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Abstract. In the study of finite projective planes, two of the most prominent

open questions are: do there exist finite planes of finite order other than prime
powers? and, must every plane of prime order be Desarguesian? Coding theory

has played a prominent role in traditional approaches to these problems. These
approaches, although fruitful, have not resolved the two key problems to which

we refer. We suggest some promising alternative ways that coding theory may
be applied to these problems, focusing on codes of nets.

Let p be an odd prime, and let N be a 4-net of order p. In many cases
we obtain bounds on the p-rank of N (i.e. the dimension of its p-ary code),

and structural properties of N that are deducible from the p-rank. The main
tool in this investigation is the use of exponential sums over Fp . Implications

for the study of finite projective planes are described.

1. Introduction

This study is motivated by the following two open problems in finite geometry:

(Q1) Must every finite (affine or projective) plane have prime-power order?
(Q2) Must every plane of prime order be Desarguesian?

Coding theory figures prominently in traditional approaches to these problems,
particularly (Q1). Let Π be a projective plane of order n, and suppose that p
is a prime sharply dividing n (i.e. n is divisible by p but not by p2). The p-ary
code of Π, suitably extended, is self-dual, and the MacWilliams relations impose
strong constraints on the weight enumerator of this code. The hope is that further
combinatorial reasoning may restrict the possible shape of low-weight codewords,
thereby resolving (Q1) for particular small choices of n. This description provides
a very rough outline of the result of Lam et. al. [LTS] that projective planes of
order 10 do not exist. The success of this method, however, depends heavily upon
computer—a computational tour de force is required for n = 10; and the compu-
tation requirements are currently not within reach for any value of n > 10. The
problems (Q1) and (Q2) are currently awaiting some fresh ideas.

We have proposed [M91a] an approach to (Q1) and (Q2) based on codes of
nets. The limitations of this approach remain unclear, but the progress has been
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2 G. ERIC MOORHOUSE

encouraging. In this work, we focus on codes of k-nets of prime order p, with
particular attention to the case k = 4.

The best progress to date on (Q2) is:

Theorem 1.1. Every transitive affine plane of prime order is Desarguesian.

This result is a corollary of

Theorem 1.2. Let p be prime. Then every planar polynomial over Fp is qua-

dratic.

Recall that a polynomial f(X) ∈ Fp[X] is called planar if for every nonzero
k ∈ Fp, the polynomial f(X+k)−f(X) induces a permutation of Fp . Theorem 1.2
was proven independently by Gluck [G], Rónyai and Szőnyi [RS], and Hiramine [H].
Gluck’s proof of this result made use of exponential sums, which arise naturally
when applying characters of the elementary abelian collineation group of the plane.
It is our hope that similar arguments may lead to an extension of Theorem 1.2
without the assumption of any collineation group, thereby providing an answer
to (Q2). We show that exponential sums arise naturally in the study of nets,
when characters are applied to the additive group of a certain code obtained from
the net (the dual of the row space of the point-line incidence matrix of the net).
By Theorem 1.5 below, we may assume that this group is large, and so we may
reasonably hope that it provides a satisfactory substitute for a collineation group.
It is in fact reasonable to hope that this method may provide some answers to
(Q1), inasmuch as we have shown [M91a] that codes of nets provide a natural tool
for addressing both questions. In this paper, however, we fix an odd prime p and
consider only nets of order p.

In Section 3 we formally define a k-net N of order p, where k 6 p + 1. Less
formally [M91a], N is an incidence system consisting of p2 points and pk lines in
which every line has p points; two lines are called parallel if they are either equal or
disjoint; and parallelism of lines is an equivalence relation on the set of lines, with
k parallel classes. Each parallel class is a partition of the point set into p lines, and
any two non-parallel lines meet in a unique point. Note that the case k = p + 1
yields precisely an affine plane of order p. Every k-net N of order p gives rise to
(k−1)-subnets of order p; in fact, k such subnets, each obtained by omitting one
of the parallel classes of lines of N . The p-rank of N is the Fp-rank of its p2 × pk
incidence matrix. We have posed

Conjecture 1.3 ([M91a]). Let N be a k-net of order p, and let N ′ be any
of its (k−1)-subnets. Then rankp(N ) − rankp(N ′) > p − k + 1.

