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spaces of type O2n+1(q) for n ≥ 4.
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1. The Result

Let V = Fm, F = GF (q), and let Q : V → F be a quadratic form. Thus Q(λx) = λ2Q(x),
Q(x+y) = Q(x)+Q(y)+f(x, y) for all λ ∈ F ; x, y ∈ V , where f is bilinear. A singular point
is a one-dimensional subspace 〈v〉 such that Q(v) = 0. We assume Q is nondegenerate, i.e.
V ⊥ is either 0, or (if q is even and m odd) a nonsingular point. (Here ⊥ denotes orthogonal
with respect to f .) The isometry type of (V, Q) is denoted O2n+1(q), O+

2n(q) or O−
2n(q)

according as m = 2n + 1, or m = 2n and Q is hyperbolic or elliptic (i.e. maximal totally
singular subspaces have dimension m/2 or (m − 2)/2).

An ovoid in (V, Q) is a collection O consisting of singular points, such that every
maximal totally singular subspace contains exactly one point of O. In this section we
prove:

Theorem. For n ≥ 4, O2n+1(q) has no ovoids.

This result is known for q even (see [T]). Henceforth we suppose that O is an ovoid
in O2n+1(q), q odd. Thus (see [HT], [K]) O consists of qn + 1 singular points, no two of
which are perpendicular with respect to f . For convenience, we may assume henceforth
that (−1)n2δ is a nonsquare in F , where δ is the discriminant of Q; otherwise, replace Q

by εQ where ε ∈ F is a nonsquare.

Let ∆ be the collection of all triples {〈u〉, 〈v〉, 〈w〉} of points of O such that f(u, v)f(v,

w)f(w, u) is a nonsquare of F . As shown in [M], every 4-subset of O contains an even
number of triples from ∆; thus ∆ is a two-graph with point set O. We next show that any
2-subset of O is contained in exactly 1

2 (q
n−1 + 1)(q − 1) triples from ∆.
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Lemma. The two-graph ∆ is regular of degree 1
2 (q

n−1 + 1)(q − 1).

Proof. Suppose 〈u〉, 〈v〉, 〈w〉 are distinct points of O. Then 〈u, v, w〉 is a plane on which

Q restricts to a nondegenerate quadratic form with discriminant −2f(u, v)f(v, w)f(w,

u); thus 〈u, v, w〉⊥ has discriminant (−1)n−1f(u, v)f(v, w)f(w, u)η for some nonsquare
η ∈ F . In particular, 〈u, v, w〉⊥ is isometric to O+

2n−2(q) or O−
2n−2(q), according as

f(u, v)f(v, w)f(w, u) is a nonsquare or a square in F .

Now fix 〈u〉 �= 〈v〉 in O. Let N (resp., S) be the number of points 〈w〉 ∈ O distinct

from 〈u〉, 〈v〉 such that f(u, v)f(v, w)f(w, u) is a nonsquare (resp., a square) in F . Clearly,

N + S = |O| − 2 = qn − 1.

Counting in two different ways the number of pairs (〈w〉, 〈x〉) consisting of a point 〈w〉 ∈ O
distinct from 〈u〉, 〈v〉, and a singular point 〈x〉 in 〈u, v, w〉⊥, we obtain

(qn−2 + 1)(qn−1 − 1)
q − 1

N +
(qn−2 − 1)(qn−1 + 1)

q − 1
S =

q2n−2 − 1
q − 1

(qn−1 − 1).

Here we have used the following facts (see [HT], p.23; [K]): O±
2n−2(q) has exactly (qn−2 ±

1)(qn−1 ∓ 1)/(q − 1) singular points; 〈u, v〉⊥ � O2n−1(q) has exactly (q2n−2 − 1)/(q − 1)
singular points; and x⊥ contains exactly qn−1+1 points of O. The unique solution is given

by

N = 1
2 (q

n−1 + 1)(q − 1), S = 1
2(q

n−1 − 1)(q + 1),

which verifies the Lemma.

Observe that if Q is replaced by εQ, where ε ∈ F is nonsquare, then O yields the comple-

mentary two-graph ∆ of degree 1
2 (q

n−1 − 1)(q + 1).

The eigenvalues ρ1 > ρ2 of the (0,±1)-adjacency matrix of ∆ (see [S], Theorem 7.2)

satisfy

qn + 1 = 1− ρ1ρ2,
1
2(q

n−1 + 1)(q − 1) = −1
2 (ρ1 + 1)(ρ2 + 1)

from which we obtain ρ1 = qn−1, ρ2 = −q. The corresponding multiplicities µ1, µ2 satisfy

qn−1µ1 − qµ2 = 0, µ1 + µ2 = qn + 1 (see [S], Theorem 7.7) and so

µ1 = q2 − q2 − 1
qn−2 + 1

must be an integer. The proof of the Theorem follows.
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2. Concluding Remarks

No ovoids are known in O+
2n(q) for n ≥ 5. Some nonexistence results in this case are found

in [BM].
There are just two families of known ovoids in O7(q): for each q = 3e, an ovoid

admitting PGU(3, q) as a group of automorphisms; and for q = 32t+1, and ovoid admitting
the Ree group 2G2(q). The resulting unitary and Ree two-graphs on q3 + 1 points have
degree 1

2
(q2 + 1)(q − 1), in accordance with our Lemma. These are described in [S]. Note

that the two families coincide for q = 3, resulting in the 2-transitive two-graph on 28 points
admitting Sp(6, 2). It is known ([T], [OT]) that O7(q) posesses no ovoids for q = 2e, 5, 7,
but except for the values of q we mention here, the question of existence of ovoids in O7(q)
remains open.

The O−
4 (q) quadric embeds as an ovoid in O5(q), and for q odd, the resulting regular

two-graph of degree 1
2
(q2 − 1) on q2 +1 vertices, is of Paley type (see [M]). However, more

examples of ovoids in O5(q) are known [K]. By our Lemma, all such examples yield regular
two-graphs with the same parameters.

In [M] the question was posed: can there exist nonisomorphic ovoids O,O′ in an
orthogonal space of dimension m ≥ 6, but with the same invariant two-graph? While we
have not answered this question, the above examples show that it is possible for O �� O′ to
give regular two-graphs with the same parameters, and hence the same fingerprint (cf. [M]).
In all known occurrences of this phenomenon, q is nonprime.
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