prime in O, depending on the choice

of d and p; see [8, p.75].

8.2 Lemma. Suppose we have a prime p ≡ 3 mod 4 for which d ≡ 0 mod p or d is a

quadratic residue modulo p. Then χ(K2) 6 χ(F2
p).

Proof. By hypothesis, p either ramifies or splits in O; that is, pO = pp′ for some (not

necessarily distinct) ideals p, p′ ⊂ O of norm p. Let R ⊂ O be the subring consisting of all

fractions a/b such that a, b ∈ O and b /∈ p. Then R/Rp ∼= O/p ∼= Fp .

Consider any neighbour of (0, 0) in K2, which is necessarily of the form (α/γ, β/γ)

for some α, β, γ ∈ O such that α2 + β2 = γ2. By Lemma 2.3, we may assume that no

two of α, β, γ belong to p. If γ ∈ p then α2 + β2 ≡ 0 mod p, so that −1 is a square in

O/p ∼= Fp . This is impossible since p ≡ 3 mod 4. Therefore γ /∈ p and the reduction of

(α/γ, β/γ) modulo p gives neighbour of (0, 0) in F2
p . We see now that K2

0 , the connected

component of K2 containing (0, 0), is contained in R2, and that the reduction modulo p

induces a graph homomorphism K2
0 → F2

p. The result follows by Lemmas 4.1 and 4.2.

Since χ(F2
3) = 3 and χ(F2

7) = 4 (see Section 7), this yields:
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8.3 Corollary. If d ≡ 0 or 1 mod 3, then χ(K2) 6 3. If d ≡ 0, 1, 2 or 4 mod 7, then

χ(K2) 6 4.

A similar, but more delicate argument, works with p = 2:

8.4 Lemma. If d ≡ 1 mod 4, then χ
(
Q(

√
d)2

)
= 2.

Proof. First suppose that d ≡ 1 mod 8, so that 2 splits: 2O = pp′ for prime ideals p 6= p′.

Now O/p ∼= F2 and O/p2 ∼= Z/4Z. Consider a neighbour (α/γ, β/γ) of (0, 0) in K2,

where α, β, γ ∈ O and α2 + β2 = γ2. If γ ∈ p then we may suppose α, β /∈ p, so that

α, β ≡ ±1 mod p and α2 + β2 ≡ 2 6≡ 0 ≡ γ2 mod p, a contradiction. Thus γ /∈ p and

(α/γ, β/γ) ∈ R2 where R = Op . Reduction modulo p gives a homomorphism R2 → F2
2 so

that χ(K2) 6 χ(R2) 6 χ(F2
2) = 2.

In the other case d ≡ 5 mod 8, and 2 remains prime: O/2O ∼= F4. Consider a neigh-

bour (α/γ, β/γ) of (0, 0) in K2, where α, β, γ ∈ O and α2 + β2 = γ2. If γ ∈ 2O then

we may suppose α, β /∈ 2O and α2 + β2 ≡ 2 6≡ 0 ≡ γ2 mod 4O, a contradiction. Thus

γ /∈ 2O and (α/γ, β/γ) ∈ R2 where R = O2O . Reduction modulo 2 gives a homomor-

phism R2 → F2
4 so that χ(K2) 6 χ(R2) 6 χ(F2

4) = 2.

The following is obtained by considering a homomorphic image of the form R2 where

R is no longer a field, but rather a commutative ring of order 8 with unity.

8.5 Theorem. If d ≡ 2 mod 4 then χ(K2) = 2.

Proof. In this case the ring of algebraic integers in K is given by O = Z[θ] where θ =
√
d,

and the rational prime 2 ramifies: 2O = p2 where p = 2O + θO. Consider a neighbour of

(0, 0) in K2, which by Lemma 2.3 is expressible as (a/c, b/c) where a, b, c ∈ O, a2 + b2 =

c2 6= 0, and at most one of a, b, c lies in p.

We claim that νp(c) 6 1. For suppose that c ∈ p, and so necessarily νp(a) = νp(b) = 0.

