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I’m not really happy with my solutions for some of these. In particular, I should be able
to evaluate A5 without infinite series; and I should be able to do A2 directly without
induction. If I have the energy to improve these solutions, you may check back at this site
for updated solutions.

Problem A1

We call a finite set of positive integers feasible if every member of S has the form 2r3s,
and no member of S divides any other member of S. We call a positive integer n feasible
if n =

∑
S for some feasible set S. We are required to show that every positive integer is

feasible. If not, then there exists a smallest infeasible number n. If n is even, say n = 2k for
some positive integer k < n then we have k =

∑
S for some feasible set S and n =

∑
2S

where the set 2S = {2a : a ∈ S} is clearly feasible, contrary to assumption. Otherwise n

is odd. Let s ≥ 0 be maximal such that 3s ≤ n, so that 3s > 1
3n and n − 3s = 2k for

some positive integer k. We have k =
∑

S for some feasible set S, and since k < 1
3n < 3s,

no member of S (or of 2S) is divisible by 3s. In particular 3s /∈ 2S and n =
∑

S ′ where
S ′ = {3s} ∪ 2S. To check that S ′ is feasible, it remains only to observe that since 3s is
odd, it is not divisible by any member of 2S. Thus n is feasible, a contradiction.

Problem A2

Let rn be the number of rook tours of S = Sn = {1, 2, . . . , n} × {1, 2, 3}, and let sn be the
number of ‘alternate rook tours’ of S starting at (1, 3) and ending at (n, 1). Every rook
tour uniquely determines an integer k ∈ {1, 2, . . . , n} such that the first vertical segment
in the tour is from (k, 1) to (k, 2) as shown:

•
•
•

•
•
•

· · ·
· · ·
· · ·

•
•
•

•
•
•

............................................................................... .......................................................................................
........
........
........
........
........
.............................................................................................................................................................................

........

........

........

........

........

...................................................................................... .......................................................................................................

· · ·
· · ·
· · ·

(1, 1) (k, 1)

(k, 2)

The right-hand portion of this tour not shown consists of an alternate rook tour of
{k+1, k+2, . . . , n} × {1, 2, 3}, which shows that for n ≥ 2,

rn = s1 + s2 + · · · + sn−1 .
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Similarly, each alternate rook tour uniquely determines an integer k ∈ {1, 2, . . . , n} such
that the first vertical segment in the tour is from (k, 3) to (k, 2) as shown:

•
•
•

•
•
•

· · ·
· · ·
· · ·

•
•
•

•
•
•· · ·

· · ·
· · ·(1, 3) (k, 3)

(k, 2)

The right-hand portion of this tour not shown consists of a rook tour of {k+1, k+2, . . . , n}×
{1, 2, 3}, which shows that for n ≥ 2,

sn = 1 + r1 + r2 + · · · + rn−1 .

It is straightforward to check that

r1 = 0, s1 = 1;

rn = sn = 2n−2 for n ≥ 2

where the case n = 1 is found directly, and the cases n ≥ 2 are verified by induction.

Problem A3

(We assume that either n is even or that z is restricted to aa domain on which an analytic
branch of zn/2 may be defined.) Write p(z) =

∏n
j=1(z − aj) where the zeroes aj ∈ C have

modulus 1. Logarithmic differentiation of g(z) = p(z)/zn/2 yields

g′(z)
g(z)

=
n∑

j=1

1
z − aj

− n

2z

and so
2zg′(z)
g(z)

=
n∑

j=1

z + aj

z − aj
.

If |a| = 1 then

2Re
(z + a

z − a

)
=

z + a

z − a
+

z + a

z − a
= 2

|z|2 − 1
|z − a|2

and so

2Re
zg′(z)
g(z)

= (|z|2 − 1)
n∑

j=1

1
|z − aj |2 .

If g′(z) = 0 then we must have |z| = 1 since the latter sum is positive.
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Problem A4

Since HT H = nI, the matrix n−1/2H is orthogonal; thus ||Hv|| = n1/2||v|| for every
v ∈ Rn. By the Cauchy-Schwartz inequality,

|uT Hv| ≤ ||u||·||Hv|| = n1/2||u||·||v||.

for all u, v ∈ Rn. Now suppose the upper left a× b submatrix of H has only 1’s as entries.
Take u ∈ Rn to have its first a entries equal to 1, and the remaining entries 0. Similarly
v ∈ Rn has its first b entries equal to 1, and the remaining entries 0. Then

ab = |uT Hv| ≤ n1/2||u||·||v|| = n1/2a1/2b1/2.

This implies that ab ≤ n.

Problem A5

(Note: I would need to justify my term-by-term integration here. It’s messy enough though,
so I would rather look for a slicker proof. . . ) Denote by I the integral

I =
∫ 1

0

ln(x + 1)
x2 + 1

dx =
∫ 1

0

(∑
n≥1

(−1)n−1

n
xn

)
dx

x2 + 1
=

∑
n≥1

(−1)n−1In

where

In =
∫ 1

0

xn dx

x2 + 1
.

