# Solutions to the December 2005 Putnam Exam 

G. Eric Moorhouse, University of Wyoming<br>http://www.uwyo.edu/moorhouse/handouts/putnam05/

I'm not really happy with my solutions for some of these. In particular, I should be able to evaluate A5 without infinite series; and I should be able to do A2 directly without induction. If I have the energy to improve these solutions, you may check back at this site for updated solutions.

## Problem A1

We call a finite set of positive integers feasible if every member of $S$ has the form $2^{r} 3^{s}$, and no member of $S$ divides any other member of $S$. We call a positive integer $n$ feasible if $n=\sum S$ for some feasible set $S$. We are required to show that every positive integer is feasible. If not, then there exists a smallest infeasible number $n$. If $n$ is even, say $n=2 k$ for some positive integer $k<n$ then we have $k=\sum S$ for some feasible set $S$ and $n=\sum 2 S$ where the set $2 S=\{2 a: a \in S\}$ is clearly feasible, contrary to assumption. Otherwise $n$ is odd. Let $s \geq 0$ be maximal such that $3^{s} \leq n$, so that $3^{s}>\frac{1}{3} n$ and $n-3^{s}=2 k$ for some positive integer $k$. We have $k=\sum S$ for some feasible set $S$, and since $k<\frac{1}{3} n<3^{s}$, no member of $S$ (or of $2 S$ ) is divisible by $3^{s}$. In particular $3^{s} \notin 2 S$ and $n=\sum S^{\prime}$ where $S^{\prime}=\left\{3^{s}\right\} \cup 2 S$. To check that $S^{\prime}$ is feasible, it remains only to observe that since $3^{s}$ is odd, it is not divisible by any member of $2 S$. Thus $n$ is feasible, a contradiction.

## Problem A2

Let $r_{n}$ be the number of rook tours of $S=S_{n}=\{1,2, \ldots, n\} \times\{1,2,3\}$, and let $s_{n}$ be the number of 'alternate rook tours' of $S$ starting at $(1,3)$ and ending at $(n, 1)$. Every rook tour uniquely determines an integer $k \in\{1,2, \ldots, n\}$ such that the first vertical segment in the tour is from $(k, 1)$ to $(k, 2)$ as shown:


The right-hand portion of this tour not shown consists of an alternate rook tour of $\{k+1, k+2, \ldots, n\} \times\{1,2,3\}$, which shows that for $n \geq 2$,

$$
r_{n}=s_{1}+s_{2}+\cdots+s_{n-1} .
$$

Similarly, each alternate rook tour uniquely determines an integer $k \in\{1,2, \ldots, n\}$ such that the first vertical segment in the tour is from $(k, 3)$ to $(k, 2)$ as shown:


The right-hand portion of this tour not shown consists of a rook tour of $\{k+1, k+2, \ldots, n\} \times$ $\{1,2,3\}$, which shows that for $n \geq 2$,

$$
s_{n}=1+r_{1}+r_{2}+\cdots+r_{n-1}
$$

It is straightforward to check that

$$
\begin{aligned}
& r_{1}=0, \quad s_{1}=1 \\
& r_{n}=s_{n}=2^{n-2} \quad \text { for } n \geq 2
\end{aligned}
$$

where the case $n=1$ is found directly, and the cases $n \geq 2$ are verified by induction.

## Problem A3

(We assume that either $n$ is even or that $z$ is restricted to aa domain on which an analytic branch of $z^{n / 2}$ may be defined.) Write $p(z)=\prod_{j=1}^{n}\left(z-a_{j}\right)$ where the zeroes $a_{j} \in \mathbb{C}$ have modulus 1. Logarithmic differentiation of $g(z)=p(z) / z^{n / 2}$ yields

$$
\frac{g^{\prime}(z)}{g(z)}=\sum_{j=1}^{n} \frac{1}{z-a_{j}}-\frac{n}{2 z}
$$

and so

$$
\frac{2 z g^{\prime}(z)}{g(z)}=\sum_{j=1}^{n} \frac{z+a_{j}}{z-a_{j}}
$$

If $|a|=1$ then

$$
2 \operatorname{Re}\left(\frac{z+a}{z-a}\right)=\frac{z+a}{z-a}+\frac{\bar{z}+\bar{a}}{\bar{z}-\bar{a}}=2 \frac{|z|^{2}-1}{|z-a|^{2}}
$$

and so

$$
2 \operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}=\left(|z|^{2}-1\right) \sum_{j=1}^{n} \frac{1}{\left|z-a_{j}\right|^{2}} .
$$

If $g^{\prime}(z)=0$ then we must have $|z|=1$ since the latter sum is positive.