By taking the sum of a finite arithmetic series, the preceding conjecture implies

Conjecture 1.4. Let N be a k-net of order p. Then pk − rankp(N ) 6 1
2(k −

1)(k − 2).

Note that the quantity pk − rankp(N ) is simply the nullity of the p2 × pk
incidence matrix of the net N . It is significant that the conjectured upper bound
1
2
(k − 1)(k − 2) is also an upper bound for the arithmetic genus of an algebraic

plane curve of degree k. Indeed the most natural analogue of Conjecture 1.4, in the
infinite case, is a bound on the rank of a web (more precisely, a 2-dimensional k-web)
which in the infinite case is a theorem. Moreover, examples of k-webs attaining this
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bound are obtainable from extremal curves of degree k, i.e. plane curves of maximal
genus 1

2 (k − 1)(k − 2) for the given degree k.
We also showed

Theorem 1.5 ([M91a]). If Conjecture 1.3 holds then every plane of prime

order is Desarguesian.

The validity Conjecture 1.3 for k = 3 (the smallest nontrivial case) was es-
tablished in [M91a] using loop theory. Below (see Theorem 3.3) we provide an
easy alternative proof of this fact using exponential sums. Moreover, the method of
exponential sums provides further information in the case of 4-nets. This progress,
stated in Theorem 1.6 below, is proved in Section 3. Here a Desarguesian 3-net
is called simply a cyclic 3-net, since it is the unique isomorphism type of 3-net of
order p corresponding to the cyclic Latin square of order p.

Theorem 1.6. Let N be a 4-net of order p.

(i) The number of cyclic 3-subnets of N is 0, 1, 3 or 4.

(ii) N has four cyclic 3-subnets iff N is Desarguesian.

(iii) Suppose N has at least one cyclic 3-subnet. Then N has rank at least

4p−3, and equality holds iff N is Desarguesian.

We remark that (i) and (ii) are best possible in the sense that there exist (necessarily
non-Desarguesian) 4-nets of prime order p having exactly 0, 1 or 3 cyclic subnets.
Examples of these for p = 7 are found at [M]. Further partial results in the direction
of Conjecture 1.3 are found in [M91b], [M93].

We have verified by computer that Conjecture 1.3 holds for p 6 11. For p 6 7,
this is easily checked using a complete classification of all nets of order p; see [M].
We have also verified Conjecture 1.3 for 4-nets of order p = 11; although the actual
nets are probably too numerous to classify, the methods of Section 3 bring the
problem within the reach of practical computation. The case p = 11 is significant
since 11 is the smallest order for which projective planes have yet to be classified.

2. Exponential Sums

Let F = Fp where p is an odd prime, and let ζ ∈ C be a primitive p-th root of
unity. We have a well-defined map

e : F → Z[ζ], a 7→ ζa

satisfying e(a + b) = e(a)e(b) for all a, b ∈ F . Each function f : F → F gives rise
to an exponential sum

Sf =
∑

i∈F

e(f(i)) ∈ Z[ζ].

In the following we call a function f : F → F linear (respectively, quadratic) if
it is represented by a polynomial in F [X] of degree 1 (resp. 2).

Lemma 2.1. Let f : F → F and suppose |Sf | =
√

p. Then there exists a

quadratic polynomial g(X) ∈ F [X] such that the sequence (f(0), f(1), . . . , f(p−1))
is a permutation of (g(0), g(1), . . . , g(p−1)). In particular, the fibre size |f−1(a)|
equals

0, for exactly (p−1)/2 choices of a ∈ F ;

1, for exactly 1 choice of a ∈ F ; and

2, for exactly (p−1)/2 choices of a ∈ F .
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If moreover f(0) = 0, then f(X) = aπ(X)2 + bπ(X) for some a, b ∈ F and some

permutation π : F → F satisfying π(0) = 0.

Proof. See Gluck [G]. To obtain the last assertion we assume that f(0) = 0.
By the previous conclusion, there exist constants a, b, c ∈ F and a permutation
σ : F → F such that f(X) = aσ(X)2 + bσ(X) + c. Setting π(X) = σ(X) − σ(0)
gives the final conclusion. �

Lemma 2.2. Let f : F → F and suppose |Sf(X)+cX | =
√

p for all c ∈ F . Then

f is quadratic.