Now a ≡ ±1 + a1θ mod 4O for some a1 ∈ {0, 1, 2, 3}, and examination of cases reveals

a2 ≡ 1 or 3+2θ mod 4O, so that a2+b2 ≡ 2 or 2θ mod 4O; in particular 2νp(c) =

νp(c
2) = νp

(
a2+b2

)
6 3 and νp(c) 6 1 as claimed. Thus all vertices of K2

0 , the connected

component of (0, 0) in K2, has vertices in the additive subgroup S = {x ∈ K : νp(x) >

−1} ⊂ K.
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Let A = S/p3S, an additive group of order 8 consisting of the cosets of p3S represented

by 0, θ−1 , 2θ−1 , 3θ−1, 1, 1+θ−1 , 1+2θ−1, 1+3θ−1 . Consider the graph on A2 = A × A

with adjacency relation defined as usual: two vertices (α, β), (α′, β′) ∈ A2 are adjacent iff

(α′−α)2 + (β′−β)2 = 1. Note that the latter equality is well-defined in A (as congruence

mod p3S). Now it is easy to see that the natural homomorphism S → A induces a graph

homomorphism K2
(0,0) → A2, and so χ(K2) 6 χ(A2) by Lemma 4.1.

It is straightforward to check, however, that A2 is bipartite. Indeed, if we let B ⊂ A2

be the additive subgroup of order 8 generated by the elements (1, 1+θ), (0, 2) and (2, 0),

then B has four additive cosets

B, (0, θ)+B, (0, 1)+B and (0, 1+θ)+B

in A2, and every edge in A2 extends either between B and (0, θ)+B, or between (0, 1)+B

and (0, 1+θ)+B. The result follows.

8.6 Theorem. If K contains
√
p for some prime p ≡ 3 mod 4, then χ(K2) > 3.

Proof. Let (a, b) be a minimal positive solution of Pell’s equation a2 − pb2 = 1; that is,

a > b > 0 with a (and b) as small as possible. It is known that a is even. To see this,

note that if a is odd then gcd(a + 1, a − 1) = 2 and (a + 1)(a − 1) = pb2 implies that

{a + 1, a − 1} = {2u2, 2pv2} for some integers u, v with u2 − pv2 = 1, contradicting the

minimality of the solution (a, b).

Now the isosceles triangle with vertices (0, 0) and 1
2

(
b
√
p,±1

)
has integer sides a

2 , a
2

and 1. Its perimeter constitutes a cycle of odd length a+ 1 in K2.

9. Relationship with Hedetniemi’s Conjecture

Given two graphs Γ and Γ′, the direct product Γ × Γ′ is the graph whose vertex set is

the Cartesian product of the vertex sets of Γ and of Γ′; and with adjacency defined by

(x, x′) ∼ (y, y′) iff x ∼ y and x′ ∼ y′. In other words, an adjacency matrix for Γ × Γ′

is given by A ⊗ A′ where A,A′ are adjacency matrices for Γ,Γ′ respectively. Clearly in

general,
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(9.1) χ(Γ × Γ′) 6 min{χ(Γ), χ(Γ′)}.

To see this, note that projection onto the first coordinate gives a graph homomorphism

Γ × Γ′ → Γ, so χ(Γ × Γ′) 6 χ(Γ) by Lemma 4.1; and χ(Γ × Γ′) 6 χ(Γ′) similarly. This

suggests the question

(9.2) Must equality hold in (9.1) for all graphs Γ,Γ′?

Hedetniemi’s Conjecture says that the answer to (9.2) is affirmative. See [6,pp.180–181]

for a survey of progress on this open problem. In particular, (9.2) has been answered

affirmatively in the special case χ(Γ), χ(Γ′) 6 4. Question (9.2) is related to a natural

generalization of the technique of Sections 7–8, as we proceed to describe.

Once again consider a finite real extension K ⊇ Q, with ring of algebraic integers O,

and let B ⊂ O be an arbitrary ideal with prime factorization given by

B = pe11 pe22 · · · pek

k .

Set

R := O/B ∼=
(
O/pe11

)
⊕

(
O/pe22

)
⊕ · · · ⊕

(
O/pek

k

)
.