## Problem A4

Since $H^{T} H=n I$, the matrix $n^{-1 / 2} H$ is orthogonal; thus $\|H v\|=n^{1 / 2}\|v\|$ for every $v \in \mathbb{R}^{n}$. By the Cauchy-Schwartz inequality,

$$
\left|u^{T} H v\right| \leq\|u\| \cdot\|H v\|=n^{1 / 2}\|u\| \cdot\|v\| .
$$

for all $u, v \in \mathbb{R}^{n}$. Now suppose the upper left $a \times b$ submatrix of $H$ has only 1 's as entries. Take $u \in \mathbb{R}^{n}$ to have its first $a$ entries equal to 1 , and the remaining entries 0 . Similarly $v \in \mathbb{R}^{n}$ has its first $b$ entries equal to 1 , and the remaining entries 0 . Then

$$
a b=\left|u^{T} H v\right| \leq n^{1 / 2}\|u\| \cdot\|v\|=n^{1 / 2} a^{1 / 2} b^{1 / 2} .
$$

This implies that $a b \leq n$.

## Problem A5

(Note: I would need to justify my term-by-term integration here. It's messy enough though, so I would rather look for a slicker proof...) Denote by $I$ the integral

$$
I=\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x=\int_{0}^{1}\left(\sum_{n \geq 1} \frac{(-1)^{n-1}}{n} x^{n}\right) \frac{d x}{x^{2}+1}=\sum_{n \geq 1}(-1)^{n-1} I_{n}
$$

where

$$
I_{n}=\int_{0}^{1} \frac{x^{n} d x}{x^{2}+1}
$$

For all $n \geq 0$ we have

$$
I_{n+2}+I_{n}=\int_{0}^{1} \frac{x^{n+2}+x^{n}}{x^{2}+1} d x=\int_{0}^{1} x^{n} d x=\frac{1}{n+1} .
$$

It follows easily by induction that

$$
I_{2 k}=(-1)^{k}\left[\frac{\pi}{4}+\sum_{i=1}^{k} \frac{(-1)^{i}}{2 i-1}\right] \quad \text { and } \quad I_{2 k+1}=(-1)^{k}\left[\frac{\ln 2}{2}+\sum_{i=1}^{k} \frac{(-1)^{i}}{2 i}\right]
$$

for all $k \geq 0$. Thus

$$
\begin{aligned}
I & =\sum_{k \geq 1} \frac{1}{2 k} I_{2 k}-\sum_{k \geq 0} \frac{1}{2 k+1} I_{2 k+1} \\
& =\sum_{k \geq 1} \frac{(-1)^{k}}{2 k}\left[\frac{\pi}{4}+\sum_{i=1}^{k} \frac{(-1)^{i}}{2 i-1}\right]-\sum_{k \geq 0} \frac{(-1)^{k}}{2 k+1}\left[\frac{\ln 2}{2}+\sum_{i=1}^{k} \frac{(-1)^{i}}{2 i}\right] \\
& =\frac{\ln 2}{2} \cdot \frac{\pi}{4}+\sum_{(i, k): 1 \leq i \leq k} \frac{(-1)^{i+k}}{2 k(2 i-1)}-\frac{\pi}{4} \cdot \frac{\ln 2}{2}-\sum_{(i, k): 1 \leq i \leq k} \frac{(-1)^{i+k}}{(2 k+1) 2 i}
\end{aligned}
$$