Proof. Consider the point set in the projective plane over F defined by

O = {(x, f(x), 1) : x ∈ F } ∪ {(0, 1, 0)}.
Note that |O| = p+1; we will show that no three points of O are collinear. Suppose
that three points of O lie on the line aX + bY + cZ = 0 where a, b, c ∈ F are not
all zero. We cannot have b = 0, for then the line aX + cZ = 0 meets O in only
two points including (0, 1, 0). We may therefore assume b = 1 and that the line
aX + Y + cZ = 0 meets O in three distinct points (xi, f(xi), 1) for i = 1, 2, 3. This
means that f(X)+aX attains the value −c ∈ F at least three times. However,
|Sf(X)+aX | =

√
p, and by Lemma 2.1 we obtain a contradiction. �

For every function f : F → F we denote

Af = {a ∈ F : Sf(X)+aX 6= 0}.
Lemma 2.3. Suppose |Af | 6 1

2(p+1). Then |Af | = 1 and f is either constant

or linear.

Proof. There exist distinct x, y ∈ F such that f(x) − ax = f(y) − ay, if and
only if −a ∈ Af . Thus the subset −Af = {−a : a ∈ Af} ⊆ F coincides with the
set of all slopes to the graph of f in the affine plane AG2(F ), i.e. the set of all
values of the difference quotient (f(y) − f(x))/(y −x) for all pairs (x, y) of distinct
elements of F . The result follows by a theorem of Rédei [R]; see also [B], [LS]. �

Lemma 2.4. Let f : F → F such that f(0) = 0 and f(1) = 1, and suppose that

|SX2+cf(X) | =
√

p for all c ∈ F . Then f is a permutation satisfying f(t) = ±t for

all t ∈ F .

Proof. Consider the projective plane PG2(F ) with homogeneous coordinates
(X, Y, Z) for points, in which we consider those points with Z 6= 0 as the ‘affine
points’. Every line other than the ‘line at infinity’ Z = 0 is either a ‘vertical line’
X = aZ for some a ∈ F , or a ‘non-vertical line’ Y = aX + bZ for some a, b ∈ F .

Consider the point set O = O1 ∪ {(0, 1, 0)} in PG2(F ) where

O1 = {(f(t), t2, 1) : t ∈ F }.
We will show that O is an oval, i.e. a set of q + 1 points with no three collinear.
Clearly the line Z = 0 meets O only in (0, 1, 0).

Fix a ∈ F and consider those affine lines passing through (1,−a, 0), these
being the nonvertical lines of slope a, i.e. lines of the form Y = aX + cZ for some
c ∈ F . Such a line meets O precisely in those points (f(t), t2 , 1) ∈ O1 such that
t2 − af(t) = c. By Lemma 2.1 (and since |SX2−af(X)| =

√
p), among such lines

there is exactly one tangent to O and (p−1)/2 secants to O. Since every point of
the form (1,−a, 0) (for a ∈ F ) lies on a unique affine tangent to O, but no two
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points of O1 lie on the same tangent, it follows that every point P ∈ O1 lies on
a unique tangent line `P to O. Since every non-vertical line through P meets O
in at most two points, this means that of the p+1 lines through P , one is tangent
and the other p are secants. In particular the vertical line through P meets O only
in P and (0, 1, 0). This means that f : F → F is bijective and that O is an oval
as claimed. By Segre’s Theorem, O is a conic. Since O passes through (0, 1, 0),
(0, 0, 1) and (1, 1, 1) and has both lines Y = 0 and Z = 0 as tangents, the conic O
must be given by the equation X2 = Y Z and the result follows. �

Note that for any f : F → F , the value |Sf |2 = SfSf ∈ Z[ζ] is an algebraic
integer, and so in fact |Sf | is an algebraic integer.

Lemma 2.5. Let f : F → F . Suppose there exists a real constant κ > 0 such

that for all c ∈ F we have |Sf(X)+cX | ∈ {0, κ}. Then either

(a) f is quadratic and |Sf(X)+cX | =
√

p for all c ∈ F , or

(b) f is constant or linear, i.e. f(X) = a1X+a0 for some a0, a1 ∈ F , and

|Sf(X)+cX | =

{

0, if c 6= −a1;

p, if c = −a1.