The graph formed on the vertex set R2 = R×R by the relation (1.1) is the direct product

of the graphs O/pej

j for j = 1, 2, 3, . . . , k. In the spirit of Sections 7 and 8, it is natural

to choose our ideal B such that all neighbours of (0, 0) in K2 have the form (α/γ, β/γ)

where α2 + β2 = γ2 such that γ /∈ B; for then

χ(K2) 6 χ((O/B)2) 6 min{χ((O/pej

j )2) : j = 1, 2, 3, . . . , k}.

This would at first seem to offer an improvement over the results of Sections 7 and 8 where

all such ideals B considered were either prime or the square of a prime ideal. However, to

obtain such an improvement would require producing a counterexample to Hedetniemi’s

Conjecture.

10. Colouring Rn and Cn

Consider more generally the graph defined on Kn with adjacency relation

(10.1) (x1, . . . , xn) ∼ (y1, . . . , yn) iff (x1−y1)2+(x2−y2)2+ · · ·+(xn−yn)2 = 1.
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It is not hard to see that χ(Rn) < ∞, generalizing the proof that χ(R2) 6 7; see also [3]

for χ(R3) 6 18. To obtain a finite upper bound for χ(Rn), first choose any lattice L ⊂ Rn

(preferably a lattice corresponding to a dense sphere-packing). For each x ∈ L, let Vx be

the Voronoi cell of L with center x (see [2,p.33]). Each such cell has the same diameter,

say δ. It is not hard to show that for some sublattice L1 ⊂ L, we have d(Vx, Vy) > ε > δ

for all x 6= y in L1; here d denotes Euclidean distance. We may assume (after scaling as

necessary) that ε > 1 > δ. Choose one colour for each coset L1 + u, for u ∈ L, and colour

all points of
⋃
x∈L1+u

Vx with this colour. Then χ(Rn) 6 [L : L1] <∞.

The case for subfields K ⊆ C is much different. I do not know of any finite upper

bound for χ(Kn), or even χ(K2), in this case. Moreover our proof of Lemma 5.1 strongly

used the fact that we have subfields of R. In the case of complex fields, one’s first thought

might be to replace (10.1) by the relation

(10.2) (x1, . . . , xn) ≈ (y1, . . . , yn) iff |x1−y1|2 + |x2 −y2|2 + · · ·+ |xn−yn|2 = 1.

However, on second thought we see that this alternative adjacency relation is less interest-

ing, since it ignores the complex structure of Cn, failing to distinguish it from R2n.

Observe that the adjacency relation (10.1) on Cn yields ‘fewer’ edges than does (10.2),

in the sense of topological dimension: With (10.1), the neighbours of each point form a

real (2n−2)-manifold, albeit unbounded; whereas with (10.2), the neighbours of each point

form a real (2n−1)-manifold S2n−1. From this point of view, it is perhaps surprising that

while (10.2) yields a graph with clearly finite chromatic number, whereas with (10.1), this

is unclear.

Felix Lazebnik recently asked me: for which subfields K ⊆ C can I say for sure that

χ(K2) < ∞? Of course this holds if K has at least one embedding in R. In the case of

algebraic number fields, we obtain the following stronger result.

10.3 Theorem. Let K ⊇ Q be a finite extension. If K does not contain i =
√
−1, then

χ(K2) <∞.

Proof. Let O be the ring of algebraic integers in K, and suppose that i /∈ K. We first

observe that

(10.4) there exists a prime ideal p ⊂ O satisfying |O/p| ≡ 3 mod 4.

For suppose that (10.4) fails. Then for every prime ideal p ⊂ O, the polynomial X2 + 1

factors in O/p. By Hensel’s Lemma (see e.g. [7,p.129]), it also factors in the completion
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Kp. By the Hasse-Minkowski Theorem (see [7,p.385]), X2 + 1 also factors in K, contrary

to hypothesis.

Consider an ideal p ⊂ O as in (10.4), and let q = |O/p|. We have seen that there

exists a graph homomorphism K2 → F2
q so that χ(K2) 6 χ(F2

q) <∞.

For subfields of C containing i, I am stymied. Put bluntly, I do not even know whether

or not χ(Q[i]2) is finite.
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