After cancelling the two constant terms we are left with two sums. In the first such sum, replace $i$ by $j+1$. In the second sum, rename $k$ as $j$, then rename $i$ as $k$. This gives

$$
\begin{aligned}
I & =\sum_{(j, k): 0 \leq j<k} \frac{(-1)^{j+k-1}}{(2 j+1) 2 k}+\sum_{(j, k): 1 \leq k \leq j} \frac{(-1)^{j+k-1}}{(2 j+1) 2 k} \\
& =\left[\sum_{j \geq 0} \frac{(-1)^{j}}{2 j+1}\right]\left[\sum_{k \geq 1} \frac{(-1)^{k-1}}{2 k}\right]=\frac{\pi}{4} \cdot \frac{\ln 2}{2}=\frac{\pi \ln 2}{8} .
\end{aligned}
$$

## Problem A6

For each $i=1,2, \ldots, n$, let $E_{i}$ be the event that the angle at $P_{i}$ is acute. Note that $E_{i}$ is actually the event that there exists a diameter of the circle with $P_{i}$ on one side, and all other $P_{j}$ 's on the other side. We may coordinatise $P_{i}$ by the angle $\theta_{i} \in[0,2 \pi)$ measured counterclockwise from $P_{1}$, so that $\theta_{1}=0$; and $\theta_{2}, \ldots, \theta_{n}$ are independent random variables uniformly distributed in $[0,2 \pi)$. Realising $E_{1}$ as a union of mutually exclusive possibilities gives the probability of $E_{1}$ as

$$
\begin{aligned}
\operatorname{Pr}\left(E_{1}\right)= & \operatorname{Pr}\left[\theta_{2}, \ldots, \theta_{n} \in(\pi, 2 \pi)\right] \\
& +\sum_{i=2}^{n} \operatorname{Pr}\left[\theta_{i} \in(0, \pi) \text { and } \theta_{j} \in\left(\theta_{i}, \theta_{i}+\pi\right) \text { for all } j \notin\{1, i\}\right] \\
= & \frac{1}{2^{n-1}}+(n-1) \cdot \frac{1}{2} \cdot \frac{1}{2^{n-2}} \\
= & \frac{n}{2^{n-1}} .
\end{aligned}
$$

Similarly $\operatorname{Pr}\left(E_{i}\right)=n / 2^{n-1}$ for all $i \in\{1,2, \ldots, n\}$.
For any events $E$ and $F$, we denote by $E \wedge F$ the event that both $E$ and $F$ occur; and by $E \vee F$ the event that $E$ or $F$ occurs (possibly both). We denote the conditional probability of $E$ given $F$ as $\operatorname{Pr}(E \mid F)$. We next determine $\operatorname{Pr}\left(E_{1} \wedge E_{2}\right)$, the probability that the angles at $P_{1}$ and $P_{2}$ are both acute. Since $\theta_{2}$ is equally likely to be in $(0, \pi)$ or in $(\pi, 2 \pi)$, and by symmetry the conditional probability of $E_{1} \wedge E_{2}$ given that $\theta_{2} \in(0, \pi)$ equals the conditional probability of $E_{1} \wedge E_{2}$ given that $\theta_{2} \in(\pi, 2 \pi)$, we have

$$
\begin{aligned}
\operatorname{Pr}\left(E_{1} \wedge E_{2}\right)= & \operatorname{Pr}\left[E_{1} \wedge E_{2} \mid \theta_{2} \in(0, \pi)\right] \\
= & \operatorname{Pr}\left[\theta_{3}, \theta_{4}, \ldots, \theta_{n} \in\left(0, \theta_{2}\right) \mid \theta_{2} \in(0, \pi)\right] \\
& +\operatorname{Pr}\left[\theta_{3}, \theta_{4}, \ldots, \theta_{n} \in\left(\pi, \theta_{2}+\pi\right) \mid \theta_{2} \in(0, \pi)\right] \\
= & 2 \operatorname{Pr}\left[\theta_{3}, \theta_{4}, \ldots, \theta_{n} \in\left(0, \theta_{2}\right) \mid \theta_{2} \in(0, \pi)\right] \\
= & 2 \int_{0}^{\pi} \operatorname{Pr}\left[\theta_{3}, \theta_{4}, \ldots, \theta_{n} \in\left(0, \theta_{2}\right) \mid \theta_{2}=\theta\right] \frac{d \theta}{\pi} \\
= & 2 \int_{0}^{\pi}\left(\frac{\theta}{2 \pi}\right)^{n-2} \frac{d \theta}{\pi} \\
= & \frac{1}{(n-1) 2^{n-1}} .
\end{aligned}
$$