Proof. For each c ∈ F , define αc ∈ C by

αc =

{

κ−1Sf(X)+cX , if Sf(X)+cX 6= 0;
1, if Sf(X)+cX = 0.

Note that |αc| = 1 for all c ∈ F . Consider the complex p × p matrix defined by

M =
[

αiζ
ij+f(j)

]

i,j∈F
.

We easily check that MM∗ = pI where I is the p × p identity matrix, so that
the matrix p−1/2M is unitary, and every eigenvalue of M has magnitude

√
p. Let

ε = (1, 1, . . . , 1)T ∈ Cp; then the hypothesis means that Mε is a vector having k
entries equal to κ and the remaining p−k entries zero, where k is the number of
c ∈ F such that |Sf(X)+cX | = κ. Now

kκ2 = ||Mε||2 = p||ε||2 = p2.

In particular, k > 1 and so κ = |Sf(X)+cX | for some c ∈ F . Now p2/k = κ2 ∈ Z[ζ]
is an algebraic integer, so k = 1 or p.

If k = p then |Sf(X)+cX | = κ =
√

p for all c ∈ F , so f(X) is quadratic by
Lemma 2.2. Hence assume k = 1, so that |Sf(X)−a1X | = κ = p for some a1 ∈ F ,
which implies that f(X)−a1X = a0 ∈ F is constant. �

Lemma 2.6. Let f, g : F → F be linearly independent functions satisfying

f(0) = g(0) = 0, and suppose that |Saf+bg| ∈ {0,
√

p, p} for all a, b ∈ F . Then there

exists a permutation σ : F → F such that f and g are linear combinations of σ(X)
and σ(X)2.

Proof. We first assume that f : F → F is a permutation. In this case we
may assume that f(X) = X; otherwise substitute f−1(X) for X in both f(X) and
g(X). Now |SaX+g(X) | ∈ {0,

√
p, p} for all a ∈ F , and the value p cannot arise

since g(0) = 0 and g(X) is not a scalar multiple of X. Now Lemma 2.5 gives
g(X) = a2X

2 + a1X for some a1, a2 ∈ F and we are done.
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We may henceforth assume that no linear combination of f and g is a permu-
tation; thus |Saf+bg | ∈ {√p, p} for all a, b ∈ F , and in fact |Saf+bg | =

√
p unless

a = b = 0.
Since |Sf | =

√
p, Lemma 2.1 gives f(X) = a2π(X)2 + a1π(X) for some permu-

tation π : F → F satisfying π(0) = 0. There is no loss of generality in assuming
π(X) = X and a2 = 1, so that f(X) = X2 +a1X and |SX2+a1X+bg(X) | =

√
p for all

b ∈ F . Writing h(X) = g
(

X − a1

2

)

, we have |SX2+bh(X)| =
√

p for all b ∈ F and so
h : F → F is bijective by Lemma 2.4; but then g is bijective, a contradiction. �

We have seen that nets yield relations between exponential sums, and it is
natural to compare factorizations of these expressions (or of the principal ideals
which they generate) in the ring Z[ζ]. (Here we must remember that Z[ζ] does not
have unique factorization for p > 19.) We will see (Theorem 3.4) that the functions
arising from codes of nets satisfy the following condition with m = 1.

Lemma 2.7. Let f : F → F . Then Sf lies in the ideal (1−ζ) ⊂ Z[ζ]. If

moreover
∑

a∈F f(a)j = 0 ∈ F for j = 0, 1, . . . , m where m 6 p − 2, then Sf ∈
(1−ζ)m+1.

Proof. The ideal (p) ⊂ Z[ζ] ramifies as (p) = (ε)p−1 where ε = ζ−1 and
Z[ζ]/(ε) ∼= Fp . Now suppose m 6 p − 2 such that

∑

a∈F f(a)j = 0 for j =
0, 1, . . . , m. (The latter condition always holds for j = 0.) Re-interpreting the
values of f as integers in the range 0, 1, 2, . . . , p−1, we have

Sf =
∑

a∈F ζf(a) =
∑

a∈F (1+ε)f(a)

≡ ∑

06j6m
εj

j!