For all n ≥ 0 we have

In+2 + In =
∫ 1

0

xn+2 + xn

x2 + 1
dx =

∫ 1

0

xn dx =
1

n + 1
.

It follows easily by induction that

I2k = (−1)k
[π

4
+

k∑
i=1

(−1)i

2i−1

]
and I2k+1 = (−1)k

[ ln 2
2

+
k∑

i=1

(−1)i

2i

]

for all k ≥ 0. Thus

I =
∑
k≥1

1
2k

I2k −
∑
k≥0

1
2k+1

I2k+1

=
∑
k≥1

(−1)k

2k

[π

4
+

k∑
i=1

(−1)i

2i−1

]
−

∑
k≥0

(−1)k

2k+1

[ ln 2
2

+
k∑

i=1

(−1)i

2i

]

=
ln2
2

·π
4

+
∑

(i,k) : 1≤i≤k

(−1)i+k

2k(2i−1)
− π

4
· ln 2

2
−

∑
(i,k) : 1≤i≤k

(−1)i+k

(2k+1)2i
.
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After cancelling the two constant terms we are left with two sums. In the first such sum,
replace i by j + 1. In the second sum, rename k as j, then rename i as k. This gives

I =
∑

(j,k) : 0≤j<k

(−1)j+k−1

(2j+1)2k
+

∑
(j,k) : 1≤k≤j

(−1)j+k−1

(2j+1)2k

=
[∑

j≥0

(−1)j

2j+1

][∑
k≥1

(−1)k−1

2k

]
=

π

4
· ln 2

2
=

π ln 2
8

.

Problem A6

For each i = 1, 2, . . . , n, let Ei be the event that the angle at Pi is acute. Note that Ei is
actually the event that there exists a diameter of the circle with Pi on one side, and all
other Pj ’s on the other side. We may coordinatise Pi by the angle θi ∈ [0, 2π) measured
counterclockwise from P1, so that θ1 = 0; and θ2, . . . , θn are independent random variables
uniformly distributed in [0, 2π). Realising E1 as a union of mutually exclusive possibilities
gives the probability of E1 as

Pr(E1) = Pr
[
θ2, . . . , θn ∈ (π, 2π)

]

+
n∑

i=2

Pr
[
θi ∈ (0, π) and θj ∈ (θi, θi+π) for all j /∈ {1, i}]

=
1

2n−1
+ (n−1)·1

2
· 1
2n−2

=
n

2n−1
.

Similarly Pr(Ei) = n/2n−1 for all i ∈ {1, 2, . . . , n}.
For any events E and F , we denote by E ∧ F the event that both E and F occur;

and by E ∨ F the event that E or F occurs (possibly both). We denote the conditional
probability of E given F as Pr(E | F ). We next determine Pr(E1 ∧ E2), the probability
that the angles at P1 and P2 are both acute. Since θ2 is equally likely to be in (0, π) or
in (π, 2π), and by symmetry the conditional probability of E1 ∧ E2 given that θ2 ∈ (0, π)
equals the conditional probability of E1 ∧ E2 given that θ2 ∈ (π, 2π), we have

Pr(E1 ∧ E2) = Pr
[
E1 ∧ E2 | θ2 ∈ (0, π)

]
= Pr

[
θ3, θ4, . . . , θn ∈ (0, θ2) | θ2 ∈ (0, π)

]
+ Pr

[
θ3, θ4, . . . , θn ∈ (π, θ2+π) | θ2 ∈ (0, π)

]
= 2Pr

[
θ3, θ4, . . . , θn ∈ (0, θ2) | θ2 ∈ (0, π)

]
= 2

∫ π

0

Pr
[
θ3, θ4, . . . , θn ∈ (0, θ2) | θ2=θ

]dθ

π

= 2
∫ π

0

(
θ

2π

)n−2
dθ

π

=
1

(n−1)2n−1
.
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Similarly Pr(Ei ∧ Ej) = 1/(n−1)2n−1 whenever i �= j. For n ≥ 4, it is not possible for
more than two of the angles to be acute. For suppose that the angles at P1, P2 are acute.
We may suppose that θ2 ∈ (0, π); then as above we have θ3, . . . , θn all lie in the interval
(0, θ2), or else all lie in (π, θ2+π); and then it is easy to see that the angles at P3, P4, . . . , Pn

are obtuse.
By inclusion-exclusion we obtain the probability that at least one of the angles at

P1, P2, . . . , Pn is acute:

Pr(E1 ∨ E2 ∨ · · · ∨ En) =
n∑

k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤n

Pr(Ei1 ∧ Ei2 ∧ · · · ∧ Eik)

= nPr(E1) − n(n−1)
2

Pr(E1 ∧ E2)

= n· n

2n−1
− n(n−1)

2
· 1
(n−1)2n−1

=
n(n−2)
2n−1

.