Similarly $\operatorname{Pr}\left(E_{i} \wedge E_{j}\right)=1 /(n-1) 2^{n-1}$ whenever $i \neq j$. For $n \geq 4$, it is not possible for more than two of the angles to be acute. For suppose that the angles at $P_{1}, P_{2}$ are acute. We may suppose that $\theta_{2} \in(0, \pi)$; then as above we have $\theta_{3}, \ldots, \theta_{n}$ all lie in the interval $\left(0, \theta_{2}\right)$, or else all lie in $\left(\pi, \theta_{2}+\pi\right)$; and then it is easy to see that the angles at $P_{3}, P_{4}, \ldots, P_{n}$ are obtuse.

By inclusion-exclusion we obtain the probability that at least one of the angles at $P_{1}, P_{2}, \ldots, P_{n}$ is acute:

$$
\begin{aligned}
\operatorname{Pr}\left(E_{1} \vee E_{2} \vee \cdots \vee E_{n}\right) & =\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \operatorname{Pr}\left(E_{i_{1}} \wedge E_{i_{2}} \wedge \cdots \wedge E_{i_{k}}\right) \\
& =n \operatorname{Pr}\left(E_{1}\right)-\frac{n(n-1)}{2} \operatorname{Pr}\left(E_{1} \wedge E_{2}\right) \\
& =n \cdot \frac{n}{2^{n-1}}-\frac{n(n-1)}{2} \cdot \frac{1}{(n-1) 2^{n-1}} \\
& =\frac{n(n-2)}{2^{n-1}} .
\end{aligned}
$$

## Problem B1

The polynomial $P(x, y)=(y-2 x)(y-2 x-1)$ satisfies the required condition. To see this, let $k=\lfloor a\rfloor$; then either

$$
\begin{aligned}
k \leq a<a+\frac{1}{2} \quad \text { and } \quad\lfloor 2 a\rfloor & =2 k, \quad \text { or } \\
k+\frac{1}{2} \leq a<k+1 & \text { and } \quad\lfloor 2 a\rfloor
\end{aligned}
$$

## Problem B2

The Cauchy-Schwartz inequality gives

$$
n=\sum_{i=1}^{n} k_{i}^{1 / 2} k_{i}^{-1 / 2} \leq\left(\sum_{i=1}^{n} k_{i}\right)^{1 / 2}\left(\sum_{i=1}^{n} k_{i}^{-1}\right)^{1 / 2}=\sqrt{5 n-4}
$$

and so $n^{2} \leq 5 n-4$, i.e. $(n-1)(n-4) \leq 0$. This gives $n \in\{1,2,3,4\}$. Since each $k_{i} \in\{1,2, \ldots, n\}$ we have only a short list of candidates for $\left(n ; k_{1}, k_{2}, \ldots, k_{n}\right)$. We check that all solutions are given by $(1 ; 1),(3 ; 2,3,6)$ and $(4 ; 1,1,1,1)$.

## Problem B3

Since

$$
\frac{d}{d x}\left[f(x) f\left(\frac{a}{x}\right)\right]=f^{\prime}(x) f\left(\frac{a}{x}\right)-\frac{a}{x^{2}} f(x) f^{\prime}\left(\frac{a}{x}\right)=\frac{a}{x}-\frac{a}{x^{2}} x=0
$$

we see that $f(x) f(a / x)=c$ is a positive constant. Combining this with the relation $f^{\prime}(x) f(a / x)=a / x$ gives $x f^{\prime}(x)=k f(x)$ where $k=a / c>0$ and so

$$
\frac{d}{d x} \ln \left[x^{-k} f(x)\right]=\frac{d}{d x}[\ln f(x)-k \ln x]=\frac{f^{\prime}(x)}{f(x)}-\frac{k}{x}=0 .
$$

This shows that $x^{-k} f(x)=m$ is a positive constant, i.e. $f(x)=m x^{k}$. The relation $m=\left(k a^{k-1}\right)^{-1 / 2}$ then follows from $f^{\prime}(a / x)=x / f(x)$ and the requirement that $m>0$. Conversely, every function of this form is a solution.