∑

a∈F f(a)
(

f(a)−1
)(

f(a)−2
)

· · ·
(

f(a)−j+1
)

mod (ε)m.

For j 6 m, the innermost sum lies in (p) ⊆ (ε)m+1 by hypothesis. The remaining
terms (for j > m + 1) also clearly lie in (ε)m+1 . �

3. Nets

Denote F = Fp where p is an odd prime, and let k > 2. For every J ⊆
{1, 2, . . . , k} we consider the projection

πJ : F k → F |J|, (a1, a2, . . . , ak) 7→ (aj : j ∈ J).

We simply write πi = π{i}, πij = π{i,j}, and we denote J ′ = {1, 2, . . . , k} r J so
that in particular

πi′(a1, a2, . . . , ak) = (a1, a2, . . . , ai−1, ai+1, . . . , ak).

We consider only nets of order p. A k-net of order p is a subset N ⊆ F k such

that for all i 6= j in {1, 2, . . . , k}, the map N πij−→ F 2 is bijective. The members of
N are called points, and the lines of N are the fibres

N ∩ π−1
i (a) = {v ∈ N : πi(v) = a}

for i ∈ {1, 2, . . . , k}, a ∈ F . For every J ⊆ {1, 2, . . . , k} of cardinality at least 2,
clearly πJ(N ) is a |J |-net of order p; we call this a |J |-subnet of N . In particular for
each i ∈ {1, 2, . . . , k}, we have that πi′(N ) is a (k−1)-subnet of N , obtained by sim-
ply deleting from N the i-th parallel class of lines. An isomorphism of nets φ : N →
N ′ is a map of the form (a1, a2, . . . , ak) 7→ (α1(aσ(1)), α2(aσ(2)), . . . , αk(aσ(k))) for
some α1, α2, . . . , αk ∈ Sym(F ) and σ ∈ Sk; this simply says that the corresponding
point-line incidence structures are isomorphic.
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An affine plane of order p is simply a (p +1)-net of order p. The Desarguesian

affine plane is the (p + 1)-net

D = {(a, b, a+b, a+2b, . . . , a+(p−1)b) : a, b ∈ F }.
A Desarguesian net is any subnet of D. A Desarguesian 3-net is known simply as a
cyclic 3-net. Every cyclic 3-net of order p is isomorphic to {(a, b, a+b) : a, b ∈ F }.

Denote by V = V(N ) the vector space consisting of all k-tuples (f1, f2, . . . , fk)
of functions F → F such that

f1(a1) + f2(a2) + · · ·+ fk(ak) = 0

for all (a1, a2, . . . , ak) ∈ N . Also denote by V0 = V0(N ) 6 V the subspace consisting
of all (f1, f2, . . . , fk) ∈ V satisfying the additional condition f1(0) = f2(0) = · · · =
fk(0) = 0. The map V → F k, (f1, f2, . . . , fk) 7→ (f1(0), f2(0), . . . , fk(0)) induces
an isomorphism from V/V0 to a (k−1)-dimensional subspace of F k; thus dim(V) =
dim(V0) − k + 1, and so we may focus our attention on V0 rather than on V itself.
Since V may be interpreted as the right null space of the point-line incidence matrix
A of N (a p2 × pk matrix of 0’s and 1’s), i.e. the dual of the Fp-space spanned by
rows, this gives

Theorem 3.1. The p-rank of N is given by

rankp N = rankp A = pk − dimV = (p−1)k + 1 − dimV0 .

Rephrasing our conjectured bounds for the rank of A in terms of the nullity
gives

Conjecture 3.2. (i) dim π1(V) 6 k−1.
(ii) dim(V0) 6 1

2(k−1)(k−2), and equality holds iff N is Desarguesian.

Statement (i) is a simple restatement of Conjecture 1.3; and the first assertion of
(ii) is implied by (i). If either (i) or (ii) holds then every plane of prime order is
Desarguesian. Some indication that V0 is more natural to consider than the row or
column space of A itself, is found in remarks following Conjecture 1.4. The case
k = 3 of Conjecture 3.2(i) was settled in[M91a] using loop theory. See [M06]
for a collection of proofs of this fact using a variety of techniques. Here we use
exponential sums to prove this case:

Theorem 3.3. Let N be a 3-net of order p. Then dim(V0) 6 1. Moreover,

equality holds iff N is cyclic, in which case V0 is spanned by a triple (f, g, h) in

which the maps f, g, h : F → F are permutations.