Problem B1

The polynomial P (x, y) = (y−2x)(y−2x−1) satisfies the required condition. To see this,
let k = �a	; then either

k ≤ a < a+ 1
2 and �2a	 = 2k, or

k+1
2 ≤ a < k+1 and �2a	 = 2k+1.

Problem B2

The Cauchy-Schwartz inequality gives

n =
n∑

i=1

k
1/2
i k

−1/2
i ≤

( n∑
i=1

ki

)1/2( n∑
i=1

k−1
i

)1/2

=
√

5n − 4

and so n2 ≤ 5n − 4, i.e. (n − 1)(n − 4) ≤ 0. This gives n ∈ {1, 2, 3, 4}. Since each
ki ∈ {1, 2, . . . , n} we have only a short list of candidates for (n; k1, k2, . . . , kn). We check
that all solutions are given by (1; 1), (3; 2, 3, 6) and (4; 1, 1, 1, 1).

Problem B3

Since
d

dx

[
f(x)f

( a

x

)]
= f ′(x)f

( a

x

)
− a

x2
f(x)f ′

(a

x

)
=

a

x
− a

x2
x = 0,
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we see that f(x)f(a/x) = c is a positive constant. Combining this with the relation
f ′(x)f(a/x) = a/x gives xf ′(x) = kf(x) where k = a/c > 0 and so

d

dx
ln

[
x−kf(x)

]
=

d

dx

[
ln f(x) − k ln x

]
=

f ′(x)
f(x)

− k

x
= 0.

This shows that x−kf(x) = m is a positive constant, i.e. f(x) = mxk. The relation
m =

(
kak−1

)−1/2 then follows from f ′(a/x) = x/f(x) and the requirement that m > 0.
Conversely, every function of this form is a solution.

Problem B4

Note that
(

1 + x

1 − x

)n

= (1 + 2x + 2x2 + 2x3 + 2x4 + · · ·)n =
(∑

r∈Z

x|r|
)n

=
∑
m≥0

g(m,n)xm

where g(m,n) is the number of n-tuples of integers (r1 , r2, . . . , rn) such that |r1| + |r2| +
· · · + |rn| = m. Divide both sides by 1 − x to obtain

(1 + x)n

(1 − x)n+1
=

∑
m≥0

g(m,n)(xm + xm+1 + xm+2 + xm+3 + · · ·)

=
∑
m≥0

(
g(0, n) + g(1, n) + g(2, n) + · · · + g(m,n)

)
xm =

∑
m≥0

f(m,n)xm.

Multiply both sides by yn and sum over n ≥ 0 to obtain

∑
m,n≥0

f(m,n)xmyn =
1

1 − x

∑
n≥0

(
1 + x

1 − x
y

)n

=
1

1 − x
· 1
1 − (

1+x
1−x

)
y

=
1

1 − x − y − xy
.

This rational function of x and y is symmetric in x and y, so we must have f(m,n) =
f(n,m) for all m,n ≥ 0.

Problem B5

Suppose P = P (x1, . . . , xn) is not identically zero. We may suppose P is homogeneous,
since every homogeneous component of P satisfies both (a) and (b). Abbreviate ∆ =∑n

i=1
∂2

∂x2
i

and S = S(x1, . . . , xn) =
∑n

i=1 x2
i . Let r ≥ 1 be the integer uniquely determined

by P = SrQ where the polynomial Q = Q(x1 , . . . , xn) is not divisible by S. Then Q is
also homogeneous, say of degree k ≥ 0. Now

∂2P

∂x2
i

= 4r(r−1)x2
i S

r−2Q + 2rSr−1Q + 4rSr−1xi
∂Q

∂xi
+ Sr ∂2Q

∂x2
i
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and summing over i gives

0 = ∆P = 4r(r−1)Sr−1Q + 2nrSr−1Q + 4rSr−1
n∑

i=1

xi
∂Q

∂xi
+ Sr∆Q.

Since Q is homogeneous of degree k, Euler’s identity gives
∑n

i=1 xi
∂Q
∂xi

= kQ. Thus

0 = 2r(2r−2+n+k)Sr−1Q + Sr∆Q.

Multiplying by S yields

0 = 2r(2r−2+n+k)P + Sr+1∆Q

where the constant 2r(2r−2+n+k)P is positive, so that Sr+1 divides P , a contradiction.

Problem B6

Let A be the n × n matrix with all diagonal entries equal to t, and all off-diagonal entries
equal to 1. Note that v = (1, 1, . . . , 1) ∈ Rn is an eigenvector of A with eigenvalue t+n−1,
and the orthogonal complement of v is an eigenspace of dimension n−1 with eigenvalue
t−1. Expanding the determinant of A gives

∑
π∈Sn

σ(π)tν(π) = (t−1)n−1(t+n−1) = (t−1)n + n(t−1)n−1.

Integrating from t = 0 to t = 1 gives the required result.
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