## Problem B4

Note that

$$
\left(\frac{1+x}{1-x}\right)^{n}=\left(1+2 x+2 x^{2}+2 x^{3}+2 x^{4}+\cdots\right)^{n}=\left(\sum_{r \in \mathbb{Z}} x^{|r|}\right)^{n}=\sum_{m \geq 0} g(m, n) x^{m}
$$

where $g(m, n)$ is the number of $n$-tuples of integers $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ such that $\left|r_{1}\right|+\left|r_{2}\right|+$ $\cdots+\left|r_{n}\right|=m$. Divide both sides by $1-x$ to obtain

$$
\begin{aligned}
\frac{(1+x)^{n}}{(1-x)^{n+1}} & =\sum_{m \geq 0} g(m, n)\left(x^{m}+x^{m+1}+x^{m+2}+x^{m+3}+\cdots\right) \\
& =\sum_{m \geq 0}(g(0, n)+g(1, n)+g(2, n)+\cdots+g(m, n)) x^{m}=\sum_{m \geq 0} f(m, n) x^{m} .
\end{aligned}
$$

Multiply both sides by $y^{n}$ and sum over $n \geq 0$ to obtain

$$
\sum_{m, n \geq 0} f(m, n) x^{m} y^{n}=\frac{1}{1-x} \sum_{n \geq 0}\left(\frac{1+x}{1-x} y\right)^{n}=\frac{1}{1-x} \cdot \frac{1}{1-\left(\frac{1+x}{1-x}\right) y}=\frac{1}{1-x-y-x y}
$$

This rational function of $x$ and $y$ is symmetric in $x$ and $y$, so we must have $f(m, n)=$ $f(n, m)$ for all $m, n \geq 0$.

## Problem B5

Suppose $P=P\left(x_{1}, \ldots, x_{n}\right)$ is not identically zero. We may suppose $P$ is homogeneous, since every homogeneous component of $P$ satisfies both (a) and (b). Abbreviate $\Delta=$ $\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ and $S=S\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}$. Let $r \geq 1$ be the integer uniquely determined by $P=S^{r} Q$ where the polynomial $Q=Q\left(x_{1}, \ldots, x_{n}\right)$ is not divisible by $S$. Then $Q$ is also homogeneous, say of degree $k \geq 0$. Now

$$
\frac{\partial^{2} P}{\partial x_{i}^{2}}=4 r(r-1) x_{i}^{2} S^{r-2} Q+2 r S^{r-1} Q+4 r S^{r-1} x_{i} \frac{\partial Q}{\partial x_{i}}+S^{r} \frac{\partial^{2} Q}{\partial x_{i}^{2}}
$$

and summing over $i$ gives

$$
0=\Delta P=4 r(r-1) S^{r-1} Q+2 n r S^{r-1} Q+4 r S^{r-1} \sum_{i=1}^{n} x_{i} \frac{\partial Q}{\partial x_{i}}+S^{r} \Delta Q
$$

Since $Q$ is homogeneous of degree $k$, Euler's identity gives $\sum_{i=1}^{n} x_{i} \frac{\partial Q}{\partial x_{i}}=k Q$. Thus

$$
0=2 r(2 r-2+n+k) S^{r-1} Q+S^{r} \Delta Q
$$

Multiplying by $S$ yields

$$
0=2 r(2 r-2+n+k) P+S^{r+1} \Delta Q
$$

where the constant $2 r(2 r-2+n+k) P$ is positive, so that $S^{r+1}$ divides $P$, a contradiction.

## Problem B6

Let $A$ be the $n \times n$ matrix with all diagonal entries equal to $t$, and all off-diagonal entries equal to 1 . Note that $v=(1,1, \ldots, 1) \in \mathbb{R}^{n}$ is an eigenvector of $A$ with eigenvalue $t+n-1$, and the orthogonal complement of $v$ is an eigenspace of dimension $n-1$ with eigenvalue $t-1$. Expanding the determinant of $A$ gives

$$
\sum_{\pi \in S_{n}} \sigma(\pi) t^{\nu(\pi)}=(t-1)^{n-1}(t+n-1)=(t-1)^{n}+n(t-1)^{n-1}
$$

Integrating from $t=0$ to $t=1$ gives the required result.