Proof. Let (f, g, h) ∈ V0. Summing ζf(a)+g(b) = ζ−h(c) over all (a, b, c) ∈ N
gives SfSg = pSh, and similarly SgSh = pSf and ShSf = pSg . Thus

|Sf |2 = |Sg |2 = |Sh|2 = 1
p
SfSgSh.

Now if |Sf | = |Sg| = |Sh| = p then f, g, h : F → F are constant functions, but then
the condition f(0) = g(0) = h(0) = 0 forces (f, g, h) = (0, 0, 0).

Otherwise we must have Sf = Sg = Sh = 0, so that f, g, h : F → F are
permutations. After permuting labels, we may assume that

f(X) = X, g(X) = X, h(X) = −X.
Now

0 = f(a) + g(b) + h(c) = a + b − c
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for all (a, b, c) ∈ N , i.e.

N = {(a, b, a+b) : a, b ∈ F }
which is the cyclic 3-net of order p. �

Theorem 3.4. Let N be a k-net of order p where k ∈ {2, 3, . . . , p}, and let

(f1, f2, . . . , fk) ∈ V(N ). Then for every i ∈ {1, 2, . . . , k} we have
∑

a∈F fi(a) = 0.

In particular the corresponding exponential sums Sfi lie in the ideal (1−ζ)2 ⊆ Z[ζ].

We remark that the conclusion fails for k = p+1.

Proof. For every (x1, . . . , xk) ∈ N we have

f1(x1) + f2(x2) + · · ·+ fk(xk) = 0.

Summing over all (x1, . . . , xk) ∈ N with fixed first coordinate x1 = b ∈ F gives
∑

a∈F

(

f2(a) + f3(a) + f4(a) + · · ·+ fk(a)
)

= 0.

A similar argument gives
∑

a∈F

(

f1(a) + f3(a) + f4(a) + · · ·+ fk(a)
)

= 0.

The difference of these last two sums yields
∑

a∈F f1(a) =
∑

a∈F f2(a). Similar
arguments yield

∑

a∈F

f1(a) =
∑

a∈F

f2(a) = · · · =
∑

a∈F

fk(a)

and then substituting into the earlier sum yields

0 =
∑

a∈F

(

f2(a) + f3(a) + · · ·+ fk(a)
)

= (k − 1)
∑

a∈F

f1(a).

Since k − 1 is not divisible by p the first conclusion holds, and the fact that Sfi ∈
(1−ζ)2 follows from Lemma 2.7. �

Lemma 3.5. Let N be a 4-net of order p. Then for every (f, g, h, u) ∈ V, either

(a) three or more of Sf , Sg, Sh, Su are zero; or

(b) |Sf | = |Sg | = |Sh| = |Su| > 0.

Proof. Let (f, g, h, u) ∈ V. Summing ζf(a)+g(b) = ζ−h(c)−u(d) over all (a, b,

c, d) ∈ N gives SfSg = ShSu , and similarly SfSh = SgSu and SfSu = SgSh. This
yields

(|Sf |2 − |Sg|2)Sh = 0

and similarly for all permutations of f, g, h, u. The result follows. �

Lemma 3.6. Let N be a 4-net of prime order p, and suppose (0, X, X, X) and

(f, g, h, u) are linearly independent members of V0. Then either

(i) |Sf | = |Sg | = |Sh| = |Su| =
√

p and the functions g, h, u are quadratic, or

(ii) Sf = 0 and at least two of g, h, u are scalar multiples of X.
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Proof. Suppose first that Sf 6= 0. Then for all a ∈ F , Lemma 3.5 implies
that either

Sg(X)+aX = Sh(X)+aX = Su(X)+aX = 0

or

|Sg(X)+aX | = |Sh(X)+aX | = |Su(X)+aX | = |Sf | > 0.

By Lemma 2.5, and using the fact that g(0) = h(0) = u(0) = 0, we obtain either
conclusion (i) or g(X) = h(X) = u(X) = aX for some a ∈ F ; but in the latter
case we have (f, 0, 0, 0) = (f, g, h, u) − a(0, X, X, X) ∈ V0 which forces f = 0 and
(f, g, h, u) = a(0, X, X, X) for some a ∈ F , a contradiction.

Hence we may assume that Sf = 0, so that f is a permutation; without loss
of generality, f(X) = X. By Lemma 3.5, the sets Ag, Ah and Au (defined as
in Section 2) are mutually disjoint; but after permuting the 2nd, 3rd and 4th
coordinates of N if necessary, we may assume that |Ag| 6 |Ah| 6 |Au|. This
implies that |Ag| 6 |Ah| 6 1

3
p 6 1

2
(p−1). By Lemma 2.3 and the condition

g(0) = h(0) = 0, we have g(X) = aX and h(X) = bX for some a, b ∈ X, so
conclusion (ii) follows. �

Theorem 3.7. Let N be a 4-net of prime order p. Suppose N has at least two

cyclic 3-subnets. Then N has at least three cyclic 3-subnets.

Proof. Without loss of generality, V0 contains (0, X, X, X) and (f, g, h, 0)
where the functions f, g, h : F → F are permutations. By Lemma 3.6, we may
suppose that g(X) = aX for some a ∈ F . Now

(f, 0, h(X)−aX,−aX) = (f, g, h, 0)− a(0, X, X, X) ∈ V0

so that N has a third cyclic 3-subnet. �

Theorem 3.8. Suppose N is a 4-net of prime order p, all four of whose 3-

subnets are cyclic. Then N is Desarguesian.

Proof. As in the proof of Theorem 3.7, we may assume that V0 contains
(0, X, X, X), (f(X), aX, h(X), 0) and (f(X), 0, h(X)−aX,−aX) where Sf = Sh =
Sh(X)−aX = 0. Without loss of generality, f(X) = X. There also exists (r(X),
s(X), 0, v(X)) ∈ V0 where the functions r, s, v : F → F are bijective. By Lemma 3.6,
either s(X) = bX or v(X) = bX for some b ∈ F . We may assume that s(X) = bX,
for otherwise we may interchange coordinates 2 and 4 of N , replacing also (a, h(X))
by (−a, h(X)−aX). Now

(r(X), 0,−bX, v(X)−bX) = (r(X), bX, 0, v(X)) − b(0, X, X, X) ∈ V0

so this is a scalar multiple of (X, 0, h(X)−aX,−aX), and without loss of generality

(r(X), 0,−bX, v(X)−bX) = (X, 0, h(X)−aX,−aX).

This forces

N = {(bx+ay,−x−y, x, y) : x, y ∈ F }
where a 6= b and the result follows. �

Theorem 3.9. Let N be a 4-net of prime order p having at least one cyclic

3-subnet. Then dim(V0) 6 3, and equality holds iff N is Desarguesian.
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Proof. We may suppose that π1′N is cyclic and that (0, X, X, X) ∈ V0 ; also
that dim(π1V0) > 2. By Lemma 3.6 we have |Sf | ∈ {0,

√
p, p} for all f ∈ π1V0 ,

so by Lemma 2.6 we may assume π1(V0) contains X and X2. By Lemma 3.6 we
may assume that (X, aX, bX, r(X)), (X2, g(X), h(X), u(X)) ∈ V0 for some a, b ∈ F ,
where g, h, u : F → F are quadratic. In particular

(X, 0, (b−a)X, r(X)−aX), (X, (a−b)X, 0, r(X)−bX) ∈ V0

and so the 3-subnets π2′N and π3′N are cyclic. Since

(X2, g(X), h(X), u(X)) + (X, aX, bX, r(X)) ∈ V0 ,

we see by Lemma 3.6 that u(X)+r(X) is quadratic, whence r(X) itself has degree 6

2. This means that r(X) = cu(X) + dX for some c, d ∈ F , and so

(cX2−X, cg(X)+(d−a)X, ch(X)+(d−b)X, 0) ∈ V0

so that the 3-subnet π4′N is also cyclic. The result follows by Theorem 3.8. �

This completes the proof of Theorem 1.6.
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